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Introduction

Introduction

Recent years, the long-dated (maturity > 1 year) foreign exchange
(FX) option’s market has grown considerably

Vanilla options (European Call and Put)
Exotic options (barriers,...)
Hybrid options (PRDC swaps)
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Introduction

Introduction

A suitable pricing model for long-dated FX options has to take into
account the risks linked to:

domestic and foreign interest rates

by using stochastic processes for both domestic and foreign interest
rates

drd(t) = [θd(t)− αd(t)rd(t)]dt + σd(t)dW DRN
d (t),

drf (t) = [θf (t)− αf (t)rf (t)]dt + σf (t)dW FRN
d (t)

the volatility of the spot FX rate (Smile/Skew effect)

by using a local volatility σ(t, S(t)) for the FX spot

dS(t) = (rd(t)− rf (t))S(t)dt + σ(t, S(t))S(t)dW DRN
S (t),

by using a stochastic volatility ν(t) for the FX spot

dS(t) = (rd(t)− rf (t))S(t)dt +
√
ν(t)S(t)dW DRN

S (t),

dν(t) = κ(θ − ν(t))dt + ξ
√
ν(t)dW DRN

ν (t)

and/or jump

Gregory Rayee (ULB) Bachelier Congress 2010 Toronto, 22-26 june 2010 4 / 37



Introduction

Introduction
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Introduction

Introduction

Advantages of working with a local volatility model:

the local volatility σ(t,S(t)) is a deterministic function of both the FX
spot and time.

It avoids the problem of working in incomplete markets in comparison
with stochastic volatility models and is therefore more appropriate for
hedging strategies

has the advantage to be calibrated on the complete implied volatility
surface,

local volatility models usually capture more precisely the surface of
implied volatilities than stochastic volatility models
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Introduction

The model

The calibration of a model is usually done on the vanilla options
market
→ local and stochastic volatility models (well calibrated) return the
same price for these options.

But calibrating a model to the vanilla market is by no mean a
guarantee that all type of options will be priced correctly

example: We have compared short-dated barrier option market prices
with the corresponding prices derived from either a Dupire local
volatility or a Heston stochastic volatility model both calibrated on the
vanilla smile/skew.
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Introduction

Introduction

A FX market characterized by a mild skew (USDCHF) exhibits mainly
a stochastic volatility behavior,

A FX market characterized by a dominantly skewed implied volatility
(USDJPY) exhibit a stronger local volatility component.
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Introduction

Introduction

The market dynamics could be better approximated by a hybrid
volatility model that contains both stochastic volatility dynamics and
local volatility ones.

example:


dS(t) = (rd (t)− rf (t))S(t)dt + σLOC2(t, S(t))

√
ν(t)S(t)dW DRN

S (t),

drd (t) = [θd (t)− αd (t)rd (t)]dt + σd (t)dW DRN
d (t),

drf (t) = [θf (t)− αf (t)rf (t)]dt + σf (t)dW FRN
f (t),

dν(t) = κ(θ − ν(t))dt + ξ
√
ν(t)dW DRN

ν (t).

The local volatility function σLOC2(t, S(t)) can be calibrated from the local volatility that
we have in a pure local volatility model!
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The model

The three-factor model with local volatility

The spot FX rate S is governed by the following dynamics

dS(t) = (rd (t)− rf (t))S(t)dt + σ(t, S(t))S(t)dW DRN
S (t), (1)

domestic and foreign interest rates, rd and rf follow a Hull-White one factor
Gaussian model defined by the Ornstein-Uhlenbeck processes

{
drd (t) = [θd (t)− αd (t)rd (t)]dt + σd (t)dW DRN

d (t), (2)

drf (t) = [θf (t)− αf (t)rf (t)− ρfSσf (t)σ(t, S(t))]dt + σf (t)dW DRN
f (t), (3)

θd (t), αd (t), σd (t), θf (t), αf (t), σf (t) are deterministic functions of time.
Equations (1), (2) and (3) are expressed in the domestic risk-neutral measure
(DRN).
(W DRN

S (t),W DRN
d (t),W DRN

f (t)) is a Brownian motion under the domestic
risk-neutral measure Qd with the correlation matrix 1 ρSd ρSf

ρSd 1 ρdf
ρSf ρdf 1

 .
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The local volatility function first approach

The local volatility derivation : first approach
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The local volatility function first approach

The local volatility derivation : first approach

Consider the forward call price C̃(K , t) of strike K and maturity t, defined (under the
t-forward measure Qt) by

C̃(K , t) =
C(K , t)

Pd (0, t)
= EQt [(S(t)− K)+] =

∫ ∫ ∫ +∞

K
(S(t)− K)φF (S , rd , rf , t)dSdrddrf .

Differentiating it with respect to the maturity t leads to

∂C̃(K , t)

∂t
=

∫ ∫ ∫ +∞

K
(S(t)− K)

∂φF (S, rd , rf , t)

∂t
dSdrddrf

we have shown that the t-forward probability density φF satisfies the following
forward PDE:

∂φF

∂t
= −(rd (t)− fd (0, t)) φF −

∂[(rd (t)− rf (t))S(t)φF ]

∂x
−
∂[(θd (t)− αd (t) rd (t))φF ]

∂y

−
∂[(θf (t)− αf (t) rf (t))φF ]

∂z
+

1

2

∂2[σ2(t, S(t))S2(t)φF ]

∂x2
−

1

2

∂2[σ2
d (t)φF ]

∂y2
+

1

2

∂2[σ2
f (t)φF ]

∂z2

+
∂2[σ(t, S(t))S(t)σd (t)ρSdφF ]

∂x∂y
+
∂2[σ(t, S(t))S(t)σf (t)ρSf φF ]

∂x∂z
+
∂2[σd (t)σf (t)ρdf φF ]

∂y∂z
. (4)
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The local volatility function first approach

The local volatility derivation : first approach

Integrating by parts several times we get

∂C̃(K , t)

∂t
= fd (0, t)C̃(K , t) +

∫ ∫ ∫ +∞

K
[rd (t)K − rf (t)S(t)]φF (S, rd , rf , t)dSdrddrf

+
1

2
(σ(t,K)K)2

∫ ∫
φF (K , rd , rf , t)drddrf

= fd (0, t)C̃(K , t) + EQt [(rd (t)K − rf (t)S(t))1{S(t)>K} ]

+
1

2
(σ(t,K)K)2 ∂

2C̃(K , t)

∂K2
.

This leads to the following expression for the local volatility surface in terms of the
forward call prices C̃(K , t)

σ2(t,K) =

∂C̃(K ,t)
∂t

− fd (0, t)C̃(K , t)− EQt [(rd (t)K − rf (t) S(t))1{S(t)>K} ]

1
2
K2 ∂

2C̃(K ,t)

∂K2

.
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The local volatility function first approach

The local volatility derivation : first approach

The (partial) derivatives of the forward call price with respect to the maturity can be
rewritten as

∂C̃(K , t)

∂t
=

∂[ C(K ,t)
Pd (0,t)

]

∂t
=
∂C(K , t)

∂t

1

Pd (0, t)
+ fd (0, t)C̃(t,K),

∂2C̃(t,K)

∂K2
=

∂2[ C(K ,t)
Pd (0,t)

]

∂K2
=

1

Pd (0, t)

∂2C(t,K)

∂K2
.

Substituting these expressions into the last equation, we obtain the expression of the local
volatility σ2(t,K) in terms of call prices C(K , t)

σ2(t,K) =

∂C(K ,t)
∂t

− Pd (0, t)EQt [(rd (t)K − rf (t) S(t))1{S(t)>K} ]

1
2
K2 ∂

2C(K ,t)

∂K2

.
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The local volatility function second approach

The local volatility derivation : second approach
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The local volatility function second approach

The local volatility derivation : second approach

Applying Tanaka’s formula to the convex but non-differentiable function

e−
∫ t

0 rd (s)ds (S(t)− K)+ leads to

e−
∫ t

0 rd (s)ds(S(t)− K)+ = (S(0)− K)+ −
∫ t

0
rd (u)e−

∫ u
0 rd (s)ds(S(u)− K)+du

+

∫ t

0
e−

∫ u
0 rd (s)ds1{S(u)>K}dSu +

1

2

∫ t

0
e−

∫ u
0 rd (s)dsdLK

u (S)

where LK
u (S) is the local time of S defined by

LK
t (S) = lim

ε↓0

1

ε

∫ t

0
1[K ,K+ε](S(s))d < S, S >s .

Using dS(t) = (rd (t)− rf (t))S(t)dt + σ(t, S(t))S(t)dW DRN
S (t), taking the domestic risk

neutral expectation of each side and finally differentiating,

dC(K , t) = EQd [e−
∫ t

0 rd (s)ds(Krd (t)− rf (t)S(t))1{S(t)>K}]dt

+
1

2
lim
ε↓0

EQd [
1

ε
1[K ,K+ε](S(t))e−

∫ t
0 rd (s)dsσ2(t,S(t)) S2(t)]dt.
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The local volatility function second approach

The local volatility derivation : second approach

Using conditional expectation properties, the last term can be rewritten as follows

lim
ε↓0

1

ε
EQd [1[K ,K+ε](S(t))e−

∫ t
0 rd (s)dsσ2(t, S(t))S2(t)]

= lim
ε↓0

1

ε
EQd [EQd [e−

∫ t
0 rd (s)ds | S(t)]1[K ,K+ε](S(t))σ2(t, S(t))S2(t)]

= EQd [e−
∫ t

0 rd (s)ds | S(t) = K ]pd (K , t)︸ ︷︷ ︸
∂2C(K,t)

∂K2

σ2(t,K) K2

where pd (K , t) =
∫ ∫

φd (K , rd , rf , t) is the domestic risk neutral density of S(t) in K .

This leads to the local volatility expression where the expectation is expressed under the
domestic risk neutral measure Qd

σ2(t,K) =

∂C(K ,t)
∂t

− EQd [e−
∫ t

0 rd (s)ds(Krd (t)− rf (t)S(t))1{S(t)>K}]

1
2
K2 ∂2C

∂K2

. (5)
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The local volatility function second approach

The local volatility derivation : second approach

Making the well known change of measure : dQT
dQd

= e−
∫ t

0 rd (s)dsPd (t,T )
Pd (0,T )

, you get the

expression with the expectation expressed into the t-forward measure Qt

σ2(t,K) =

∂C(K ,t)
∂t

− Pd (0, t)EQt [(Krd (t)− rf (t)S(t))1{S(t)>K}]

1
2
K2 ∂2C

∂K2

.
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Calibration

Calibration
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Calibration Introduction

Calibration

Before pricing any derivatives with a model, it is usual to calibrate it
on the vanilla market,

determine all parameters present in the different stochastic processes
which define the model in such a way that all European option prices
derived in the model are as consistent as possible with the
corresponding market ones.
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Calibration Introduction

Calibration

The calibration procedure for the three-factor model with local
volatility can be decomposed in three steps:

1 Parameters present in the Hull-White one-factor dynamics for the
domestic and foreign interest rates, θd(t), αd(t), σd(t), θf (t), αf (t),
σf (t), are chosen to match European swaption / cap-floors values in
their respective currencies.

2 The three correlation coefficients of the model, ρSd , ρSf and ρdf are
usually estimated from historical data.

3 After these two steps, the calibration problem consists in finding the
local volatility function of the spot FX rate which is consistent with an
implied volatility surface.
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Calibration Introduction

Calibration

σ2(t,K) =

∂C(K ,t)
∂t

− Pd (0, t)EQt [(Krd (t)− rf (t)S(t))1{S(t)>K}]

1
2
K2 ∂2C

∂K2

.

Difficult because of EQt [(Krd (t)− rf (t)S(t))1{S(t)>K}] :

there exists no closed form solution

it is not directly related to European call prices or other liquid products.

Its calculation can obviously be done by using numerical methods but you have to solve
(numerically) a three-dimensional PDE:

0 =
∂φF

∂t
+ (rd (t)− fd (0, t)) φF +

∂[(rd (t)− rf (t))S(t)φF ]

∂x
+
∂[(θd (t)− αd (t) rd (t))φF ]

∂y

+
∂[(θf (t)− αf (t) rf (t))φF ]

∂z
−

1

2

∂2[σ2(t, S(t))S2(t)φF ]

∂x2
−

1

2

∂2[σ2
d (t)φF ]

∂y2
−

1

2

∂2[σ2
f (t)φF ]

∂z2

−
∂2[σ(t, S(t))S(t)σd (t)ρSdφF ]

∂x∂y
−
∂2[σ(t, S(t))S(t)σf (t)ρSf φF ]

∂x∂z
−
∂2[σd (t)σf (t)ρdf φF ]

∂y∂z
. (6)
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Calibration Introduction

First method : by adjusting the Dupire formula
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Calibration first method

Calibration : Comparison between local volatility with
and without stochastic interest rates

In a deterministic interest rates framework, the local volatility function σ1f (t,K) is given
by the well-known Dupire formula:

σ2
1f (t,K) =

∂C(K ,t)
∂t

+ K(fd (0, t)− ff (0, t)) ∂C(K ,t)
∂K

+ ff (0, t)C(K , t)

1
2
K2 ∂

2C(K ,t)

∂K2

.

If we consider the three-factor model with stochastic interest rates, the local volatility
function is given by

σ2
3f (t,K) =

∂C(K ,t)
∂t

− Pd (0, t)EQt [(Krd (t)− rf (t)S(t))1{S(t)>K}]

1
2
K2 ∂

2C(K ,t)

∂K2

.

We can derive the following interesting relation between the simple Dupire formula and its
extension

σ
2
3f (t,K)− σ2

1f (t,K) =
KPd (0, t){CovQt [rf (t)− rd (t), 1{S(t)>K}] + 1

K
CovQt [rf (t), (S(t)− K)+]}

1
2
K2 ∂2C

∂K2

.

(7)
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Calibration first method

Second method : by mimicking stochastic volatility models
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Calibration By mimicking stochastic volatility models

Calibrating the local volatility by mimicking stochastic
volatility models

Consider the following domestic risk neutral dynamics for the spot FX rate

dS(t) = (rd (t)− rf (t)) S(t) dt + γ(t, ν(t)) S(t) dW DRN
S (t)

ν(t) is a stochastic variable which provides the stochastic perturbation for the spot
FX rate volatility.
Common choices:

1 γ(t, ν(t)) = ν(t)
2 γ(t, ν(t)) = exp(

√
ν(t))

3 γ(t, ν(t)) =
√
ν(t)

The stochastic variable ν(t) is generally modelled by

a Cox-Ingersoll-Ross (CIR) process as for example the Heston stochastic
volatility model:

dν(t) = κ(θ − ν(t))dt + ξ
√
ν(t)dW DRN

ν (t)

a Ornstein-Uhlenbeck process (OU) as for example the Schöbel and Zhu
stochastic volatility model:

dν(t) = k[λ− ν(t)]dt + ξdW DRN
ν (t)
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Calibration By mimicking stochastic volatility models

Calibrating the local volatility by mimicking stochastic
volatility models

Applying Tanaka’s formula to the non-differentiable function e−
∫ t

0 rd (s)ds (S(t)− K)+,
where dS(t) = (rd (t)− rf (t)) S(t) dt + γ(t, ν(t)) S(t) dW DRN

S (t)

dC(K , t) = EQd [e−
∫ t

0 rd (s)ds(Krd (t)− rf (t)S(t))1{S(t)>K}]dt

+
1

2
lim
ε↓0

EQd [
1

ε
1[K ,K+ε](S(t))e−

∫ t
0 rd (s)dsγ2(t, ν(t))S2(t)]dt.

Here, the last term can be rewritten as

lim
ε↓0

1

ε
EQd [1[K ,K+ε](S(t))e−

∫ t
0 rd (s)dsγ2(t, ν(t))S2(t)]

= lim
ε↓0

1

ε
EQd [EQd [γ2(t, ν(t))e−

∫ t
0 rd (s)ds | S(t)]1[K ,K+ε](S(t))S2(t)]

= EQd [γ2(t, ν(t))e−
∫ t

0 rd (s)ds | S(t) = K ]pd (K , t)K2

=
EQd [γ2(t, ν(t))e−

∫ t
0 rd (s)ds | S(t) = K ]

EQd [e−
∫ t

0 rd (s)ds | S(t) = K ]

∂2C(K , t)

∂K2
K2. (8)
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Calibration By mimicking stochastic volatility models

Calibrating the local volatility by mimicking stochastic
volatility models

EQd [γ2(t, ν(t))e−
∫ t

0 rd (s)ds | S(t) = K ]

EQd [e−
∫ t

0 rd (s)ds | S(t) = K ]
=

∂C
∂t
− EQd [e−

∫ t
0 rd (s)ds(Krd (t)− rf (t)S(t))1{S(t)>K}]

1
2
K2 ∂2C

∂K2︸ ︷︷ ︸
σ2(t,K)

Therefore, if there exists a local volatility such that the one-dimensional probability
distribution of the spot FX rate with the diffusion

dS(t) = (rd (t)− rf (t)) S(t) dt + σ(t, S(t)) S(t) dW DRN
S (t),

is the same as the one of the spot FX rate with dynamics

dS(t) = (rd (t)− rf (t)) S(t) dt + γ(t, ν(t)) S(t) dW DRN
S (t)

for every time t, then this local volatility function has to satisfy

σ2(t,K) =
EQd [γ2(t, ν(t))e−

∫ t
0 rd (s)ds | S(t) = K ]

EQd [e−
∫ t

0 rd (s)ds | S(t) = K ]

= EQt [γ2(t, ν(t)) | S(t) = K ].
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Calibration By mimicking stochastic volatility models

A particular case with closed form solution

Consider the three-factor model with local volatility
dS(t) = (rd (t)− rf (t))S(t)dt + σ(t, S(t))S(t)dW DRN

S (t),

drd (t) = [θd (t)− αd rd (t)]dt + σddW DRN
d (t),

drf (t) = [θf (t)− αf rf (t)− ρfSσf ν(t)]dt + σf dW DRN
f (t),

Calibration by mimicking a Schöbel and Zhu-Hull and White stochastic volatility model
dS(t) = (rd (t)− rf (t))S(t)dt + ν(t)S(t)dW DRN

S (t),

drd (t) = [θd (t)− αd rd (t)]dt + σddW DRN
d (t),

drf (t) = [θf (t)− αf rf (t)− ρfSσf ν(t)]dt + σf dW DRN
f (t),

dν(t) = k[λ− ν(t)] dt + ξdW DRN
ν (t),

The local volatility function is given by:

σ2(T ,K) = EQT [ν2(T )|S(T ) = K ]

= EQT [ν2(T )] if we assume independence between S and ν

= (EQT [ν(T )])2 + VarQT [ν(T )]
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Calibration By mimicking stochastic volatility models

A particular case with closed form solution

Under the T -Forward measure:

dν(t) = [k(λ− ν(t))− ρdνσdbd (t,T )ξ]dt + ξ dW TF
ν (t)

ν(T ) = ν(t)e−k(T−t) +

∫ T

t
k(λ−

ρdνσdbd (u,T )ξ

k
)e−k(T−u)du +

∫ T

t
ξe−k(T−t)dW TF

ν (u) (9)

where bd (t,T ) =
1

αd
(1− e−αd (T−t))

so that ν(T ) conditional on Ft is normally distributed with mean and variance given
respectively by

EQT [ν(T )|Ft ] = ν(t)e−k(T−t) + (λ−
ρdνσdξ

αdk
)(1− e−k(T−t))

+
ρdνσdξ

αd (αd + k))
(1− e−(αd +k)(T−t))

VarQT [ν(T )|Ft ] =
ξ2

2k
(1− e−2k(T−t))
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Calibration By mimicking stochastic volatility models

A particular case with closed form solution

σ2(T ,K) = (EQT [ν(T )])2 + VarQT [ν(T )]

=

(
ν(t)e−kT + (λ−

ρdνσdξ

αdk
)(1− e−kT ) +

ρdνσdξ

αd (αd + k))
(1− e−(αd +k)T )

)2

+
ξ2

2k
(1− e−2kT )

= σ2(T )

Figure: ξ = 20%, k = 50%, αd = 5%, ν(0) = 10%, σd = 1%, λ = 20%, ρdν = 1%
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Extension

Extension : Hybrid volatility model
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Extension

Hybrid volatility model

Here we consider an extension of the three-factor model with local
volatility that incorporates a stochastic component to the FX spot
volatility by multiplying the local volatility with a stochastic volatility.
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Extension

Hybrid volatility model

1 Consider a hybrid volatility model where the volatility for the spot FX rate corresponds to
a local volatility σLOC2(t, S(t)) multiplied by a stochastic volatility γ(t, ν(t)) where ν(t)
is a stochastic variable,

dS(t) = (rd (t)− rf (t))S(t)dt + σLOC2(t, S(t))γ(t, ν(t))S(t)dW DRN
S (t),

drd (t) = [θd (t)− αd (t)rd (t)]dt + σd (t)dW DRN
d (t),

drf (t) = [θf (t)− αf (t)rf (t)− ρfSσf (t)σLOC2(t, S(t))γ(t, ν(t))]dt + σf (t)dW DRN
f (t),

dν(t) = α(t, ν(t))dt + ϑ(t, ν(t))dW DRN
ν (t).

2 Consider the three-factor model where the volatility of the spot FX rate is modelled by a
local volatility denoted by σLOC1(t,S(t)),

dS(t) = (rd (t)− rf (t))S(t)dt + σLOC1(t,S(t))S(t)dW DRN
S (t),

drd (t) = [θd (t)− αd (t)rd (t)]dt + σd (t)dW DRN
d (t),

drf (t) = [θf (t)− αf (t)rf (t)− ρfSσf (t)σLOC1(t, S(t))]dt + σf (t)dW DRN
f (t).
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Extension

Hybrid volatility model

Gyöngy’s result

Consider a general n-dimensional Itô process ξt of the form:

dξt = δ(t,w)dW (t) + β(t,w)dt

where W (t) is a k-dimensional Wiener process on a probability space (Ω,F ,P), δ ∈ Rn×k

and β ∈ Rn are bounded Ft -nonanticipative processes such that δδT is uniformly positive
definite.

This process gives rise to marginal distributions of the random variables ξt for each t.

Gyöngy then shows that there is a Markov process x(t) with the same marginal
distributions.

The explicit construction is given by:

dxt = σ(t, xt)dW (t) + b(t, xt)dt

where: σ(t, x) = (E[δ(t,w)δT (t,w)|ξt = x])
1
2

b(t, x) = E[β(t,w)|ξt = x]
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Extension

Hybrid volatility model

σLOC2(t,K) =
σLOC1(t,K)

EQd [γ(t, ν(t))|rd (t) = x , rf (t) = y , S(t) = K ]

where the conditional expectation is by definition given by

EQd [γ(t, ν(t))|rd (t) = x , rf (t) = y , S(t) = K ]

=

∫∞
0 γ(t, ν(t))φd (S(t) = K , rd (t) = x , rf (t) = y , ν(t), t)dν∫∞

0 φd (S(t) = K , rd (t) = x , rf (t) = y , ν(t), t)dν
.
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Thank you for your attention
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