A Delay Financial Model with Stochastic Volatility; Martingale Method

Jeong-Hoon $Kim¹$ and Min-Ku Lee²

¹,2Department of Mathematics, Yonsei University, Seoul 120-749, Korea

June, 26, 2010

Table of contents

1 [Introduction](#page-2-0)

- **3 [DSV model](#page-6-0)**
- **4 [Martingale approach](#page-15-0)**
- **5 [The choice of](#page-26-0)** $\widetilde{Q}^{\varepsilon}$
- **6 [The decomposition of](#page-30-0)** N_t^{ε}
- **7 [Numerical results](#page-42-0)**

8 [Conclusion](#page-46-0)

Astract

We extend a delayed geometric Brownian model by adding the stochastic volatility which is assumed to have fast mean reversion. By the martingale approach and singular perturbation method, we develop a theory for option pricing under this extended model.

Keywords: Black-Scholes, delay, stochastic volatility, martingale, option pricing, asymptotics.

The assumptions of Black-Scholes model

The assumptions of Black-Scholes model for equity market

- It is possible to borrow and lend cash at a known constant risk-free interest rate
- The price follows a geometric Brownian motion with constant drift and volatility
- There are no transaction costs
- The stock does not pay a dividend
- All securities are perfectly divisible (i.e. it is possible to buy any fraction of a share)
- • There are no restrictions on short selling

Motivation for stochastic volatility. What Could Cause the Smile?

Causes of volatility smile/skew

- Crash protection/ Fear of crashes
- Transactions costs
- Local volatility
- leverage effect
- CEV models
- Stochastic volatility
- jumps/crashes

Motivation for delay model, Article' s

"Chartists believe that future prices depend on past movement of the asset price and attempt to forecast future price levels based on past patterns of price dynamics."

- 1. Contagion effects in a chartist-fundamentalist model with time delays
	- *Ghassan Dibeh, PHYSICA A : Statistical Mechanics and its Applications,* **382***, 52-57, 2007*
- 2. Speculative dynamics in a time-delay model of asset prices
	- *Ghassan Dibeh, PHYSICA A : Statistical Mechanics and its Applications,* **355***, 199-208, 2005*

"The insider knows that both the drift and the volatility of the stock price process are influenced by certain events that happened before the trading period started"

- 1. A stochastic delay financial model
	- *Georage Stoica, American Mathematical Society,* **133***, 1837-1841, 2004*

Model

DSV model

$$
dX_t = \mu \xi (X_{t-a}) X_t dt + f(Y_t) \eta (X_{t-b}) X_t dW_t
$$

\n
$$
X_t = \psi(t), \quad t \in [-L, 0], \text{ where } L = \max \{a, b\}
$$

\n
$$
dY_t = \alpha (m - Y_t) dt + \beta d\hat{Z}_t,
$$

where $f(y)$ is a sufficiently smooth function, ξ is a arbitrary function, η is an arbitrary non-zero function, and Z_t is a Brownian motion correlated with W_t such that $d\hat{Z}_t = \rho dW_t + \sqrt{1-\rho^2} dZ_t$, where W_t are *Z^t* are independent Brownian motions.

DSV model

The path of DSV model

$$
\xi(x) = x^{0.2}, \ \eta(x) = x^{0.001}
$$

Theorem 1

There exists a unique and positive solution for the DSV equation on $t \in [0, T]$ by $(k + 1)$ -step computations as follows :

$$
X_t = X_{k\ell} \exp\left(\mu \int_{k\ell}^t \xi(X_{s-a}) - \frac{1}{2} f^2(Y_s) \eta^2(X_{s-b}) ds + \int_{k\ell}^t \eta(X_{s-b}) dW_s\right)
$$

for the positive integer *k* with $t \in [k\ell \wedge T, (k + 1)\ell \wedge T]$ where $\ell = \min\{a, b\}.$

some notations for defining equivalent martingale measure

By Girsanov theorem, we can guarantee the existence of an equivalent m artingale measure. Define W_t^* and Z_t^* as follows:

$$
W_t^* = W_t + \int_0^t \frac{\mu\xi(X_{s-a}) - r}{f(Y_s)\eta(X_{s-b})} ds
$$

$$
Z_t^* = Z_t + \int_0^t \gamma_s ds
$$

where γ_t is an adapted process to be determined

Equivalent martingale measure Q

By Girsanov theorem, we have an equivalent martingale measure Q given by the Radon-Nikodym derivative

 $\mathbb Q$

$$
\frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-\frac{1}{2}\int_0^t \left[\left(\frac{\mu\xi(X_{s-a}) - r}{f(Y_s)\eta(X_{s-b})}\right)^2 + \gamma_s^2\right]ds - \int_0^t \frac{\mu\xi(X_{s-a}) - r}{f(Y_s)\eta(X_{s-b})}dW_s - \int_0^t \gamma_s dZ_s\right)
$$

SDDE under equivalent martingale measure Q

Model

Under Q

$$
dX_t = r\xi(X_{t-a})X_t dt + f(Y_t)\eta(X_{t-b})X_t dW_t^*
$$

\n
$$
X_t = \psi(t), \quad t \in [-L, 0], \text{ where } L = \max\{a, b\}
$$

\n
$$
dY_t = [\alpha(m - Y_t) - \beta\Lambda(Y_t, X_{t-a}, X_{t-b}, X_t)] dt
$$

\n
$$
+ \beta d\hat{Z}_t^*
$$

where
$$
\hat{Z}_t^* = \rho W_t^* + \sqrt{1 - \rho^2} Z_t^*
$$

\n
$$
\Lambda(Y_t, X_{t-a}, X_{t-b}, X_t) = \rho \frac{\mu \xi(X_{t-a}) - r}{f(Y_t) \eta(X_{t-b})} + \sqrt{1 - \rho^2} \gamma_t
$$

preparation for asymptotic method

Now, we assume to have fast mean reversion. So, we introduce ε as the inverse of the rate of mean reversion α :

$$
\varepsilon = \frac{1}{\alpha}
$$

And, the long-run distribution of the OU process *Y^t* is assumed to have the moderate variance $\nu^2=\frac{\beta^2}{2\alpha}=\mathcal{O}(1)$ so that

$$
\beta = \frac{\nu\sqrt{2}}{\sqrt{\varepsilon}}
$$

In term of the small parameter ε , the DSV model becomes **The DSV model**

$$
dX_t^{\varepsilon} = r\xi(X_{t-a}^{\varepsilon})X_t^{\varepsilon}dt + f(Y_t^{\varepsilon})\eta(X_{t-b}^{\varepsilon})X_t^{\varepsilon}dW_t^*
$$

\n
$$
X_t^{\varepsilon} = \psi(t), \quad t \in [-L, 0], \text{ where } L = \{a, b\}
$$

\n
$$
dY_t^{\varepsilon} = \left(\frac{1}{\varepsilon}(m - Y_t^{\varepsilon}) - \frac{\nu\sqrt{2}}{\sqrt{\varepsilon}}\Lambda(Y_t^{\varepsilon}, X_{t-a}^{\varepsilon}, X_{t-b}^{\varepsilon}, X_t^{\varepsilon})\right)dt
$$

\n
$$
+ \frac{\nu\sqrt{2}}{\sqrt{\varepsilon}}d\widehat{Z}_t^*
$$

where $\Lambda(Y_t^{\varepsilon}, X_{t-a}^{\varepsilon}, X_{t-b}^{\varepsilon}, X_t^{\varepsilon}) = \rho$ $\mu \xi(X_{t-a}^{\varepsilon}) - r$ $\frac{\mu \zeta(\varkappa_{t-a})}{f(\varkappa_t^{\varepsilon})\eta(\varkappa_{t-b}^{\varepsilon})} + \sqrt{1-\rho^2} \gamma_t$

Suppose no-arbitrage opportunity. The option price *P* ε (*t*) at time *t* of a derivative with terminal payoff function *h* is given by

$$
P^{\varepsilon}(t)=\mathbb{E}^*\{e^{-r(T-t)}h(X_T^{\varepsilon})|\mathcal{F}_t\}
$$

where the conditional expectation is taken under the equivalent martingale measure \mathbb{Q} , and \mathcal{F}_t is a filtration with respect to the past of $(X_t^{\varepsilon}, Y_t^{\varepsilon})$

Goal : Approximation

To find Q^{ε} such that $P^{\varepsilon}(t) = Q^{\varepsilon}(t, X_{t}^{\varepsilon}) + \mathcal{O}(\varepsilon)$

e [−]*rtP* ε (*t*) **: martingale**

e [−]*rtP* ε (*t*) **: martingale**

The discounted price M^ε_t defined by

$$
M_t^{\varepsilon} = e^{-rt}P^{\varepsilon}(t) = \mathbb{E}^*\{e^{-rT}h(X_T^{\varepsilon})|\mathcal{F}_t\}
$$

is martingale with a terminal value given by

$$
M_T^{\varepsilon}=e^{-rT}h(X_T^{\varepsilon})
$$

A motivated theorem for finding $Q^{\varepsilon}(t, X_t)$

Theorem 2

Let $Q^{\varepsilon}(t,x)$ be a two-variable function with the following conditions :

(*i*) $Q^{\varepsilon}(t, x)$ satisfies $Q^{\varepsilon}(T, x) = h(x)$ at the final time T (iii) $e^{-rt}Q^{\epsilon}(t, X^{\epsilon}_t)$ can be decomposed as $e^{-rt}Q^{\varepsilon}(t, X_t^{\varepsilon}) = \widetilde{M}_t^{\varepsilon} + R_t^{\varepsilon}$ where $\widetilde{M}^{\varepsilon}$ is a martingale and $\,R^{\varepsilon}_t$ is of order ε

Then $P^{\varepsilon}(t) = Q^{\varepsilon}(t, X_{t}^{\varepsilon}) + \mathcal{O}(\varepsilon)$

Theorem 2,,, continued

Proof

Let $N_t^{\varepsilon} = e^{-rt}Q^{\varepsilon}(t, X_t^{\varepsilon})$ Then, from the condition (*i*) and (*ii*),

$$
M_{\tau}^{\varepsilon} = N_{\tau}^{\varepsilon}
$$
 and $N_{t}^{\varepsilon} = \widetilde{M}_{t}^{\varepsilon} + R_{t}^{\varepsilon}$

By taking a conditional expectation with respect to \mathcal{F}_t on both sides of the equality $\mathcal{N}_t^\varepsilon = \tilde{\textit{M}}_t^\varepsilon + \textit{R}_t^\varepsilon$, we have

$$
M_t^{\varepsilon} = \mathbb{E}^* \{ M_T^{\varepsilon} | \mathcal{F}_t \} = \mathbb{E}^* \{ N_T^{\varepsilon} | \mathcal{F}_t \}
$$

Theorem 2,,, continued

proof,,,continued

$$
= \mathbb{E}^* \{ \widetilde{M}_T^{\varepsilon} + R_t^{\varepsilon} | \mathcal{F}_t \} \n= \widetilde{M}_t^{\varepsilon} + \mathbb{E}^* \{ R_T^{\varepsilon} | \mathcal{F}_t \} \n= N_t^{\varepsilon} + \mathbb{E}^* \{ R_T^{\varepsilon} | \mathcal{F}_t \} - R_t^{\varepsilon} \n= N_t^{\varepsilon} + \mathcal{O}(\varepsilon)
$$

Therefore, by multiplying *e rt* on both sides, we obtain

$$
P^{\varepsilon}(t)=Q^{\varepsilon}(t,X_{t}^{\varepsilon})+\mathcal{O}(\varepsilon)
$$

Now, we assume that one can choose γ*^t* such that Λ in the DSV model becomes a function depending upon only of *Y*ε. That is,

$$
dY_t^{\varepsilon} = \left(\frac{1}{\varepsilon}(m - Y_t^{\varepsilon}) - \frac{\nu\sqrt{2}}{\sqrt{\varepsilon}}\Lambda(Y_t^{\varepsilon})\right)dt + \frac{\nu\sqrt{2}}{\sqrt{\varepsilon}}d\widehat{Z}_t^*
$$

Then we obtain the infinitesimal generator $\varepsilon^{-1}\mathcal{L}^{\varepsilon}_{\mathsf{Y}}$ of Y^{ε}_{t} where

$$
\mathcal{L}_Y^{\varepsilon} = \nu^2 \frac{\partial^2}{\partial y^2} + (m - y - \nu \sqrt{2\varepsilon} \Lambda(y)) \frac{\partial}{\partial y}
$$

Assume that Λ(*y*) is bounded. Then *Y* ^ε has a unique invariant distribution given by the probability density Φ_{ε} :

$$
\Phi_{\varepsilon}(y) = J_{\varepsilon} \exp \left(-\frac{(y-m)^2}{2\nu^2} - \frac{\sqrt{2\varepsilon}}{\nu} \widetilde{\Lambda}(y)\right)
$$

where $\widetilde{\Lambda}$ is an antiderivative of Λ that is at most linear at infinity and J_{ε} is a normalization constant depending on ε

θ_{α}

Define time-shift operators θ_{α} by

$$
(\theta_\alpha g)(X^\varepsilon_t)=g(X^\varepsilon_{t-\alpha})
$$

for any measurable function g and any positive number α

Now, we apply the Itô-formula to $\mathcal{N}_t^\varepsilon$ to obtain

$$
dN_{t}^{\varepsilon} = d(e^{-rt}Q^{\varepsilon}(t, X_{t}^{\varepsilon}))
$$

\n
$$
= e^{-rt} \left(\frac{\partial}{\partial t} Q^{\varepsilon}(t, X_{t}^{\varepsilon}) + \frac{1}{2} f^{2}(Y_{t}^{\varepsilon}) \eta^{2}(X_{t-b}^{\varepsilon})(X_{t}^{\varepsilon})^{2} \frac{\partial^{2}}{\partial x^{2}} Q^{\varepsilon}(t, X_{t}^{\varepsilon}) + r \xi(X_{t}^{\varepsilon}) X_{t-a}^{\varepsilon} \frac{\partial}{\partial x} Q^{\varepsilon}(t, X_{t}^{\varepsilon}) - r Q^{\varepsilon}(t, X_{t}^{\varepsilon}) \right) dt
$$

\n
$$
+ e^{-rt} f(X_{t}^{\varepsilon}) \eta(X_{t-b}) X_{t}^{\varepsilon} \frac{\partial Q^{\varepsilon}}{\partial x}(t, X_{t}^{\varepsilon}) dW_{t}^{*}
$$

*f_α***, ξ_α & η_α**

Define a function f_α on the OU process Y_t^ε for any positive number α as following :

$$
f_{\alpha}(Y_{t}^{\varepsilon}) = (\theta_{\alpha} f)(Y_{t}^{\varepsilon}) = f(Y_{t-\alpha}^{\varepsilon}) \quad \text{i.e}, f_{\alpha} = \theta_{\alpha} f
$$

And, define functions ξ_α & η_α on the DSV process $\mathcal{X}_t^\varepsilon$ for any positive number α as following :

$$
\xi_{\alpha}(X_t^{\varepsilon}) = (\theta_{\alpha}\xi)(X_t^{\varepsilon}) = \xi(X_{t-\alpha}^{\varepsilon}) \quad \text{i.e.,} \quad \xi_{\alpha} = \theta_{\alpha}\xi
$$

$$
\eta_{\alpha}(X_t^{\varepsilon}) = (\theta_{\alpha}\eta)(X_t^{\varepsilon}) = \eta(X_{t-\alpha}^{\varepsilon}) \quad \text{i.e.,} \quad \eta_{\alpha} = \theta_{\alpha}\eta
$$

DSV operator

For convenience, we define an operator $\mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon})$ as follows :

$$
\mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon}) = \frac{\partial}{\partial t} + \frac{1}{2}\overline{\sigma}_{\varepsilon}^2 \eta_b^2(x) x^2 \frac{\partial^2}{\partial x^2} + r \xi_a(x) x \frac{\partial}{\partial x} - r
$$

where $i(x) = x$. Then dN_t^{ε} becomes

$$
dN_t^{\varepsilon} = e^{-rt} \left(\mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon}) + \frac{1}{2} (f^2(Y_t^{\varepsilon}) - \overline{\sigma}_{\varepsilon}^2) \eta^2 (X_{t-b}^{\varepsilon}) (X_t^{\varepsilon})^2 \right)
$$

$$
\times \frac{\partial^2 \mathcal{Q}^{\varepsilon}}{\partial x^2} (t, X_t^{\varepsilon}) dt
$$

$$
+e^{-rt}f(X_t^{\varepsilon})\eta(X_{t-b})X_t^{\varepsilon}\frac{\partial Q^{\varepsilon}}{\partial x}(t,X_t^{\varepsilon})dW_t^*
$$
\n(1)

We will find a function *Q*^ε satisfying the condition (*ii*) assumed in Theorem 2. Before doing that, we need some definitions as follows :

Firstly, P_0^{ε} Define P_0^{ε} as :

the solution
$$
\widetilde{P}_0^{\varepsilon}
$$
 of $\mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon})\widetilde{P}_0^{\varepsilon} = 0$

with the terminal condition $\overline{P}_0^{\varepsilon}(T, x) = h(x)$

We will call $\mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon})\widetilde{P}_{0}^{\varepsilon}=0$ as "Delayed Stochastic Volatility Equation (DSVE)"

Secondly, *V* **and** *U*

Define a 2-variable function *V* and *U* follows :

$$
V(t,x) = \frac{\sqrt{\varepsilon}\nu\rho}{\sqrt{2}} \langle f\phi' \rangle_{\varepsilon} \eta_b^3(x) x \frac{\partial}{\partial x} \left(x^2 \frac{\partial^2 \widetilde{P}_0^{\varepsilon}}{\partial x^2} \right) (t,x)
$$

$$
U(t,x) = \sqrt{\varepsilon}\nu\rho\sqrt{2} \langle f_b\phi' \rangle_{\varepsilon} \eta_b(x) \eta_b'(x) i_b(x) \eta_{2b}(x) x^2 \frac{\partial^2 \widetilde{P}_0^{\varepsilon}}{\partial x^2} (t,x)
$$

Thirdly, Q_1^{ε} Define Q_1^{ε} as below :

the solution $\widetilde{Q}_1^{\varepsilon}$ *of* $\mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon})\widetilde{Q}_1^{\varepsilon} = V + U$ (2)

That is, $\mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon})\overline{Q^{\varepsilon}_1(t,X^{\varepsilon}_t)}$

$$
= \frac{\sqrt{\varepsilon}\nu\rho}{\sqrt{2}} \langle f\phi'\rangle_{\varepsilon}\eta^{3}(X_{t-b}^{\varepsilon})X_{t}^{\varepsilon}\frac{\partial}{\partial x}\left(x^{2}\frac{\partial^{2}\widetilde{P}_{0}^{\varepsilon}}{\partial x^{2}}\right)(t,X_{t}^{\varepsilon})
$$

$$
+\sqrt{\varepsilon}\nu\rho\sqrt{2}\langle f_{b}\phi'\rangle_{\varepsilon}\eta(X_{t-b}^{\varepsilon})\eta'(X_{t-b}^{\varepsilon})\eta(X_{t-2b}^{\varepsilon})
$$

$$
\times(X_{t}^{\varepsilon})^{2}X_{t-b}^{\varepsilon}\frac{\partial^{2}\widetilde{P}_{0}^{\varepsilon}}{\partial x^{2}}(t,X_{t}^{\varepsilon})
$$

It's time to choose *Q*^ε satisfying the conditions assumed in Theorem 2. We define *Q*^ε as

$$
Q^{\varepsilon} = \widetilde{P}_0^{\varepsilon} + \widetilde{Q}_1^{\varepsilon} \tag{3}
$$

It remains to show the chosen *Q*^ε satisfies the desired conditions.

From now, we will confirm it. For that, we need some properties. The following lemmas are helpful for the proof.

Some Lemmas

Define ϕ as the solution of

$$
\mathcal{L}_{Y}^{\varepsilon}\phi(y)=f^{2}(y)-\langle f^{2}\rangle_{\varepsilon}
$$

Lemma 1

Let *f* be a sufficiently smooth function Then $\int_0^t (f^2(Y_s^{\varepsilon}) - \overline{\sigma}_{\varepsilon}^2) ds = \mathcal{O}(\sqrt{\varepsilon})$

Lemma 2

Lemma 2

Let *f* and *g* be a sufficiently smooth function. Then

$$
\int_0^t e^{-rs} \left(f(Y_s^{\varepsilon})^2 - \overline{\sigma}_{\varepsilon}^2 \right) \eta^2 (X_{s-b}^{\varepsilon}) (X_s^{\varepsilon})^2 \frac{\partial^2 \widetilde{P}_0^{\varepsilon}}{\partial x^2} (s, X_s^{\varepsilon}) ds
$$

= $\sqrt{\varepsilon} (\overline{B}_t^{\varepsilon} + \overline{M}_t^{\varepsilon}) + \mathcal{O}(\varepsilon)$

Lemma 2,,, continued

where $\overline{B}_t^\varepsilon$ $\frac{1}{t}$ is a systemic bias given by

$$
\overline{B}_{t}^{\varepsilon} = \sqrt{2}\nu\rho \int_{0}^{t} e^{-rs} f(Y_{s}^{\varepsilon}) \phi'(Y_{s}^{\varepsilon}) \eta^{3}(X_{s-b}^{\varepsilon}) X_{s}^{\varepsilon} \frac{\partial}{\partial x}(x^{2} \frac{\partial^{2} \widetilde{P}_{0}^{\varepsilon}}{\partial x^{2}}) ds
$$

$$
+ 2\sqrt{2}\nu\rho \int_{0}^{t} e^{-rs} f_{b}(Y_{s}^{\varepsilon}) \phi'(Y_{s}^{\varepsilon}) \eta(X_{s-b}^{\varepsilon}) \eta'(X_{s-b}^{\varepsilon}) \eta(X_{s-2b}^{\varepsilon})
$$

$$
\times (X_{s}^{\varepsilon})^{2} X_{s-b}^{\varepsilon} \frac{\partial^{2} \tilde{P}_{0}^{\varepsilon}}{\partial x^{2}} ds \tag{4}
$$

and $\overline{M}_t^\varepsilon$ $\frac{1}{t}$ is a martingale given by

$$
\overline{M}_t^\varepsilon = \sqrt{2} \sqrt{\nu} \int_0^t e^{-rs} \phi'(Y^\varepsilon_s) \eta^2 (X^\varepsilon_{s-b}) (X^\varepsilon_s)^2 \frac{\partial^2 \widetilde{P}_0^\varepsilon}{\partial x^2} d\widehat{Z}_s^*
$$

(5)

Lemma 2,,, continued

Proof

The following facts hold. (detailed proofs are omitted)

1.
$$
(f^2(Y_s^\varepsilon) - \langle f^2 \rangle_\varepsilon) ds = \varepsilon d\phi(Y_s^\varepsilon) - \nu \sqrt{2\varepsilon} \phi'(Y_s^\varepsilon) d\hat{Z}_s^*
$$

\n2. $\int_0^t e^{-rs} \left(f(Y_s^\varepsilon)^2 - \overline{\sigma}_\varepsilon^2 \right) g^2(X_{s-b}^\varepsilon)(X_s^\varepsilon)^2 \frac{\partial^2 \widetilde{P}_0^\varepsilon}{\partial X^2}(s, X_s^\varepsilon) ds$
\n $= \varepsilon \int_0^t e^{-rs} g^2(X_{s-b}^\varepsilon)(X_s^\varepsilon)^2 \frac{\partial^2 \widetilde{P}_0^\varepsilon}{\partial X^2} d\phi(Y_s^\varepsilon)$
\n $- \nu \sqrt{2\varepsilon} \int_0^t e^{-rs} g^2(X_{s-b}^\varepsilon) \phi'(Y_s^\varepsilon)(X_s^\varepsilon)^2 \frac{\partial^2 \widetilde{P}_0^\varepsilon}{\partial X^2}(s, X_s^\varepsilon) d\hat{Z}_s^*$

Lemma 2,,, continued

proof,,, continued

$$
3. \ \varepsilon \int_0^t e^{-st} g^2(X_{s-b}^{\varepsilon})(X_s^{\varepsilon})^2 \frac{\partial^2 Q^{\varepsilon}}{\partial x^2}(t,X_s^{\varepsilon}) d\phi(Y_s^{\varepsilon}) = \overline{B}_t^{\varepsilon} + \mathcal{O}(\varepsilon)
$$

Putting these facts together yields Lemma 2.

From the SDDE (1), we obtain N_t^{ε} as follows :

$$
N_{t}^{\varepsilon} = N_{0}^{\varepsilon} + \int_{0}^{t} e^{-rt} \mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon}) Q^{\varepsilon} ds + \frac{1}{2} \int_{0}^{t} e^{-rs} (f^{2}(Y_{s}^{\varepsilon}) - \overline{\sigma}_{\varepsilon}^{2}) \eta^{2} (X_{s-b}^{\varepsilon}) (X_{s}^{\varepsilon})^{2} \frac{\partial^{2} Q^{\varepsilon}}{\partial x^{2}} ds + \int_{0}^{t} e^{-rs} \frac{\partial Q^{\varepsilon}}{\partial x} f(Y_{s}^{\varepsilon}) \eta (X_{s-b}^{\varepsilon}) X_{s}^{\varepsilon} dW_{s}^{*}
$$
(6)

By the definition (3) and the definition of P_0^{ε} ,

$$
\mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon})\mathcal{Q}^{\varepsilon}=\mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon})\widetilde{\mathcal{Q}}^{\varepsilon}
$$

Then (6) becomes :

N

$$
\begin{array}{lll} N_{t}^{\varepsilon} & = & N_{0}^{\varepsilon}\\ & & + \displaystyle{\int_{0}^{t} e^{-rt} \mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon}) \widetilde{\mathcal{Q}}^{\varepsilon}} ds\\ & & + \displaystyle{\frac{1}{2} \int_{0}^{t} e^{-rs} (f^{2}(Y_{s}^{\varepsilon}) - \overline{\sigma}_{\varepsilon}^{2}) \eta^{2} (X_{s-b}^{\varepsilon}) (X_{s}^{\varepsilon})^{2} \frac{\partial^{2} \widetilde{\mathcal{Q}}^{\varepsilon}}{\partial x^{2}} ds} \\ & & + \displaystyle{\frac{1}{2} \int_{0}^{t} e^{-rs} (f^{2}(Y_{s}^{\varepsilon}) - \overline{\sigma}_{\varepsilon}^{2}) \eta^{2} (X_{s-b}^{\varepsilon}) (X_{s}^{\varepsilon})^{2} \frac{\partial^{2} \widetilde{P}^{\varepsilon}}{\partial x^{2}} ds} \\ & & + \displaystyle{\int_{0}^{t} e^{-rs} \frac{\partial \mathcal{Q}^{\varepsilon}}{\partial x} f(Y_{s}^{\varepsilon}) \eta (X_{s-b}^{\varepsilon}) X_{s}^{\varepsilon} dW_{s}^{*}} \end{array}
$$

Also, by Lemma 2, the above N_t^{ε} become :

$$
N_t^{\varepsilon} = N_0^{\varepsilon}
$$

+
$$
\int_0^t e^{-rs} \mathcal{L}_{DSV}(\overline{\sigma}_{\varepsilon}) \widetilde{Q}_1^{\varepsilon} ds
$$

+
$$
\frac{\sqrt{\varepsilon}}{2} (\overline{B}_t^{\varepsilon} + \overline{M}_t^{\varepsilon}) + R_1(\varepsilon)
$$

+
$$
\int_0^t e^{-rs} \frac{\partial Q^{\varepsilon}}{\partial x} f(Y_s^{\varepsilon}) \eta(X_{s-b}^{\varepsilon}) X_s^{\varepsilon} dW_s^*
$$

where $R_1(\varepsilon) = \mathcal{O}(\varepsilon)$

By the definitions (2) and (4), we obtain N_{t}^{ε} as follows :

$$
N_{t}^{\varepsilon} = N_{0}^{\varepsilon}
$$
\n
$$
+ \frac{\sqrt{\varepsilon} \nu \rho}{\sqrt{2}} \int_{0}^{t} e^{-rs} (f(Y_{s}^{\varepsilon}) \phi'(Y_{s}^{\varepsilon}) - \langle f \phi' \rangle_{\varepsilon}) \eta^{3}(X_{s-b}^{\varepsilon})
$$
\n
$$
\times X_{s}^{\varepsilon} \frac{\partial}{\partial x} \left(x^{2} \frac{\partial^{2} \widetilde{P}_{0}^{\varepsilon}}{\partial x^{2}} \right) ds
$$
\n
$$
+ \sqrt{\varepsilon} 2 \nu \rho \int_{0}^{t} e^{-rs} (f_{b}(Y_{s}^{\varepsilon}) \phi'(Y_{s}^{\varepsilon}) - \langle f_{b} \phi' \rangle_{\varepsilon}) \eta^{3}(X_{s-b}^{\varepsilon})
$$
\n
$$
\times X_{s}^{\varepsilon} \frac{\partial}{\partial x} \left(x^{2} \frac{\partial^{2} \widetilde{P}_{0}^{\varepsilon}}{\partial x^{2}} \right) ds
$$
\n
$$
+ \frac{\sqrt{\varepsilon}}{2} \overline{M}_{t}^{\varepsilon} + R_{2}(\varepsilon) + \int_{0}^{t} e^{-rs} \frac{\partial Q^{\varepsilon}}{\partial x} f(Y_{s}^{\varepsilon}) \eta(X_{s-b}^{\varepsilon}) X_{s}^{\varepsilon} dW_{s}^{*}
$$

where
$$
R_2(\varepsilon) = \mathcal{O}(\varepsilon)
$$

(7)

Here, as in Lemma 1, the second term and the third term of (7) are included in $\mathcal{O}(\varepsilon)$ can be shown to be of order ε . So, we have

$$
N_{t}^{\varepsilon} = N_{0}^{\varepsilon} + \frac{\sqrt{\varepsilon}}{2} \overline{M}_{t}^{\varepsilon} + P_{3}(\varepsilon) + \int_{0}^{t} e^{-rs} \frac{\partial Q^{\varepsilon}}{\partial x} f(Y_{s}^{\varepsilon}) \eta(X_{s-b}^{\varepsilon}) X_{s}^{\varepsilon} dW_{s}^{*}
$$
(8)

where $R_3(\varepsilon) = \mathcal{O}(\varepsilon)$

Define M_t^{ε} & R_t^{ε}

$$
\widetilde{M}^{\varepsilon}_t
$$

$$
\widetilde{M}^\varepsilon_t = N^\varepsilon_0 + \frac{\sqrt{\varepsilon}}{2} \overline{M}^\varepsilon_t + \int_0^t e^{-rs} \frac{\partial Q^\varepsilon}{\partial x} f(Y^\varepsilon_s) \eta(X^\varepsilon_{s-b}) X^\varepsilon_s dW^\ast_s
$$

R ε *t*

$$
R_t^\varepsilon=R_3(\varepsilon)
$$

Here, $\overline{M}_t^\varepsilon$ $\frac{\varepsilon}{t}$ is a martingale and , $\int_0^t e^{-rs} \frac{\partial Q^\varepsilon}{\partial x} f(Y^\varepsilon_s) \eta(X^\varepsilon_{s-b}) X^\varepsilon_s dW^\ast_s$ is a martingale by Martingale Representation Theorem. Hence, $\tilde{M}_t^{\varepsilon}$ is also a martingale.

Then, from (8)

$$
e^{-rt}Q^{\varepsilon}=N_t^{\varepsilon}=\widetilde{M}_t^{\varepsilon}+R_t^{\varepsilon}
$$

u where *M*^ε is a martingale and *R*^ε is of order ε. So that we can confirm that the *Q*^ε of our choice satisfies the conditions (*i*) and (*ii*) in Theorem 2. Therefore, by Theorem 2,

$$
P_t^{\varepsilon}=Q^{\varepsilon}(t,X_t^{\varepsilon})+\mathcal{O}(\varepsilon)
$$

Leading order term, \widetilde{P}

$$
strike price = 100, \xi(x) = x^{0.2}, \eta(x) = x^{0.001}
$$

Leading order term, \widetilde{P}

Correction term, Q_1^{ε}

Comparison of European call option price for DSV model and Black-Scholes model

The "blue" line is a case where the delay term is in only drift term, the "green" line is a case where the delay term is in only volatility term and the "black" line is a case where the delay term is in both terms

Jeong-Hoon Kim and Min-Ku Lee (A Delay Financial Model with Stochastic Volatility of Mathematics, 26, 2010 46 / 47

- Introduced a new Non-Markovian Stochastic Volatility model.
- The price by DSV model is more flexible to market than BS model.
- Performed asymptotic analysis.
- • Still on-going research - Mathematical rigor, Data fitting, and etc.