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Heston Model

Dynamics

dSt = St

√
VtdWt , S0 = 1,

dVt = (a + bVt) dt + c
√

VtdZt , V0 = v0 > 0,

Correlated Brownian motions

d〈W ,Z 〉t = ρdt, ρ ∈ [−1, 1]

Parameters
a ≥ 0, b ≤ 0, c > 0



Density and smile asymptotics

Consider a fixed maturity T > 0.

DT := density of ST .

How heavy are the tails?

DT (x) ∼ ? (x → 0,∞)

Implied Black-Scholes volatility (k = log K is the log-strike)

σ2
BS(k ,T ) ∼ ? (k → ±∞)



Known results

Leading term of smile asymptotics: Lee’s moment formula.
Andersen, Piterbarg (2007); Benaim, Friz (2008)

Drăgulescu, Yakovenko (2002): Stationary variance regime.
Leading growth order of distribution function of ST , by
(non-rigorous) saddle-point argument

Gulisashvili-Stein (2009): Precise density asymptotics for
uncorrelated Heston model



Main results (right tail), SG et al. 2010

Density asymptotics for x →∞

DT (x) = A1x−A3eA2
√

log x (log x)−3/4+a/c2 (
1+O((log x)−1/2)

)
Implied volatility for k = log K →∞

σBS (k,T )
√

T = β1k1/2 + β2 + β3
log k

k1/2
+ O

(
ϕ(k)

k1/2

)
(ϕ arbitrary function tending to ∞)



Interpretation of smile expansion

Implied volatility for k = log K →∞

σBS (k,T )
√

T = β1k1/2 + β2 + β3
log k

k1/2
+ O

(
ϕ(k)

k1/2

)
β1 does not depend on

√
v0

β2 depends linearly on
√

v0

Changes of
√

v0 have second-order effects

Increase
√

v0: parallel shift, slope not affected

Changes in mean-reversion level v̄ = −a/b seen only in β3



General remarks

Constants depend on: critical moment, critical slope, critical
curvature

Critical moment etc. defined in a model-free manner

Closed form of Fourier (Mellin) transform not needed

Work only with affine principles (Riccati equations)



Lee’s moment formula (2004)

Model-free result

Relates critical moment to implied volatility

s∗ := sup{s : E [S s
T ] <∞}

s∗ =:
1

2β2
1

+
β2

1

8
+

1

2

lim sup
k→∞

σBS(k ,T )
√

T√
k

= β1

Refinements by Benaim, Friz (2008), Gulisashvili (2009)



Heston Model: Mgf of log-spot Xt

Moment generating function

E [esXt ] = exp(φ(s, t) + v0ψ(s, t))

Riccati equations

∂tφ = F (s, ψ), φ(0) = 0,

∂tψ = R(s, ψ), ψ(0) = 0

F (s, v) = av ,

R(s, v) =
1

2
(s2 − s) +

1

2
c2v2 + bv + sρcv

Explicit solution possible, but cumbersome expression



Moment explosion

Critical moment for time T

s∗ := sup {s ≥ 1 : E [S s
T ] <∞}

Explosion time for moment of order s

T ∗(s) = sup {t ≥ 0 : E [S s
t ] <∞}

Critical slope, critical curvature:

σ := −∂sT ∗|s∗ ≥ 0 and κ := ∂2
s T ∗|s∗



Explicit Explosion time for the Heston model

Explosion time for moment of order s

T ∗(s) =
2√
− ∆(s)

(
arctan

√
− ∆(s)

sρc + b
+ π

)
,

∆(s) := (sρc + b)2 − c2
(
s2 − s

)
Critical moment s∗: Find numerically from

T ∗(s∗) = T .



Mellin (Fourier) inversion

Mellin transform of spot: M(u) = E [e(u−1)XT ]

Analytic in a complex strip

Density of ST by Mellin inversion:

DT (x) =
1

2iπ

∫ +i∞

−i∞
x−uM(u)du.

Valid for contour in analyticity strip of the Mellin transform

Justification: exponential decay of M(u) at ±i∞.



Analyticity and growth

Mellin transform analytic in a strip

u− < <(u) < u∗ = s∗ + 1

Leading order of density for x →∞

x−u∗−ε � DT (x)� x−u∗+ε,

depends on location of singularity

Refinement: lower order factors depend on type of singularity



Saddle point method

Recall:

DT (x) =
1

2iπ

∫ +i∞

−i∞
x−uM(u)du

Shift contour to the right, close to the singularity.

Let it pass through a saddle point of the integrand.

For large x , the integral is concentrated around the saddle.

Local expansion of integrand yields expansion of whole
integral.

(Laplace, Riemann, Debye...)



New integration contour

Re(u)

Im(u)

0 û u∗

Contour runs through saddle point û = û(x)

Moves to the right as x →∞



The surface |x−uM(u)|

31

31.5

32-2

-1

0

1

2

0

2·1013
4·1013
6·1013
8·1013

31

31.5



Asymptotics of ψ and φ near critical moment

Recall M(u) = exp(φ(u − 1, t) + v0ψ(u − 1, t))

For u → u∗ we have (with β :=
√

2v0/c
√
σ)

ψ(u − 1,T ) =
β2

u∗ − u
+ const + O(u∗ − u),

φ(u − 1,T ) =
2a

c2
log

1

u∗ − u
+ const + O(u∗ − u)

Found from Riccati equations



Saddle point method

Finding the saddle point: 0 = derivative of integrand

Use only first order expansion:

0 =
∂

∂u
x−u exp

(
β2

u∗ − u

)
Approximate saddle point at

û(x) = u∗ − β/
√

log x



New integration contour

Contour depends on x :

u = û(x) + iy , −∞ < y <∞

Divide contour into three parts:

|y | < (log x)−α (central part),

upper tail, lower tail (symmetric)

Uniform local expansion at saddle point ⇒ need large α

Tails negligible ⇒ need small α

Can take 2
3 < α < 3

4



Local expansion

Recall Mellin transform

M(u) = exp(φ(u − 1, t) + v0ψ(u − 1, t))

Determine singular expansions of φ and ψ from Riccati
equations

Abbreviation L := log x

Local expansion of the integrand:

x−uM(u) = Cx−u∗ exp
(

2βL1/2 + a
c2 log L− β−1L3/2y2 + o(1)

)



Local expansion

Gaussian integral∫ L−α

−L−α
exp(−β−1L3/2y2)dy

= β1/2L−3/4

∫ β−1/2L3/4−α

−β−1/2L3/4−α
exp(−w2)dw

∼ β1/2L−3/4

∫ ∞
−∞

exp(−w2)dw =
√
πβ1/2L−3/4



Tail estimate

Finding saddle point + local expansion fairly routine

Problem: Verify concentration

Needs some insight into behaviour of function away from
saddle point

Show exponential decay by ODE comparison



Result of saddle point method

Density asymptotics for x →∞

DT (x) = A1x−A3eA2
√

log x (log x)−3/4+a/c2 (
1+O((log x)−1/2)

)
Constants in terms of critical moment and critical slope:

A3 = u∗ = s∗ + 1 and A2 = 2

√
2v0

c
√
σ

Easily extended to full asymptotic expansion



Explicit expression for constant factor

From closed form of φ and ψ:

A1 =
1

2
√
π

(2v0)1/4−a/c2

c2a/c2−1/2σ−a/c2−1/4

× exp

(
−v0

(
b + s∗ρc

c2
+

κ

c2σ2

)
− aT

c2
(b + cρs∗)

)

×

(
2
√

b2 + 2bcρs∗ + c2s∗(1− (1− ρ2)s∗)

c2s∗(s∗ − 1) sinh 1
2

√
b2 + 2bcρs∗ + c2s∗(1− (1− ρ2)s∗)

)2a/c2



Call prices and Smile asymptotics

Gulisashvili (2009): Assumes that density of spot varies
regularly at infinity

DT (x) = x−γh(x),

h varies slowly at infinity, γ > 2

Expansions of call prices and implied volatility

Similarly for left tail



Smile asymptotics

Implied volatility for log-strike k →∞

σBS(k,T )
√

T = β1k1/2 + β2 + β3
log k

k1/2
+ O

(
ϕ(k)

k1/2

)
Constants

β1 =
√

2
(√

A3 − 1−
√

A3 − 2
)
,

β2 =
A2√

2

(
1√

A3 − 2
− 1√

A3 − 1

)
,

β3 =
1√
2

(
1

4
− a

c2

)(
1√

A3 − 1
− 1√

A3 − 2

)



Call prices

Call price for strike K →∞

C (K ) =
A1

(−A3 + 1) (−A3 + 2)
K−A3+2eA2

√
log K (log K )−

3
4
+ a

c2

×
(

1 + O
(

(log K )−
1
4

))



Smile asymptotics
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Figure: Implied variance σ(k , 1)2 in terms of log-strikes compared to the
first order (dashed) and third order (dotted) approximations.
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