| Introduction |
|--------------|
|              |

One expansion, Two approaches

Numerical tests 00000 Conclusion 000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

# Asymptotics of implied volatility in local volatility models

Tai-Ho Wang



The City University of New York

Sixth World Congress Bachelier Finance Society Toronto, June 26, 2010

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
| 0000000      | 0000000000                    | 00000           | 000        |
| a            |                               |                 |            |

## Collaborators

Joint work with

- Jim Gatheral, Baruch College CUNY
- Elton P. Hsu, Northwestern University
- Peter Laurence, University of Rome 1, "La Sapienza"

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Cheng Ouyang, Purdue University

| Introduction |
|--------------|
|              |

Numerical tests 00000

イロト 不得 トイヨト イヨト

3

## References



 Henri Berestycki, Jérôme Busca, and Igor Florent Asymptotics and calibration of local volatility models *Quantitative Finance* Vol 2, pp.61-69, 2002.



[2] Jim Gatheral.

The Volatility Surface: A Practitioner's Guide. John Wiley and Sons, Hoboken, NJ, 2006.



[3] Jim Gatheral, Elton P Hsu, Peter Laurence, Cheng Ouyang, and Tai-Ho Wang Asymptotics of implied volatility in local volatility models http://papers.srn.com/sol3/papers.cfm?abstract\_id=1542077, 2010



[4] Pierre Henry-Labordère,

Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing. CRC Press, 2009.

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
| •000000      | 0000000000                    | 00000           | 000        |
|              |                               |                 |            |

- Implied volatility in terms of local volatility
  - The heat kernel approach
  - The BBF approximation
  - BBF to higher orders
  - One expansion, two approaches
    - Laplace asymptotic formula
    - Expansion of time value
  - Numerical tests

Outline

• Summary and conclusions

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
| 000000       | 0000000000                    | 00000           | 000        |
| Objective    |                               |                 |            |

Given a local volatility process

$$\frac{dS}{S} = \sigma(S, t) \, dW_t,$$

with  $\sigma(S, t)$  depending only on the underlying level S and the time t, we want to compute implied volatilities  $\sigma_{bs}(K, T)$  such that

$$C_{bs}(s, t, K, T, \sigma_{bs}(K, T)) = \mathbb{E}\left[(S_T - K)^+ | S_t = s\right]$$

or in words, we want to efficiently compute implied volatility from local volatility.

| Introduction<br>00●0000 | One expansion, Two approaches<br>0000000000 | Numerical tests<br>00000 | Conclusion<br>000 |
|-------------------------|---------------------------------------------|--------------------------|-------------------|
|                         |                                             |                          |                   |
| Call price              |                                             |                          |                   |

Let p(t, s; t', s') be the transition probability density. Then

$$C(s, t, K, T) = \mathbb{E} \left[ (S_T - K)^+ | S_t = s \right]$$
$$= \int (s' - K)^+ p(t, s; T, s') ds'$$

As a function of t and s, p satisfies the backward Kolmogorov equation:

$$Lp := p_t + \frac{1}{2}s^2\sigma^2(s,t)p_{ss} = 0,$$

Subindices refer to respective partial derivatives.

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
| 0000000      | 00000000000                   | 00000           | 000        |
|              |                               |                 |            |

#### Two to approximate

$$C(s,t,K,T) = \int (s'-K)^+ p(t,s;T,s') ds'$$

- Approximate transition density by heat kernel expansion.
- Approximate the integral.
  - Two approaches for approximating the integral lead to one expansion.

• The smaller the time to maturity, the better the approximation, for both approximations.

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
| 0000000      |                               | 00000           | 000        |
|              |                               |                 |            |

#### Heat kernel expansion

Heat kernel expansion for transition density p(t, s; t', s') when t' - t is small:

$$p(t,s;t',s') \sim rac{e^{-rac{d^2(s,s',t)}{2(t'-t)}}}{\sqrt{2\pi(t'-t)}s'\sigma(s',t')} \left[\sum_{k=0}^n H_k(t,s,s')(t'-t)^k
ight]$$

• 
$$d(s, s', t) = \left| \int_{s}^{s'} \frac{d\xi}{\xi\sigma(\xi,t)} \right|$$
: geodesic distance between  $s$  to  $s'$   
•  $H_0(t, s, s') = \sqrt{\frac{s\sigma(s,t)}{s'\sigma(s',t)}} \exp\left[ \int_{s}^{s'} \frac{d_t(\eta, s', t)}{\eta\sigma(\eta, t)} d\eta \right]$   
•  $H_i(t, s, s') = \frac{H_0(t, s, s')}{d^i(s, s', t)} \int_{s'}^{s} \frac{d^{i-1}(\eta, s', t)LH_{i-1}}{H_0(\eta, s', t)a(\eta, t)} d\eta$ 

Numerical tests

## Heat kernel expansion for Black-Scholes

Heat kernel expansion for Black-Scholes transition density  $p_{bs}(t, s; t', s')$  when t' - t is small:

$$p_{bs}(t'-t,s,s') = \frac{e^{-\frac{d_{bs}^2(s,s')}{2(t'-t)}}}{\sqrt{2\pi(t'-t)}\sigma_{bs}s'}\sqrt{\frac{s}{s'}}\sum_{k=0}^{\infty}\frac{(-1)^k}{k!}\left[\frac{\sigma_{bs}^2(t'-t)}{8}\right]^k$$

• 
$$d_{bs}(s,s') = \left| \int_{s}^{s'} \frac{d\xi}{\sigma_{bs}\xi} \right| = \frac{1}{\sigma_{bs}} \left| \log \frac{s'}{s} \right|$$
  
•  $H_0^{bs}(t,s,s') = \sqrt{\frac{s}{s'}}$ 

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
| 000000       |                               | 00000           | 000        |
| Main idea    |                               |                 |            |

Implied volatility  $\sigma_{\it bs}$  is defined as the unique solution to

$$C(s, t, K, T) = C_{bs}(s, t, K, T, \sigma_{bs})$$

- Substitute the transition density by the heat kernel expansion for both the model price *C* and the Black-Scholes price *C*<sub>bs</sub>
- Expand in terms of T t on both sides of the resulting equation
- Further expand on Black-Scholes side the implied volatility

$$\sigma_{bs}(K,T) \approx \sigma_{bs,0} + \sigma_{bs,1}(T-t) + \sigma_{bs,2}(T-t)^2$$

• Match the corresponding coefficients

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
| 0000000      |                               | 00000           | 000        |
| Two approach | nes                           |                 |            |

- Directly substitute the transition density by heat kernel expansion to call price. Use Laplace asymptotic formula to approximate the resulting integral.
- Rewrite call price as intrinsic value + time value. Further rewrite time value as an integral of transition density over time, i.e., the Carr-Jarrow formula:

$$C(s,t,K,T) = (s-K)^{+} + \int_{t}^{T} K^{2} \sigma^{2}(K,u) p(s,t;K,u) du$$

| Introduction<br>0000000   | One expansion, Two approaches | Numerical tests | Conclusion<br>000 |
|---------------------------|-------------------------------|-----------------|-------------------|
| Laplace asymptotic method |                               |                 |                   |
|                           |                               |                 |                   |

### Laplace asymptotic formula

Asymptotic expansion of the integral as  $\tau \to 0^+$ 

$$\int_0^\infty e^{-\frac{\phi(x)}{\tau}} f(x) dx \sim \tau^2 e^{-\frac{\phi(x^*)}{\tau}} \left[ \frac{f'(x^*)}{[\phi'(x^*)]^2} + \left( \frac{f'(x^*)}{[\phi'(x^*)]^3} \right)' \tau \right]$$

Assumptions:

- f is identically zero when  $0 \le x \le x^*$ .
- $\phi$  is increasing in  $[x^*, \infty)$ .

| Introduction<br>0000000   | One expansion, Two approaches | Numerical tests<br>00000 | Conclusion<br>000 |
|---------------------------|-------------------------------|--------------------------|-------------------|
| Laplace asymptotic method |                               |                          |                   |
|                           |                               |                          |                   |

#### Laplace asymptotic for call price

Let  $\tau = T - t$ .

$$C(s, t, K, T) = \int_0^\infty (s - K)^+ p(t, s; T, s') ds'$$
  

$$\sim \frac{1}{\sqrt{2\pi\tau}} \int_0^\infty (s' - K)^+ \frac{e^{-\frac{d^2(s, s', t)}{2\tau}}}{s'\sigma(s', T)} \sum_{k=0}^n H_k(t, s, s')\tau^k ds'$$
  

$$= \frac{1}{\sqrt{2\pi\tau}} \sum_{k=0}^n \int_K^\infty e^{-\frac{d^2(s, s', t)}{2\tau}} G_k(t, s, T, s') ds' \cdot \tau^k$$

• 
$$G_k(t, s, T, s') = (s' - K) \frac{H_k(t, s, s')}{s' \sigma(s', T)}$$

Introduction 0000000 One expansion, Two approaches

Numerical tests 00000 Conclusion 000

Laplace asymptotic method

## Laplace asymptotic for call price

Assume s < K.

$$\begin{split} &\frac{1}{\sqrt{2\pi\tau}}\int_{K}^{\infty}e^{-\frac{d^2(s,s',t)}{2\tau}}G_k(t,s,T,s')ds'\\ &\sim \frac{\tau^{\frac{3}{2}}}{\sqrt{2\pi}}e^{-\frac{d^2}{2\tau}}\left[\frac{G'_k}{(dd')^2}+\left(\frac{G'_k}{(dd')^3}\right)'\tau\right], \end{split}$$

• 
$$d = d(s, K, t), d' = \frac{\partial d}{\partial s'}(s, K, t), \text{ and } d'' = \frac{\partial^2 d}{\partial (s')^2}(s, K, t)$$
  
•  $G'_k = \frac{\partial G_k}{\partial s'}(t, s, T, K) = \frac{H_k(t, s, K)}{K\sigma(K, T)}$ 

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ < ⊙ < ⊙

| Introduction<br>0000000 | One expansion, Two approaches | Numerical tests<br>00000 | Conclusion<br>000 |
|-------------------------|-------------------------------|--------------------------|-------------------|
| Laplace asymptotic me   | thod                          |                          |                   |
| Laplace as              | vmptotic for call price       |                          |                   |

Laplace asymptotic for model price:

$$C(s,t,K,T) \sim \frac{\tau^{\frac{3}{2}}}{\sqrt{2\pi}} e^{-\frac{d^2}{2\tau}} \left[ \frac{G'_0}{(dd')^2} + \left\{ \left( \frac{G'_0(K)}{(dd')^3} \right)' + \frac{G'_1(K)}{(dd')^2} \right\} \tau \right].$$

• 
$$d = d(s, K, t), d' = \frac{\partial d}{\partial s'}(s, K, t), \text{ and } d'' = \frac{\partial^2 d}{\partial (s')^2}(s, K, t)$$
  
•  $G'_k = \frac{\partial G_k}{\partial s'}(t, s, T, K) = \frac{H_k(t, s, K)}{K\sigma(K, T)}$ 

Laplace asymptotic for Black-Scholes:  $k = \log \frac{K}{s}$ 

$$C_{bs}(s, t, K, T, \sigma_{bs}) \sim \frac{Ke^{-\frac{k}{2}}}{\sqrt{2\pi}} e^{-\frac{k^2}{2\sigma_{bs}^2 \tau}} \frac{\sigma_{bs}^3 \tau^{\frac{3}{2}}}{k^2} \left[ 1 - \left(\frac{1}{8} + \frac{3}{k^2}\right) \sigma_{bs}^2 \tau \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Introduction<br>0000000 | One expansion, Two approaches | Numerical tests<br>00000 | Conclusion<br>000 |
|-------------------------|-------------------------------|--------------------------|-------------------|
| Laplace asymptotic me   | ethod                         |                          |                   |
| Match the               | coefficients                  |                          |                   |

Let 
$$\sigma_{bs} = \sigma_{bs,0} + \sigma_{bs,1}\tau + \sigma_{bs,2}\tau^2 + \cdots$$
 and set

$$e^{-\frac{d^2}{2\tau}} \left[ \frac{G'_0}{(dd')^2} + \left\{ \left( \frac{G'_0(K)}{(dd')^3} \right)' + \frac{G'_1(K)}{(dd')^2} \right\} \tau \right] \\ = e^{-\frac{k^2}{2\sigma_{bs}^2\tau}} \frac{K\sigma_{bs}^3}{k^2 e^{\frac{k}{2}}} \left[ 1 - \left( \frac{1}{8} + \frac{3}{k^2} \right) \sigma_{bs}^2 \tau \right]$$

• Exponential term: 
$$d^2 = \frac{k^2}{\sigma_{bs,0}^2} \implies \sigma_{bs,0} = \frac{k}{d} = \frac{\log K - \log s}{d(s,K,t)}$$

• Zeroth order term:  

$$\frac{G'_0}{(dd')^2} = e^{\frac{k^2 \sigma_{bs,1}}{\sigma_{bs,0}^3}} \frac{K \sigma_{bs,0}^3}{k^2 e^{\frac{k}{2}}} \Longrightarrow \sigma_{bs,1} = \frac{k}{d^3} \log \left[ \frac{dG'_0 e^{-\frac{k}{2}}}{Kk(d')^2} \right]$$

| Introduction<br>0000000 | One expansion, Two approaches | Numerical tests<br>00000 | Conclusion<br>000 |
|-------------------------|-------------------------------|--------------------------|-------------------|
| Time value method       |                               |                          |                   |
| Time value              |                               |                          |                   |

#### Recall

$$C(s, t, K, T) = (s - K)^{+} + \int_{t}^{T} K^{2} \sigma^{2}(K, u) p(s, t; K, u) du$$
  
~  $(s - K)^{+} + \sum_{k=0}^{n} \int_{t}^{T} \frac{e^{-\frac{d^{2}(s, K, t)}{2(u - t)}}}{\sqrt{2\pi(u - t)}} K \sigma(K, u) (u - t)^{k} du \cdot H_{k}(t, s, K)$ 

Moreover, denote d = d(s, K, t),

$$\int_{t}^{T} e^{-\frac{d^{2}}{2(u-t)}} \sigma(K, u)(u-t)^{k-\frac{1}{2}} du$$

$$\sim \int_{t}^{T} e^{-\frac{d^{2}}{2(u-t)}} [\sigma(K, t) + \sigma_{t}(K, t)(u-t)](u-t)^{k-\frac{1}{2}} du$$

| Introduction<br>0000000 |        |   | One expans | ion, Two approaches | Numerical tests<br>00000 | Conclusion<br>000 |
|-------------------------|--------|---|------------|---------------------|--------------------------|-------------------|
| Time value m            | nethod |   |            |                     |                          |                   |
| <b>–</b>                |        | c |            |                     |                          |                   |

#### Expansion for call price

L

et 
$$\Phi_k(d, \tau) = \int_0^t u^{k-\frac{1}{2}} e^{-\frac{d^2}{2u}} du.$$
  
 $C(s, t, K, T) - (s - K)^+$   
 $\sim \frac{1}{2\sqrt{2\pi}} \{K\sigma(K, t)\Phi_0(d, \tau)H_0(t, s, K) + K[\sigma_t(K, t)H_0(t, s, K) + \sigma(K, t)H_1(t, s, K)]\Phi_1(d, \tau)\}$ 

Moreover, on Black-Scholes side,

$$egin{aligned} & \mathcal{C}_{bs}(s,t,\mathcal{K},\mathcal{T})-(s-\mathcal{K})^+ \ & \sim & rac{\sqrt{s\mathcal{K}}}{2\sqrt{2\pi}}\left[\sigma_{bs}\Phi_0(d_{bs}, au)-rac{\sigma_{bs}^3}{8}\Phi_1(d_{bs}, au)
ight] \end{aligned}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

| Introduction<br>0000000 | One expansion, Two approaches | Numerical tests<br>00000 | Conclusion<br>000 |
|-------------------------|-------------------------------|--------------------------|-------------------|
| Time value method       |                               |                          |                   |
| Auxiliary expa          | nsion and matching            |                          |                   |

Expanding the 
$$\Phi_i$$
's:  
•  $\Phi_0(d,\tau) \sim 2\tau^{\frac{3}{2}} \left[ \frac{1}{d^2} - 3\frac{\tau}{d^4} \right] e^{-\frac{d^2}{2\tau}}$   
•  $\Phi_1(d,\tau) = \frac{2}{3}\tau^{\frac{3}{2}}e^{-\frac{d^2}{2\tau}} - \frac{d^2}{3}\Phi_0(d,\tau) \sim \frac{2\tau^{\frac{5}{2}}}{d^2}e^{-\frac{d^2}{2\tau}}$ 

Matching

$$e^{-\frac{d^2(s,K,t)}{2\tau}} \left\{ \frac{K\sigma H_0}{d^2} + \left[ \frac{K\sigma_t H_0 + K\sigma H_1}{d^2} - \frac{3K\sigma H_0}{d^4} \right] \tau \right\}$$
$$= e^{-\frac{d_{bs}^2(s,K,t)}{2\tau}} \sqrt{sK} \left[ \sigma_{bs} \Phi_0(d_{bs},\tau) - \frac{\sigma_{bs}^3}{8} \Phi_1(d_{bs},\tau) \right]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

| Introduction<br>0000000 | One expansion, Two approaches | Numerical tests<br>00000 | Conclusion<br>000 |
|-------------------------|-------------------------------|--------------------------|-------------------|
| Time value method       |                               |                          |                   |
| Asymptotic ex           | pansion once again            |                          |                   |

$$\sigma_{bs} = \sigma_{bs,0} + \sigma_{bs,1}(T-t) + \sigma_{bs,2}(T-t)^2 + \mathcal{O}(T-t)^3.$$

$$d(s, K, t) = \int_s^K \frac{d\xi}{\xi\sigma(\xi,t)},$$

$$H_0(s, K, t) = \sqrt{\frac{s\sigma(s,t)}{K\sigma(K,t)}} \exp\left[\int_s^K \frac{d_t(\eta, K, t)}{\eta\sigma(\eta, t)} d\eta\right].$$

$$\sigma_{bs,0} = \frac{|\log K - \log s|}{d(s, K, t)}. \text{ (BBF)}$$

$$\sigma_{bs,1} = \frac{k}{d^3} \log\left[\frac{dH_0\sqrt{K}\sigma(K, t)}{k\sqrt{s}}\right], \text{ where } k = \log K - \log s.$$

$$\sigma_{bs,2}? \text{ Too complicated to reproduce here.}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
|              | 000000000                     |                 |            |

## Henry-Labordère's approximation

Henry-Labordère also presents a heat kernel expansion based approximation to implied volatility in equation (5.40) on page 140 of his book [4]:

$$\sigma_{BS}(K,T) \approx \sigma_0(K) \left\{ 1 + \frac{T}{3} \left[ \frac{1}{8} \sigma_0(K)^2 + \mathcal{Q}(f_{av}) + \frac{3}{4} \mathcal{G}(f_{av}) \right] \right\}$$
(1)

with

$$\mathcal{Q}(f) = \frac{C(f)^2}{4} \left[ \frac{C''(f)}{C(f)} - \frac{1}{2} \left( \frac{C'(f)}{C(f)} \right)^2 \right]$$

and

$$\mathcal{G}(f) = 2 \,\partial_t \,\log C(f) = 2 \,rac{\partial_t \,\sigma(f,t)}{\sigma(f,t)}$$

where  $C(f) = f \sigma(f, t)$  in our notation,  $f_{av} = (S_0 + K)/2$  and the term  $\sigma_0(K)$  is the BBF approximation from [1].

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
|              |                               | 00000           |            |
|              |                               |                 |            |

## How well do these approximations work?

We consider the following explicit local volatility models:

• The square-root CEV model:

$$dS_t = e^{-\lambda t} \sigma \sqrt{S_t} \, dW_t$$

• The quadratic model:

$$dS_t = e^{-\lambda t} \sigma \left\{ 1 + \psi \left( S_t - 1 \right) + \frac{\gamma}{2} \left( S_t - 1 \right)^2 \right\} dW_t$$

- Parameters are:  $\sigma = 0.2$ ,  $\psi = -0.5$  and  $\gamma = 0.1$ . In each case  $S_0 = 1$  and T = 1.
- $\lambda = 0$  gives a time-homogeneous local volatility surface and  $\lambda = 1$  a time-inhomogeneous one.
- We compare implied volatilities from the approximations and the closed-form solution.

| 0000000 000000000 <b>0000</b> |  |
|-------------------------------|--|

### Time-homogeneous Square Root CEV



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Note that all errors are tiny!

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
|              |                               | 00000           |            |
|              |                               |                 |            |

## Time-homogeneous Quadratic Model



Strike

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 0000000 One expansion, Two approaches

Numerical tests

### Time-inhomogeneous Square Root CEV



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction 0000000 One expansion, Two approaches

Numerical tests

## Time-inhomogeneous Quadratic Model



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
| 0000000      | 0000000000                    | 00000           | ●00        |
| Summarv      |                               |                 |            |

- Small-time expansions are useful for generating closed-form expressions for implied volatility from simple models.
- Direct substitute approach is easier for generalization to higher dimensions, e.g., stochastic volatility models.

$$\sigma_{bs} \sim rac{\log K - \log s}{d_M(s, v)},$$

where  $d_M(s, v)$  is the "distance to the money", i.e., shortest geodesic distance from the spot (s, v) to the line  $\{s = K\}$  in the price-volatility plane.

• Application: Short time implied vol in delta is flat! (Joint work with Carr and Lee).

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
| 0000000      | 0000000000                    | 00000           | ⊙●⊙        |
| Summary II   |                               |                 |            |

- Time value approach is easier for getting higher order terms.
- Refinement of  $\sigma_{bs,0}$  (work in progress with Gatheral):

$$\sigma_{bs} \sim \left[ \frac{\sqrt{T-t}}{\left|\log K - \log s\right|} \sqrt{\int_{t}^{T} \left| \frac{s'(\tau)}{a(s(\tau),\tau)} \right|^{2} d\tau} \right]^{-1}$$

where the integral is along the "most likely path"  $s(\tau)$ .

• If we take the "likely path" as  $s(\tau) = \varphi_t^{-1}(\frac{\tau}{T}\varphi_t(K))$ , where  $\varphi_t(x) = \int_s^x \frac{d\xi}{a(\xi,t)}$ , then BBF is recovered.

| Introduction | One expansion, Two approaches | Numerical tests | Conclusion |
|--------------|-------------------------------|-----------------|------------|
|              |                               |                 | 000        |
|              |                               |                 |            |

# THANK YOU FOR YOUR PATIENCE.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで