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In physics, spatial boundary conditions for the heat equation on
a half-line (half-space) are always provided.

In finance such boundary conditions are often omitted for
pricing equations, perhaps since for geometric Brownian
motion such conditions are redundant.



For many models in finance, however, boundary conditions are
needed and even if they are redundant, boundary conditions
(boundary behaviour) provides useful information.

We will here not focus on when the conditions are redundant or
not, rather on the information they provide. This is particularly
striking in the case when we consider forward equations whose
boundary behaviour can be reduced, in the case of
time-homogeneous diffusions, to the study of boundary
behaviour for backward equations.



Feynman-Kac

We study diffusions on the half-line satisfying

dXt = β (Xt)dt +σ(Xt)dW .

Consider an expected value of the form

u(x , t) = Ex ,tg(XT ).

The corresponding partial differential equation is{
ut +

1
2σ2(x)uxx +β (x)ux = 0

u(x ,T ) = g(x).

What about boundary conditions at x = 0?
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An example: The Black-Scholes model

Stock price:
dXt = rXt dt +σXt dW

Call price:
u(x , t) = Ex ,te−r(T−t)(XT −K )+

The BS-equation:{
ut +

1
2σ2x2uxx + rxux − ru = 0

u(x ,T ) = (x−K )+.

Boundary condition at x = 0:

u(0, t) = 0
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Another example: The CIR-process

Assume that

dXt = (b−aXt)dt +σ

√
Xt dW ,

and
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The CIR-process, continued

I If b < σ2/2, then 0 is reached with positive probability.
Boundary conditions are needed to ensure uniqueness of
solutions. Indeed, Heston-Loewenstein-Willard (2007)
provide two different continuous bounded solutions to the
term structure equation (with no specified boundary
conditions).

I If b > σ2/2, then 0 cannot be reached. Boundary
conditions are not needed from a mathematical
perspective, but crucial from a numerical perspective!



Boundary conditions for the backward equation

Hypothesis
Assume that σ2(x , t) and β (x , t) are C1 in x, σ(x , t) = 0 iff
x = 0, β (0, t)≥ 0 and linear growth conditions. Let g be C1 with
g and g′ bounded.

Theorem
The function u(x , t) = Ex ,tg(X (T )) is the unique classical
solution to the backward equation

ut +
1
2σ2uxx +βux = 0

u(x ,T ) = g(x)
ut(0, t)+β (0, t)ux(0, t) = 0.



Note: A classical solution is understood to be C1 up to the
boundary x = 0, so the boundary condition
ut(0, t) = β (0, t)ux(0, t) holds in a classical sense.



Stochastic volatility models
Stock price: {

dX (t) =
√

Y (t)α(X (t))dW
dY (t) = β (Y (t))dt +σ(Y (t))dV ,

dW dV = ρdt .
We assume that X is absorbed at 0, and that β (0)≥ 0,
σ(0) = 0 and linear growth conditions.

Theorem
The function u(x ,y , t) = Ex ,y ,tg(X (T )) is the unique classical
solution to the backward equation

ut +
1
2x2yuxx +ρx

√
yσuxy + 1

2σ2uyy +βuy = 0
u(x ,y ,T ) = g(x)
u(0,y , t) = g(0)
ut(x ,0, t)+β (0)uy (x ,0, t) = 0.



The Kolmogorov (Fokker-Planck) forward equation

Time-homogeneous diffusion:

dXt = β (Xt)dt +σ(Xt)dW

with b(0)≥ 0 and σ(0) = 0
Density:

p(x ,y , t) := Px(Xt ∈ dy)/dy

The density satisfies the backward equation
pt = 1

2σ2pxx +βpx
p(x ,y ,0) = δy (x)
pt(0,y , t) = β (0)px(0,y , t).



The density also satisfies the forward equation{
pt = 1

2(σ2p)yy − (βp)y
p(x ,y ,0) = δx(y).

What about boundary conditions?
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The CIR-process

dXt = (b−aXt)dt +σ

√
Xt dW

I If b > σ2/2, then limy→0 p(x ,y , t) = 0. Thus p(x ,0, t) = 0
can be used as boundary condition.

I If b < σ2/2, then limy→0 p(x ,y , t) = ∞. It is then unclear
what boundary conditions to impose.
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A Symmetry Relation

Let m(x) = 2
σ2(x)

exp{
∫ x 2β(z)

σ2(z)
dz} be the density of the speed

measure.

Theorem
The density satisfies

m(x)p(x ,y , t) = m(y)p(y ,x , t).

Note: Using the symmetry relation, we circumvent the difficult
issue of boundary conditions for the forward equation. Instead,
we solve the backward equation (with boundary conditions
specified above), and then use the symmetry relation.
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Boundary asymptotics

As a by-product we also get the exact boundary asymptotics.

Theorem
The density p(x ,y , t) satisfies p(x ,y , t)/m(y)→ C(t) as y → 0
for some C1 function C(t) := p(0,x , t)/m(x)≥ 0.

(i) If β (0) > 0, then C(t) is positive for t > 0.
(ii) If β (0) = 0, then the function C(t)≡ 0. In this case, define

D(t) = lim
y↓0

p(x ,y , t)
ym(y)

.

(iia) If there exists a constant ε > 0 such that σ(x)≥ εx1−ε for
0 < x < ε, then D(t) is positive for t > 0.

(iib) If β (0) = 0 and there exists ε > 0 such that σ(x)≤ ε−1x for
x ∈ (0,ε), then D ≡ 0.



Sketch of proof

The above symmetry relation was also proved by Ito-McKean.
Their proof is rather sketchy and relies on spectral
decomposition of solutions to PDEs. Our proof is more
elementary and uses the known regularity in the backward
variable and integration by parts.
Fix x and let p̃(y , t) := m(y)

m(x)p(y ,x , t), and let

u(y , t) = Ey ,tg(XT )

for some T > 0 and some function g.



Integration by parts:∫
∞

0

∫ T

0
ut(y , t)p̃(y , t)dtdy =∫

∞

0
u(y ,T )p̃(y ,T )−u(y ,0)p̃(y ,0)dy −

∫
∞

0

∫ T

0
u(y , t)p̃t(y , t)dtdy .

and

−
∫

∞

0

∫ T

0
ut(y , t)p̃(y , t)dtdy

=
∫

∞

0

∫ T

0

(
αuyy (y , t)+βuy (y , t)

)
p̃(y , t)dtdy

=
∫ T

0

∫
∞

0
u(y , t)p̃t(y , t)dydt .



Thus ∫
∞

0
u(y ,0)p̃(y ,0)dy =

∫
∞

0
u(y ,T )p̃(y ,T )dy .

Since p̃(y ,0) = δx(y) and u(y ,T ) = g(y), we have

Ex ,0g(XT ) =
∫

∞

0
g(y)p̃(y ,T ).

This holds for any function g, so p̃(y ,T ) is a density of XT .



Example: CIR

dXt = (b−aXt)dt +σ

√
Xt dW

m(x) =
2

σ2 x2b/σ2−1 exp
{

2a(1−x)

σ2

}
The density satisfies

p(x ,y , t) =
m(y)

m(x)
p(y ,x , t)∼ C(x , t)y2b/σ2−1

for small y .



Example: CEV

The Constant Elasticity of Variance model is given by

dXt = σX γ

t dW

for 1
2 ≤ γ < 1. Now m(x) = 2

σ2 x−2γ . The density satisfies

p(x ,y , t) =
m(y)

m(x)
p(y ,x , t)∼ C(x , t)y1−2γ

for small y .
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