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The Objectives of the Research

To build an Equity-Interest Rate Hybrid model which:

⇒ generates a smile on the equity side;

⇒ includes stochastic interest rate with interest rate smile;

⇒ enables non-zero correlations between the underlying processes;

⇒ allows efficient calibration;
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The Heston Model and Short-Rate Interest Rate

⇒ First, the Heston-Hull-White Hybrid model:

dS/S = rdt+
√
σdWQ

x ,

dσ = κ(σ̄ − σ)dt+ γ
√
σdWQ

σ ,

dr = λ(θ − r)dt+ ηdWQ
r ,

with correlations: ρx,σ 6= 0, ρx,r 6= 0 and ρσ,r 6= 0.

⇒ With the Feynman-Kac theorem, for x = log S the corresponding
PDE is given by:

rφ = φt + (r − 1/2σ)φx + κ(σ̄ − σ)φσ + λ(θt − r)φr

+1/2σφx,x + 1/2γ2σφσ,σ + 1/2η2φr ,r

+ρx,σγσφx,σ + ρx,rη
√
σφx,r + ρσ,rηγ

√
σφσ,r .

⇒ In the present form the model is not affine [Duffie et al. 2000].
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⇒ By linearization of the non-affine terms in the covariance matrix we
find an approximation: σ ρx,σγσ ρx,rη

√
σ

γ2σ ρσ,rηγ
√
σ

η2

 ≈

 σ ρx,σγσ ρx,rηΨ
γ2σ ρσ,rηγΨ

η2

 .

⇒ We linearize the non-affine term
√
σ by Ψ:

Ψ = E(
√
σ)︸ ︷︷ ︸

analytic ChF

or Ψ = N
(
E(
√
σ),Var(

√
σ)
)
.

⇒ The expectation for the CIR-type process is known analytically:

E(
√
σ) =

√
2ce−λ/2

∞∑
k=0

1

k!
(λ/2)k

Γ
(

1+d
2 + k

)
Γ( d

2 + k)
,

with c , d and λ being known deterministic functions.

⇒ Affine approximation ⇒ efficient pricing!
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Quality of the Approximations

⇒ We set: κ = 0.5, γ = 0.1, λ = 1, η = 0.01, θ = 0.04 and
ρx,σ = −0.5, ρx,r = 0.6.
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Figure: Comparison of implied Black-Scholes volatilities from Monte Carlo (40.000 paths and 500 steps) and Fourier inversion.
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Intermediate Summary

⇒ The linearization method provides a high quality approximation;

⇒ The projection procedure can be simply extended to high
dimensions;

⇒ The method is straightforward, and does not involve complex
techniques;

⇒ Alternative methods for approximating the hybrid models are:

Markovian projection based methods [Antonov-2008].
Models with indirect correlation structure [Giese-2004,
Andreasen-2006];
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The Heston Model and the SV Libor Market Model

⇒ We now consider the Stochastic Volatility Libor Market Model
[Andersen, Brotherton-Ratcliffe-2005], [Andersen, Andreasen-2000].
For Lk := L(t,Tk−1,Tk) we define

L(t,Tk−1,Tk) ≡ 1

τk

(
P(t,Tk−1)

P(t,Tk)
− 1

)
, for t < Tk−1.

with the dynamics under their natural measure given by:{
dLk = σk (βkLk + (1− βk)Lk(0))

√
VdW k

k ,

dV = λ(V (0)− V )dt + η
√
VdW k

V ,

with dW k
i dW

k
j = ρi,jdt, for i 6= j and dW k

VdW
k
i = 0.

⇒ Efficient calibration with Markovian Projection Method
[Piterbarg-2005].
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⇒ Fast pricing of European- style equity options:

Π(t) = B(t)EQ
(

(S(TN)− K )+

B(TN)

∣∣Ft

)
, with t < TN ,

with K the strike, S(TN) the stock price at time TN , filtration Ft

and a numéraire B(TN).

⇒ The money-savings account B(TN) is assumed to be correlated
with stock S(TN).

⇒ We switch between the measures: From risk neutral Q to the
TN -forward QTN :

Π(t) = P(t,TN)ETN

((
FTN (TN)− K

)+ ∣∣Ft

)
,with t < TN ,

with FTN (t) the forward of the stock S(t), defined as:

FTN (t) =
S(t)

P(t,TN)
.

⇒ The ZCB P(t,TN) is not well-defined for all t!
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⇒ Since P(Tk−1,Tk−1) = 1 we find for the ZCB P(t,Tk):

P(t,Tk) = (1 + τkL(t,Tk−1,Tk))−1
.

⇒ For t 6= Tk−1 we use the interpolation from [Schlögl-2002]:

P(t,Tk) ≈ (1 + (Tk − t)L(t,Tk−1,Tk))−1
, for Tk−1 ≤ t ≤ Tk .

⇒ This ZCB interpolation is sufficient for calibration purposes but for
pricing callable exotics more attention is needed [Piterbarg-2004,
Davis et al.-2009, Beveridge & Joshi-2009].
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Derivation of the Hybrid Model

Under the TN -forward measure we have:

⇒ An equity part is driven by the Heston model:

dS/S = (. . . )dt+
√
ξdW N

x ,

dξ = κ(ξ̄ − ξ)dt+ γ
√
ξdW N

ξ .

⇒ The SV Libor Market Model under the TN -measure is given by:

dLk = −φkσkV
N∑

j=k+1

τjφjσj
1 + τjLj

ρk,jdt + σkφk
√
VdW N

k ,

dV = λ(V (0)− V )dt + η
√
VdW N

V ,

with φk = βkLk + (1− βk)Lj(0).
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Correlation Structure

⇒ We define the following correlation structure:
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Deriving the Forward Dynamics

⇒ FTN = S
P(t,TN ) is a tradable, so FTN is a martingale under the

TN -forward measure:

dFTN (t) =
1

P(t,TN)
dS(t)− S(t)

P2(t,TN)
dP(t,TN).

⇒ Dynamics for S(t) are known (the Heston model), for ZCB
P(t,TN) we find:

1

P(t,TN)
=
(
1 + (Tm(t) − t)Lm(t)(Tm(t)−1)

)︸ ︷︷ ︸
interpolation

N∏
j=m(t)+1

(1 + τjL(t,Tj−1,Tj))

︸ ︷︷ ︸
rolling

.

with m(t) = min{k : t ≤ Tk}.
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⇒ For the ZCB P(t,TN) we are only interested in diffusion
coefficients:

dP(t,TN)

P(t,TN)
= (. . . )dt −

√
V

N∑
j=m(t)+1

τjσjφj
1 + τjLj

dW N
j .

⇒ The forward FTN (t) dynamics are now given by:

dFTN

FTN
=

√
ξdW N

x︸ ︷︷ ︸
asset

+
√
V

N∑
j=m(t)+1

τjσjφj
1 + τjLj

dW N
j︸ ︷︷ ︸

interest rate

.

⇒ The model is not affine !
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The Hybrid Model Approximation

⇒ We freeze the Libor rates [Glasserman,Zhao-1999],
[Hull,White-1996], [Jäckel,Rebonato-2000], i.e.:

Lj(t) ≈ Lj(0) ⇒ φj(t) ≈ Lj(0).

⇒ Now, the linearized dynamics are given by:

dFTN

FTN
≈
√
ξdW N

x +
√
V

N∑
j=m(t)+1

τjσjLj(0)

1 + τjLj(0)
dW N

j .

⇒ The model does not depend on the Libor processes ! It is fully
described by the volatility structure.
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⇒ The model is now given by:

dFTN/FTN ≈
√
ξdW N

x +
√
VΣTdWN ,

dξ = κ(ξ̄ − ξ)dt + γ
√
ξdW N

ξ ,

dV = λ(V (0)− V )dt + η
√
VdW N

V ,

with appropriate column vectors Σ and dWN .

⇒ Under the log-transform, x = log FTN , we find:

dx ≈ −1

2

(√
ξdW N

x +
√
VΣTdWN

)2

+
√
ξdW N

x +
√
VΣTdWN .

⇒ Since dW N
x is correlated with dWN cross terms are still not affine!
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⇒ We set: A = m(t) + 1, . . . ,N and ψj =
τjσjLj (0)
1+τjLj (0) .

⇒ The dynamics for x = log FTN are given by:

dx ≈ −1

2

(
ξ + A1(t)V + 2

√
V
√
ξA2(t)

)
dt +

√
ξdW N

x +
√
VΣTdWN ,

with

A1(t) :=
∑
j∈A

ψ2
j +

∑
i,j∈A
i 6=j

ψiψjρi,j , and A2(t) :=
∑
j∈A

ψjρx,j .

⇒ A1(t) and A2(t) are deterministic piecewise constant functions!

⇒ The drift and covariance matrix include the non-affine term√
V
√
ξ, we linearize it by:√

ξ
√
V ≈ E(

√
ξ
√
V )

⊥⊥
= E(

√
ξ)E(
√
V ) =: ϑ(t).
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Iterative Characteristic Function

⇒ With Feynman-Kac theorem we find the corresponding PDE:

0 = φt + 1/2 (ξ + A1V + 2A2ϑ(t)) (φx,x − φx)

+ κ(ξ̄ − ξ)φξ + λ(V (0)− V )φV + 1/2η2VφV ,V

+ 1/2γ2ξφξ,ξ + ρx,ξγξφx,ξ,

subject to φ(u,X(T ), 0) = exp(iux(TN)).

⇒ The corresponding characteristic function is given by:

φ(u,X(t), τ) = exp(A(u, τ) + iux(t) + B(u, τ)ξ(t) + C (u, τ)V (t)),

with τ = TN − t.

⇒ The ODEs for A(u, τ), B(u, τ), C (u, τ) are of Heston-type and can
be solved recursively [Andersen,Andreasen-2000].
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Quality of the Approximations

⇒ We price an equity call option and investigate the accuracy of the
approximation.

⇒ For equity we take:
κ = 1.2, ξ̄ = 0.1, γ = 0.5, S(0) = 1, ξ(0) = 0.1.

⇒ For the interest rate model we take term structure:
P(0,T ) = exp (−0.05T ) , with
βk = 0.5, σk = 0.25, λ = 1, V (0) = 1, η = 0.1.

⇒ The correlation structure is given by:
1 ρx,ξ ρx,1 . . . ρx,N
ρξ,x 1 ρξ,1 . . . ρξ,N
ρ1,x ρ1,ξ 1 . . . ρ1,N

...
...

...
. . .

...
ρN,x ρN,ξ ρN,1 . . . 1

 =


1 −0.3 0.5 . . . 0.5
−0.3 1 0 . . . 0
0.5 0 1 . . . 0.98

...
...

...
. . .

...
0.5 0 0.98 . . . 1

 .
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Figure: Comparison of implied Black-Scholes volatilities for the European equity option, obtained by Fourier inversion of
approximation and by Monte Carlo simulation.
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Conclusion

⇒ We have developed an efficient approximation method projecting
non-affine models on affine versions;

⇒ We have presented an extension of the Heston model with
stochastic interest rates:

Short-rate processes;
SV LMM;

⇒ The model can be easily generalized to FX options;
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Equity Options and IR skew

⇒ We investigate the effect of β on equity implied vol. with Monte
Carlo simulation of the full-scale model:
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Figure: The effect of the interest rate skew, controlled by βk , on the equity implied volatilities. The Monte Carlo
simulation was performed with for maturity T = 10.

⇒ The prices of the European style options are rather insensitive to
skew parameter β!
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Example: Pricing a Hybrid Product

⇒ We consider an investor who is willing to take some risk in one
asset class in order to obtain a participation in a different asset
class.

⇒ An example of such hybrid product is minimum of several assets
[Hunter-2005] with payoff defined as:

Payoff = max

(
0,min

(
Cn(T ), k%× S(T )

S(t)

))
,

where Cn(T ) is an n-years CMS, and S(T ) is a stock.

⇒ By taking T = {1, 2, ..., 10} and the payment date TN = 5 we get:

ΠH(t) = P(t,T5)ET5

[
max

(
0,min

(
1− P(T5,T10)∑10

k=6 P(T5,Tk)
, k%× S(T5)

S(t)

))∣∣Ft

]
.
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Figure: The value for a minimum of several assets hybrid product. The prices are obtained by Monte Carlo simulation with 20.000
paths and 20 intermediate points. Left: Influence of β; Right: Influence of ρx,L .
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Now, we compare the results with Heston-Hull-White model

⇒ From calibration routine we have: λ = 0.0614, η = 0.0133,
r0 = 0.05 and κ = 0.65, γ = 0.469, ξ̄ = 0.090, ρx,ξ = −0.222 and
ξ0 = 0.114.

⇒ Calibration ensures that prices on the equities are the same, so the
hybrid price differences can only result from the interest rate
component!
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Figure: Hybrid prices obtained by two different hybrid models, H-LMM and HHW. The models were calibrated to the same data
set.
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Figure: CMS rate; Left: SV LMM; Right: Hull-White.

⇒ The SV LMM model provides much fatter tails for CMS rate than
the Hull-White model.
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