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Structure of the talk

1 Definition of various concepts of no-arbitrage (NFLVR, NGA,
NRA).

2 Deterministic characterisation in diffusion models and
comparison.
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Free lunch with vanishing risk (FLVR)

Discounted asset price model : semimart S = (St)t∈[0,T ], T ∈ (0,∞].
Admissible Trading strategy : predictable process H = (Ht)t∈[0,T ]

s.t. ∃ a constant cH ≥ 0 and

H · St ≥ −cH a.s. ∀t ∈ [0, T ].

Discounted wealth process with the initial capital x ∈ R: x + H · S.

The model S satisfies the NFLVR condition if C ∩ L∞

+ = {0} where

C := {g ∈ L∞ | ∃ admissible H such that g ≤ H · ST a.s.}.

C is the closure of C ⊂ L∞ in the norm topology.

Deterministic criteria for the absence of arbitrage in diffusion models – p.3/13



Financial significance and characterisation of NFLVR

FLVR in S =⇒ ∃ g ∈ L∞

+ \{0}, gn ∈ L∞ and attainable claims
Hn · ST , n ∈ N, such that

gn ≤ Hn · ST a.s. and lim
n→∞

‖g − gn‖∞ = 0.

Economic interpretation: the risk of Hn vanishes with increasing n

lim
n→∞

((Hn · ST ) ∧ 0) = 0.

(Delbaen and Schachermayer 1998): S satisfies NFLVR iff there
exists an equivalent sigma-martingale measure for S.

If S is locally bounded from below, NFLVR holds iff ∃ equivalent
local martingale measure for S (Ansel-Stricker lemma)
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Generalised arbitrage (GA)

Disc. asset price model : non-negative semimart S = (St)t∈[0,T ].
Predictable trading strategies H = (Ht)t∈[0,T ] is given by

H =

N∑

k=1

hk−1I(τk−1,τk], where N ∈ N, 0 ≤ τ0 ≤ · · · ≤ τN ≤ T

are stopping times, hk−1 are R-valued Fτk−1
-measurable. Let

C := {h ∈ L∞ | ∃H simple strategy s.t. h ≤ (H · S)T

(1 + ST )
a.s.}.

The model S satisfies NGA if

C
∗ ∩ L∞

+ = {0},

where C
∗

is closure of C in weak-* topology σ(L∞, L1) on L∞.
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NFLVR and NGA

FLVR: (Delbaen and Schachermayer 1994)
GA: (Sin 1996), (Yan 1998), (Cherny 2007)

Discounted asset price process: non-negative cts. semimart S

NFLVR on [0, T ] ⇐⇒ ∃ Q ∼ P : (St)t∈[0,T ] is a Q-loc. mart.
NFLVR on [0,∞) ⇐⇒ ∃ Q ∼ P : (St)t∈[0,∞) is a Q-loc. mart.

NGA on [0, T ] ⇐⇒ ∃ Q ∼ P : (St)t∈[0,T ] is a Q-mart.
NGA on [0,∞) ⇐⇒ ∃ Q ∼ P : (St)t∈[0,∞) is a Q-u.i. mart.

In particular, NGA =⇒ NFLVR
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Setting

Bond price ≡ 1
Stock price dYt = µ(Yt) dt + σ(Yt) dWt, Y0 = x0 ∈ J := (0,∞)

Assumptions
(A) σ(x) 6= 0 ∀x ∈ J

(B) 1/σ2 ∈ L1
loc

(J)

(C) µ/σ2 ∈ L1
loc

(J)

(D) Y does not exit at ∞
On the contrary, Y may exit at 0. We stop Y after it reaches 0.

Inputs: functions µ and σ
Outputs: determnistic criteria for NFLVR, NGA and NRA in terms of
µ and σ
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Ingredients

µ2

σ4
∈ L1

loc(J) (1)

xµ2(x)

σ4(x)
∈ L1

loc(0+) (2)

x

σ2(x)
/∈ L1

loc(0+) (3)

Recall (C) µ/σ2 ∈ L1
loc

(J)
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Criteria for NFLVR and NGA in the difussion model Y

Assume (A)–(D)
Theorem 1 NFLVR on [0, T ] ⇐⇒ (a) or (b), where
(a) (1) and (2) hold
(b) (1) and (3) hold and Y does not exit at 0

Corollary 2 (Delbaen and Shirakawa 2002) If Y does not exit at 0:
NFLVR on [0, T ] ⇐⇒ (1) and (3)

Theorem 3 NFLVR on [0,∞) ⇐⇒ (1), (2), and s(∞) = ∞,
where s denotes the scale function of Y

Proposition 4 NGA on [0, T ] ⇐⇒ NFLVR on [0, T ] and
x/σ2(x) /∈ L1

loc
(∞−)

Proposition 5 There is always GA on [0,∞)

Proofs: see (Mijatović and Urusov 2009a) and (Mijatović and
Urusov 2009b)
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The setting for relative arbitrage (RA)

Stochastic portfolio theory (Fernholz 2002), (Fernholz and
Karatzas 2008b). Assume from now on T < ∞.

RA on [0, T ]: there exists a self-financing strategy with a strictly
positive wealth (Vt)t∈[0,T ] such that V0 = Y0, VT ≥ YT a.s., and
P(VT > YT ) > 0

For RA we assume (A), (B), (C’), and (D’)
(A) σ(x) 6= 0 ∀x ∈ J

(B) 1/σ2 ∈ L1
loc

(J)

(C’) µ2/σ4 ∈ L1
loc

(J)

(D’) Y exits neither at 0 nor at ∞
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Criterion for NRA

Assume (A), (B), (C’), and (D’)

Recall dYt = µ(Yt) dt + σ(Yt) dWt, Y0 = x0 ∈ J = (0,∞)

Set Zt := exp{−
∫ t

0 (µ/σ)(Yu) dWu − (1/2)
∫ t

0 (µ2/σ2)(Yu) du}
By Itô’s formula ZY = (ZtYt)t∈[0,T ] is a local martingale

(Fernholz and Karatzas 2008a) and (Mijatović and Urusov 2009a):

NRA ⇐⇒ ZY martingale

Proposition 6 NRA ⇐⇒ x/σ2(x) /∈ L1
loc

(∞−)

Proof. d(ZtYt) = ZtYtb(Yt) dWt with b(x) = σ(x)/x − µ(x)/σ(x)

ZtYt = x0E(
∫
·

0 b(Yu) dWu)t ¤
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Comparison

Assume (A), (B), (C’), and (D’)

(i) NFLVR ⇐⇒ x/σ2(x) /∈ L1
loc

(0+)

(ii) NRA ⇐⇒ x/σ2(x) /∈ L1
loc

(∞−)

(iii) NGA ⇐⇒ x/σ2(x) /∈ L1
loc

(0+) and x/σ2(x) /∈ L1
loc

(∞−)

Thus, NFLVR and NRA are in a general position and

NGA ⇐⇒ NFLVR and NRA

NFLVR & NRA dYt = Yt dt + Yt dWt

NFLVR & RA dYt = Yt dt + Y 2
t dWt

FLVR & NRA dYt = 1
Yt

dt + dWt

FLVR & RA dYt = 2 dt + (
√

Yt + Y 2
t ) dWt
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Thank you for your attention!
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