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Outline of the presentation

• Statistical inverse problems

• Correlated Hull-White formula for option pricing

• Inverse problem of integrated correlated variance
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Inverse problems and ill-posedness

Let us have an unknown hidden variable x and an observed
variable y, related to x by the model function f :

y = f(x, e),

where e accounts for the measurement noise.

The inverse problem is to get information of x by measuring y

- for example to estimate the implied volatility, local volatility, or
risk-neutral price density from option prices.

Often inverse problems are ill-posed: they have no unique so-
lution and small errors in the data propagate to large errors in
x.
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• traditional regularization: the ill-posed problem is replaced
by a nearby problem that is well-posed

• instead of applying traditional regularization, we recast the
inverse problem in the form of statistical inference on the
distribution of the unknown

– allows us to integrate additional prior knowledge to our
estimation process

– even if the deterministic ill-posed problem does not have
a unique solution, there always exists a probability den-
sity of the unknown, the variance of which may be large
or small
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Stochastic inverse problem; Bayesian approach

X is an unknown hidden random variable; an observed random
variable Y is related to X by the model function f , so that

Y = f(X, ε),

where also the noise is modelled as a random variable ε.

We apply a Bayesian approach. The solution of the inverse
problem, the posterior density, is then given by

Pposterior(x | y) ∝ Plikelyh(y | x)Pprior(x),

where x and y are realizations of X and Y .
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Bayesian approach with hyperprior

We apply a Bayesian approach with a hyperprior, so that

Pposterior(x | y) ∝ Plikelyh(y | x)Pprior(x | θ)Phyper(θ),

where θ is part of the inverse problem and will be defined by the
data.
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Maximum-A-Posteriori and Conditional Mean estimates
Two common Bayesian point estimates:
Maximum-A-Posteriori (MAP)

xMAP = argmaxP (x | y),

- tells which value of x maximizes the posterior distribution of
this unknown. Leads to an optimization problem.

Conditional mean (CM)

xCM = E{x | y},

- provides information of the point of mass of the posterior distri-
bution. Leads to Markov Chain Monte Carlo (MCMC) sampling
and an integration problem.
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Correlated stock price and volatility processes

Model the stock price process as

dXt =
√

1− ρ2σtXtdW1,t + ρσtXtdW2,t,

where the σ dynamics are independent on the Brownian motion
W1 but dependent on the Brownian motion W2, and ρ ∈ [−1,1]
is the correlation between price and volatility shocks.

The integrated variance σ̄2
t is given by

σ̄2
t =

1

T − t

∫ T

t
σ2

s ds,

and the integrated correlated variance by σ̄2
ρ,t = (1− ρ2)σ̄2

t .
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Now log(XT/Xt) is normally distributed conditional on
σ̄2

ρ,t and ξt, with

E
{
log(

XT

Xt
) | σ̄2

ρ,t, ξt

}
= log(ξt)−

1

2
σ̄2

ρ,t(T − t),

Var
{
log(

XT

Xt
) | σ̄2

ρ,t, ξt

}
= σ̄2

ρ,t(T − t).

where the integrated correlated variance is given by

σ̄2
ρ,t =

1− ρ2

T − t

∫ T

t
σ2

s ds

and

ξt = exp

(
−

1

2
ρ2
∫ T

t
σ2

s ds + ρ
∫ T

t
σsdW2,s

)
.
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The correlated Hull-White price for a European call is then

U
HW,ρ
t (x;K, T ;σ2

t ) = E
{
UBS

t (xξt;K, T ; σ̄2
ρ,t) | σ̄2

ρ,t, ξt, x = Xt

}
.

(Hull-White 1987, correlated Hull-White by Willard 1996)

We assume that

uobs
t = U

HW,ρ
t + ε, ε ∼ N (0,Vart)

and uobs
t is a realization of Ut,true ∼ N (Ût,Vart), with

Ût = (ut,bid + ut,offer)/2,

Vart = V (ut,bid − ut,offer),

where V is positive finite constant.
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Joint density and marginalized densities related to corre-
lated Hull-White formula
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Joint probability density and marginalization
The joint probability density of two real valued random variables
X and Y is defined as

P{X ∈ A, Y ∈ B} =
∫∫

A×B
π(x, y)dxdy,

and, assuming that such a density exists, the marginal density
of X is recovered as

π(x) =
∫
R

π(x, y)dy.

We estimate the joint probability distribution (σ̄2
ρ,t, ξt). When es-

timating the integrated correlated variance, we marginalize the
correlated Hull-White formula with respect to an estimate of ξt,
and when estimating ξt, we marginalize the formula with respect
to an estimate of σ̄2

ρ,t.
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Integrated correlated variance and marginalization

We alternate two problems: estimate one of the unknown den-
sities at time, marginalizing with respect to the other one.

U
HW,ρ
t (x;K, T ;σ2

t ) = E
{
UBS

t (xξt;K, T ; σ̄2
ρ,t) | σ̄2

ρ,t, ξt = ξestt

}
.

U
HW,ρ
t (x;K, T ;σ2

t ) = E
{
UBS

t (xξt;K, T ; σ̄2
ρ,t) | σ̄2

ρ,t = σ̄2,est
ρ , ξt

}
.

14



Information content of the densities
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Prior information and assumptions for σ̄2
ρ,t and ξt

We approximate the true probability density σ̄2
ρ,t with a discrete

density z, z ∈ Rn.

• we know that the density of interest is non-negative:

π(z) ≥ 0.

• we know that the cumulative density equals one:∑
z = 1.

We denote by α the cumulative density corresponding to z.

• we assume that the density is smooth and takes on positive
values on the interval [a, a + M ].
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• the likelihood function is given by

Pli(u
obs | α, αn = 1) ∝ P<(α) exp

(
−

1

2Var
‖uobs−AV α‖2

)
with

aij =
M

n
UBS(x;Ki, T ; σ̄2

j ), A = aij,

z = V α,

so that V is a first order difference matrix. Also,

P<(α) =

{
1, if αj+1 ≥ αj, 1 ≤ j ≤ n− 1
0 elsewhere.
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• the likelihood function is given by

Pli(u
obs | α, αn = 1) ∝ P<(α) exp

(
−

1

2Var
‖uobs−AV α‖2

)

• the prior density is given by

Pprior(α) ∝ exp
(
−

1

2
‖θ−1/2Lα‖2

)
,

where L is a first order finite difference matrix and θ its vari-
ance
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• the prior with a hyperprior is given by

Pprior(α | θ) ∝ exp
(
−

1

2
‖D−1/2Lα‖2−

n∑
j=1

θj

θ0
+(β−

3

2
) log θ

)
,

where D1/2 = diag(θ
1/2
1 , θ

1/2
2 . . . and θ

1/2
n ) ∈ Rn×n is

the random variance with prior based on the gamma distri-
bution

Phyper(θ) ∝
n∏

j=1

exp

(
−

θj

θ0
+ (β − 1) log θj

)
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• the posterior density is given by

Ppost(α, θ | uobs, αn = 1)

∝ P<(α) exp

(
−

1

2Var
‖uobs −AV α‖2

−
1

2
‖D−1/2Lα‖2 −

n∑
j=1

θj

θ0
+ (β −

3

2
) log θ

)

ideas from Somersalo, Calvetti 2007 and imaging inverse prob-
lems
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MAP and MCMC/CM estimates for σ̄2
ρ,t and ξt
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Uncorrelated integrated variance
We assume that the distribution of σ̄2

t is log-normal:

σ̄2
ρ,t ∼ N (eµt, eς2t ),

and µt ∈ I[µmin, µmax], ς2t ∈ I[ς2min, ς2max] are unknown. We
compute which lognormal discrete distribution z gives the maxi-
mum likelihood:

Pli(u
obs
t ) ∝ exp

(
−

1

2Vart
‖uobs

t − UHW
t (x, zt(µt, ςt))‖2

)
.
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Applications of the integrated correlated variance

• to price variance and volatility derivatives,

• to use H-W and π(σ̄2
t ) when computing hedging ratios

• to price digital options
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Kiitos !
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