Rating Based Lévy Libor Model

Zorana Grbac

Department of Math. Stochastics, University of Freiburg

Joint work with Ernst Eberlein

6th World Congress of the Bachelier Finance Society Toronto, 22–26 June 2010

Discrete tenor structure: $0 = T_0 < T_1 < \ldots < T_n = T^*$, with $\delta_k = T_{k+1} - T_k$

Discrete tenor structure: $0 = T_0 < T_1 < \ldots < T_n = T^*$, with $\delta_k = T_{k+1} - T_k$

Default-free zero coupon bonds: $B(\cdot, T_1), \ldots, B(\cdot, T_n)$

Discrete tenor structure: $0 = T_0 < T_1 < \ldots < T_n = T^*$, with $\delta_k = T_{k+1} - T_k$

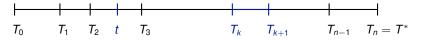
Default-free zero coupon bonds: $B(\cdot, T_1), \ldots, B(\cdot, T_n)$

Forward Libor rate at time $t \leq T_k$ for the accrual period $[T_k, T_{k+1}]$

$$L(t, T_k) = \frac{1}{\delta_k} \left(\frac{B(t, T_k)}{B(t, T_{k+1})} - 1 \right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ─ □ ─ のへで

Discrete tenor structure: $0 = T_0 < T_1 < \ldots < T_n = T^*$, with $\delta_k = T_{k+1} - T_k$

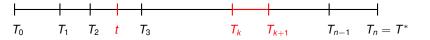


Default-free zero coupon bonds: $B(\cdot, T_1), \ldots, B(\cdot, T_n)$

Forward Libor rate at time $t \leq T_k$ for the accrual period $[T_k, T_{k+1}]$

$$L(t, T_k) = \frac{1}{\delta_k} \left(\frac{B(t, T_k)}{B(t, T_{k+1})} - 1 \right)$$

Discrete tenor structure: $0 = T_0 < T_1 < \ldots < T_n = T^*$, with $\delta_k = T_{k+1} - T_k$



Defaultable zero coupon bonds with credit ratings: $B_C(\cdot, T_1), \ldots, B_C(\cdot, T_n)$

Defaultable forward Libor rate at time $t \leq T_k$ for the accrual period $[T_k, T_{k+1}]$

$$L_C(t, T_k) = \frac{1}{\delta_k} \left(\frac{B_C(t, T_k)}{B_C(t, T_{k+1})} - 1 \right)$$

Libor modeling

- modeling under forward martingale measures, i.e. risk-neutral measures that use zero-coupon bonds as numeraires
- on a given stochastic basis, construct a family of Libor rates L(·, T_k) and a collection of mutually equivalent probability measures P_{T_k} such that

 $\left(\frac{B(t,T_j)}{B(t,T_k)}\right)_{0\leq t\leq T_k\wedge T_j}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

are \mathbb{P}_{T_k} -local martingales

Libor modeling

- modeling under forward martingale measures, i.e. risk-neutral measures that use zero-coupon bonds as numeraires
- on a given stochastic basis, construct a family of Libor rates L(·, T_k) and a collection of mutually equivalent probability measures P_{T_k} such that

 $\left(\frac{B(t,T_j)}{B(t,T_k)}\right)_{0\leq t\leq T_k\wedge T_j}$

are \mathbb{P}_{T_k} -local martingales

• in addition model defaultable Libor rates $L_C(\cdot, T_k)$ such that

 $\left(\frac{B_C(t,T_j)}{B(t,T_k)}\right)_{0\leq t\leq T_k\wedge T_j}$

are \mathbb{P}_{T_k} -local martingales

Defaultable bonds with ratings

- Credit ratings identified with elements of a finite set K = {1, 2, ..., K}, where 1 is the best possible rating and K is the default event
- Credit migration is modeled by a conditional Markov chain C with state space \mathcal{K}
- Default time τ : the first time when C reaches the absorbing state K, i.e.

$$\tau = \inf\{t > 0 : C_t = K\}$$

Defaultable bonds with ratings

- Credit ratings identified with elements of a finite set K = {1, 2, ..., K}, where 1 is the best possible rating and K is the default event
- Credit migration is modeled by a conditional Markov chain C with state space \mathcal{K}
- Default time τ : the first time when C reaches the absorbing state K, i.e.

$$\tau = \inf\{t > 0 : C_t = K\}$$

• We consider defaultable bonds $B_C(\cdot, T_k)$ with credit migration process *C* and fractional recovery of Treasury value $q = (q_1, \ldots, q_{K-1})$ upon default:

$$B_{C}(t, T_{k}) = \sum_{i=1}^{K-1} B_{i}(t, T_{k}) \mathbf{1}_{\{C_{t}=i\}} + q_{C_{\tau-}} B(t, T_{k}) \mathbf{1}_{\{C_{t}=K\}}$$

We have $B_i(T_k, T_k) = 1$, for all *i*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Canonical construction of C

Let $(\Omega, \mathcal{F}_{T^*}, \mathbb{F} = (\mathcal{F}_t)_{0 \le t \le T^*}, \mathbb{P}_{T^*})$ be a given complete stochastic basis.

• Let $\Lambda = (\Lambda_t)_{0 \le t \le T^*}$ be a matrix-valued \mathbb{F} -adapted stochastic process

$$\Lambda(t) = \begin{bmatrix} \lambda_{11}(t) \ \lambda_{12}(t) \ \dots \ \lambda_{1K}(t) \\ \lambda_{21}(t) \ \lambda_{22}(t) \ \dots \ \lambda_{2K}(t) \\ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ \dots \ 0 \end{bmatrix}$$

which is the stochastic infinitesimal generator of C.

Canonical construction of C

Let $(\Omega, \mathcal{F}_{T^*}, \mathbb{F} = (\mathcal{F}_t)_{0 \le t \le T^*}, \mathbb{P}_{T^*})$ be a given complete stochastic basis.

• Let $\Lambda = (\Lambda_t)_{0 \le t \le T^*}$ be a matrix-valued \mathbb{F} -adapted stochastic process

$$\Lambda(t) = \begin{bmatrix} \lambda_{11}(t) \ \lambda_{12}(t) \ \dots \ \lambda_{1K}(t) \\ \lambda_{21}(t) \ \lambda_{22}(t) \ \dots \ \lambda_{2K}(t) \\ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ \dots \ 0 \end{bmatrix}$$

which is the stochastic infinitesimal generator of C.

Enlarge probability space

$$(\Omega, \mathcal{F}_{\mathcal{T}^*}, \mathbb{P}_{\mathcal{T}^*}) \rightarrow (\tilde{\Omega}, \mathcal{G}_{\mathcal{T}^*}, \mathbb{Q}_{\mathcal{T}^*})$$

and use canonical construction to construct C (Bielecki and Rutkowski, 2002)

Canonical construction of C

Let $(\Omega, \mathcal{F}_{T^*}, \mathbb{F} = (\mathcal{F}_t)_{0 \le t \le T^*}, \mathbb{P}_{T^*})$ be a given complete stochastic basis.

• Let $\Lambda = (\Lambda_t)_{0 \le t \le T^*}$ be a matrix-valued \mathbb{F} -adapted stochastic process

$$\Lambda(t) = \begin{bmatrix} \lambda_{11}(t) & \lambda_{12}(t) & \dots & \lambda_{1K}(t) \\ \lambda_{21}(t) & \lambda_{22}(t) & \dots & \lambda_{2K}(t) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

which is the stochastic infinitesimal generator of C.

Enlarge probability space

$$(\Omega, \mathcal{F}_{\mathcal{T}^*}, \mathbb{P}_{\mathcal{T}^*})
ightarrow (ilde{\Omega}, \mathcal{G}_{\mathcal{T}^*}, \mathbb{Q}_{\mathcal{T}^*})$$

and use canonical construction to construct C (Bielecki and Rutkowski, 2002)

The process *C* is a *conditional Markov chain* relative to \mathbb{F} , i.e. for every $0 \le t \le s$ and any function $h : \mathcal{K} \to \mathbb{R}$

$$\mathbb{E}_{\mathbb{Q}_{T^*}}[h(C_s)|\mathcal{F}_t \vee \mathcal{F}_t^C] = \mathbb{E}_{\mathbb{Q}_{T^*}}[h(C_s)|\mathcal{F}_t \vee \sigma(C_t)],$$

where $\mathbb{F}^{C} = (\mathcal{F}_{t}^{C})$ denotes the filtration generated by *C*.

The progressive enlargement of filtration

$$\mathcal{G}_t := \mathcal{F}_t \vee \mathcal{F}_t^{\mathcal{C}}, \ t \in [0, T^*],$$

satisfies the (\mathcal{H}) -hypothesis:

(\mathcal{H}) Every local \mathbb{F} -martingale is a local \mathbb{G} -martingale.

The progressive enlargement of filtration

$$\mathcal{G}_t := \mathcal{F}_t \vee \mathcal{F}_t^{\mathcal{C}}, \ t \in [0, T^*],$$

satisfies the (\mathcal{H}) -hypothesis:

(\mathcal{H}) Every local \mathbb{F} -martingale is a local \mathbb{G} -martingale.

It is well-known that (\mathcal{H}) is equivalent to

 $(\mathcal{H}1) \mathbb{E}_{\mathbb{Q}_{T^*}}[Y|\mathcal{F}_{T^*}] = \mathbb{E}_{\mathbb{Q}_{T^*}}[Y|\mathcal{F}_t],$

for any bounded, \mathcal{F}_t^C -measurable random variable *Y* (Brémaud and Yor (1978) or Elliot, Jeanblanc and Yor (2000))

The progressive enlargement of filtration

$$\mathcal{G}_t := \mathcal{F}_t \vee \mathcal{F}_t^{\mathcal{C}}, \ t \in [0, T^*],$$

satisfies the (\mathcal{H}) -hypothesis:

(\mathcal{H}) Every local \mathbb{F} -martingale is a local \mathbb{G} -martingale.

It is well-known that (\mathcal{H}) is equivalent to

 $(\mathcal{H}1) \mathbb{E}_{\mathbb{Q}_{T^*}}[Y|\mathcal{F}_{T^*}] = \mathbb{E}_{\mathbb{Q}_{T^*}}[Y|\mathcal{F}_t],$

for any bounded, \mathcal{F}_t^C -measurable random variable Y (Brémaud and Yor (1978) or Elliot, Jeanblanc and Yor (2000))

But this follows easily from property

$$\mathbb{E}_{\mathbb{Q}_{T^*}}[\mathbf{1}_B|\mathcal{F}_s] = \mathbb{E}_{\mathbb{Q}_{T^*}}[\mathbf{1}_B|\mathcal{F}_t], \qquad t \leq s, B \in \mathcal{F}_t^C,$$

which is proved as a consequence of the canonical construction.

Risk-free Lévy Libor model

(Eberlein and Özkan, 2005)

Let $(\Omega, \mathcal{F}_{T^*}, \mathbb{F} = (\mathcal{F}_t)_{0 \le t \le T^*}, \mathbb{P}_{T^*})$ be a complete stochastic basis.

- as driving process take a time-inhomogeneous Lévy process X = (X¹,...,X^d) whose Lévy measures satisfy certain integrability conditions
- X is a special semimartingale with canonical decomposition

$$X_t = \int_0^t b_s \mathrm{d}s + \int_0^t \sqrt{c_s} \mathrm{d}W_s^{T^*} + \int_0^t \int_{\mathbb{R}^d} X(\mu - \nu^{T^*})(\mathrm{d}s, \mathrm{d}x),$$

where W^{T^*} denotes a \mathbb{P}_{T^*} -standard Brownian motion and μ is the random measure of jumps of X with \mathbb{P}_{T^*} -compensator ν^{T^*} . We assume that b = 0.

Construction of Libor rates (backward induction):

Starting from k = n - 1, we have for each T_k :

(*i*) define the forward measure $\mathbb{P}_{\tau_{k+1}}$ via

$$\frac{\mathrm{d}\mathbb{P}_{T_{k+1}}}{\mathrm{d}\mathbb{P}_{T^*}}\bigg|_{\mathcal{F}_t} = \prod_{l=k+1}^{n-1} \frac{1+\delta_l L(t,T_l)}{1+\delta_l L(0,T_l)} = \frac{B(0,T^*)}{B(0,T_{k+1})} \frac{B(t,T_{k+1})}{B(t,T^*)}.$$

Construction of Libor rates (backward induction):

Starting from k = n - 1, we have for each T_k :

(*i*) define the forward measure $\mathbb{P}_{T_{k+1}}$ via

$$\frac{\mathrm{d}\mathbb{P}_{\tau_{k+1}}}{\mathrm{d}\mathbb{P}_{\tau^*}}\bigg|_{\mathcal{F}_t} = \prod_{l=k+1}^{n-1} \frac{1+\delta_l L(t,T_l)}{1+\delta_l L(0,T_l)} = \frac{B(0,T^*)}{B(0,T_{k+1})} \frac{B(t,T_{k+1})}{B(t,T^*)}.$$

(*ii*) the dynamics of the Libor rate $L(\cdot, T_k)$ under this measure

$$L(t, T_k) = L(0, T_k) \exp\left(\int_0^t b^L(s, T_k) \mathrm{d}s + \int_0^t \sigma(s, T_k) \mathrm{d}X_s^{T_{k+1}}\right), \tag{1}$$

where

$$X_t^{T_{k+1}} = \int_0^t \sqrt{c_s} \mathrm{d}W_s^{T_{k+1}} + \int_0^t \int_{\mathbb{R}^d} X(\mu - \nu^{T_{k+1}}) (\mathrm{d}s, \mathrm{d}x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Construction of Libor rates (backward induction):

Starting from k = n - 1, we have for each T_k :

(*i*) define the forward measure $\mathbb{P}_{T_{k+1}}$ via

$$\frac{\mathrm{d}\mathbb{P}_{T_{k+1}}}{\mathrm{d}\mathbb{P}_{T^*}}\bigg|_{\mathcal{F}_t} = \prod_{l=k+1}^{n-1} \frac{1+\delta_l L(t,T_l)}{1+\delta_l L(0,T_l)} = \frac{B(0,T^*)}{B(0,T_{k+1})} \frac{B(t,T_{k+1})}{B(t,T^*)}.$$

(*ii*) the dynamics of the Libor rate $L(\cdot, T_k)$ under this measure

$$L(t, T_k) = L(0, T_k) \exp\left(\int_0^t b^L(s, T_k) \mathrm{d}s + \int_0^t \sigma(s, T_k) \mathrm{d}X_s^{T_{k+1}}\right),\tag{1}$$

where

$$X_t^{T_{k+1}} = \int_0^t \sqrt{c_s} \mathrm{d}W_s^{T_{k+1}} + \int_0^t \int_{\mathbb{R}^d} X(\mu - \nu^{T_{k+1}}) (\mathrm{d}s, \mathrm{d}x)$$

with $\mathbb{P}_{T_{k+1}}$ -Brownian motion $W^{T_{k+1}}$ and

$$\nu^{T_{k+1}}(\mathrm{d} s,\mathrm{d} x)=\prod_{l=k+1}^{n-1}\left(\frac{\delta_l L(s-,T_l)}{1+\delta_l L(s-,T_l)}(e^{\langle\sigma(s,T_l),x\rangle}-1)+1\right)\nu^{T^*}(\mathrm{d} s,\mathrm{d} x).$$

The drift term $b^{L}(s, T_{k})$ is chosen such that $L(\cdot, T_{k})$ becomes a $\mathbb{P}_{T_{k+1}}$ -martingale.

More precisely,

$$\begin{split} b^L(s,T_k) &= -\frac{1}{2} \langle \sigma(s,T_k), c_s \sigma(s,T_k) \rangle \\ &- \int_{\mathbb{R}^d} \left(e^{\langle \sigma(s,T_k), x \rangle} - 1 - \langle \sigma(s,T_k), x \rangle \right) F_s^{T_{k+1}}(\mathrm{d}x). \end{split}$$

More precisely,

$$egin{aligned} b^{L}(s,T_{k}) &= -rac{1}{2}\langle \sigma(s,T_{k}),c_{s}\sigma(s,T_{k})
angle \ &- \int_{\mathbb{R}^{d}}\left(e^{\langle\sigma(s,T_{k}),x
angle} - 1 - \langle\sigma(s,T_{k}),x
angle
ight)F^{T_{k+1}}_{s}(\mathrm{d}x). \end{aligned}$$

This construction guarantees that the forward bond price processes

$$\left(\frac{B(t,T_j)}{B(t,T_k)}\right)_{0\leq t\leq T_j\wedge T_k}$$

are martingales for all j = 1, ..., n under the forward measure \mathbb{P}_{T_k} associated with the date T_k (k = 1, ..., n).

• The arbitrage-free price at time *t* of a contingent claim with payoff *X* at maturity T_k is given by

$$\pi_t^X = B(t, T_k) \mathbb{E}_{\mathbb{P}_{T_k}}[X|\mathcal{F}_t].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(1) Use defaultable bonds with ratings to introduce a concept of defaultable Libor rates

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

(1) Use defaultable bonds with ratings to introduce a concept of defaultable Libor rates

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

(2) Adopt the backward construction of Eberlein and Özkan (2005) to model default-free Libor rates

- (1) Use defaultable bonds with ratings to introduce a concept of defaultable Libor rates
- (2) Adopt the backward construction of Eberlein and Özkan (2005) to model default-free Libor rates
- (3) Define and model the pre-default term structure of rating-dependent Libor rates

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- (1) Use defaultable bonds with ratings to introduce a concept of defaultable Libor rates
- (2) Adopt the backward construction of Eberlein and Özkan (2005) to model default-free Libor rates
- (3) Define and model the pre-default term structure of rating-dependent Libor rates

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

To include credit migration between different rating classes:

- (1) Use defaultable bonds with ratings to introduce a concept of defaultable Libor rates
- (2) Adopt the backward construction of Eberlein and Özkan (2005) to model default-free Libor rates
- (3) Define and model the pre-default term structure of rating-dependent Libor rates

- To include credit migration between different rating classes:
 - (4) Enlarge probability space: $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P}_{T^*}) \to (\widetilde{\Omega}, \mathcal{G}, \mathbb{G}, \mathbb{Q}_{T^*})$ and construct the migration process *C*

- (1) Use defaultable bonds with ratings to introduce a concept of defaultable Libor rates
- (2) Adopt the backward construction of Eberlein and Özkan (2005) to model default-free Libor rates
- (3) Define and model the pre-default term structure of rating-dependent Libor rates
- To include credit migration between different rating classes:
 - (4) Enlarge probability space: (Ω, F, F, P_{T*}) → (Ω̃, G, G, Q_{T*}) and construct the migration process C
 - (5) The (\mathcal{H}) -hypothesis $\Rightarrow X$ remains a time-inhomogeneous Lévy process with respect to \mathbb{Q}_{T^*} and \mathbb{G} with the same characteristics

- (1) Use defaultable bonds with ratings to introduce a concept of defaultable Libor rates
- (2) Adopt the backward construction of Eberlein and Özkan (2005) to model default-free Libor rates
- (3) Define and model the pre-default term structure of rating-dependent Libor rates
- To include credit migration between different rating classes:
 - (4) Enlarge probability space: (Ω, F, F, P_{T*}) → (Ω̃, G, G, Q_{T*}) and construct the migration process C
 - (5) The (\mathcal{H})-hypothesis $\Rightarrow X$ remains a time-inhomogeneous Lévy process with respect to \mathbb{Q}_{T^*} and \mathbb{G} with the same characteristics
 - (6) Define on this space the forward measures \mathbb{Q}_{T_k} by:

for each tenor date $T_k \mathbb{Q}_{T_k}$ is obtained from \mathbb{Q}_{T^*} in the same way as \mathbb{P}_{T_k} from \mathbb{P}_{T^*} (k = 1, ..., n-1)

Conditional Markov chain C under forward measures

Note that

$$\frac{\mathrm{d}\mathbb{Q}_{T_k}}{\mathrm{d}\mathbb{Q}_{T^*}} = \psi^k,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の < <

where ψ^k is an \mathcal{F}_{T_k} -measurable random variable with expectation 1.

Conditional Markov chain C under forward measures

Note that

$$\frac{\mathrm{d}\mathbb{Q}_{T_k}}{\mathrm{d}\mathbb{Q}_{T^*}} = \psi^k,$$

where ψ^k is an \mathcal{F}_{T_k} -measurable random variable with expectation 1.

Theorem

Let C be a canonically constructed conditional Markov chain with respect to \mathbb{Q}_{T^*} . Then C is a conditional Markov chain with respect to every forward measure \mathbb{Q}_{T_k} and

$$\mathcal{P}_{ij}^{\mathbb{Q}_{T_k}}(t,s) = \mathcal{P}_{ij}^{\mathbb{Q}_{T^*}}(t,s)$$

i.e. the matrices of transition probabilities under \mathbb{Q}_{T^*} and \mathbb{Q}_{T_k} are the same.

Conditional Markov chain C under forward measures

Note that

$$\frac{\mathrm{d}\mathbb{Q}_{T_k}}{\mathrm{d}\mathbb{Q}_{T^*}} = \psi^k,$$

where ψ^k is an \mathcal{F}_{T_k} -measurable random variable with expectation 1.

Theorem

Let C be a canonically constructed conditional Markov chain with respect to \mathbb{Q}_{T^*} . Then C is a conditional Markov chain with respect to every forward measure \mathbb{Q}_{T_k} and

$$p_{ij}^{\mathbb{Q}_{T_k}}(t,s) = p_{ij}^{\mathbb{Q}_{T^*}}(t,s)$$

i.e. the matrices of transition probabilities under \mathbb{Q}_{T^*} and \mathbb{Q}_{T_k} are the same.

Theorem

The (\mathcal{H}) -hypothesis holds under all \mathbb{Q}_{T_k} , i.e. every $(\mathbb{F}, \mathbb{Q}_{T_k})$ -local martingale is a $(\mathbb{G}, \mathbb{Q}_{T_k})$ -local martingale.

Rating-dependent Libor rates

• The forward Libor rate for credit rating class *i*

$$L_i(t, T_k) := \frac{1}{\delta_k} \left(\frac{B_i(t, T_k)}{B_i(t, T_{k+1})} - 1 \right), \quad i = 1, 2, \dots, K - 1$$

We put $L_0(t, T_k) := L(t, T_k)$ (default-free Libor rates).

• The forward Libor rate for credit rating class i

$$L_i(t, T_k) := \frac{1}{\delta_k} \left(\frac{B_i(t, T_k)}{B_i(t, T_{k+1})} - 1 \right), \quad i = 1, 2, \dots, K - 1$$

We put $L_0(t, T_k) := L(t, T_k)$ (default-free Libor rates).

The corresponding discrete-tenor forward inter-rating spreads

$$H_{i}(t, T_{k}) := \frac{L_{i}(t, T_{k}) - L_{i-1}(t, T_{k})}{1 + \delta_{k}L_{i-1}(t, T_{k})}$$

Observe that the Libor rate for the rating *i* can be expressed as

$$1 + \delta_k L_i(t, T_k) = (1 + \delta_k L_{i-1}(t, T_k))(1 + \delta_k H_i(t, T_k))$$
$$= \underbrace{(1 + \delta_k L(t, T_k))}_{\text{default-free Libor}} \prod_{j=1}^i \underbrace{(1 + \delta_k H_j(t, T_k))}_{\text{spread } j-1 \to j}$$

Observe that the Libor rate for the rating *i* can be expressed as

$$1 + \delta_k L_i(t, T_k) = (1 + \delta_k L_{i-1}(t, T_k))(1 + \delta_k H_i(t, T_k))$$
$$= \underbrace{(1 + \delta_k L(t, T_k))}_{\text{default-free Libor}} \prod_{j=1}^i \underbrace{(1 + \delta_k H_j(t, T_k))}_{\text{spread } j-1 \to j}$$

Idea: model $H_j(\cdot, T_k)$ as exponential semimartingales and thus ensure automatically the *monotonicity* of Libor rates w.r.t. the credit rating:

$$L(t,T_k) \leq L_1(t,T_k) \leq \cdots \leq L_{K-1}(t,T_k)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \implies worse credit rating, higher interest rate

Pre-default term structure of rating-dependent Libor rates

For each rating *i* and tenor date T_k we model $H_i(\cdot, T_k)$ as

$$H_i(t, T_k) = H_i(0, T_k) \exp\left(\int_0^t b^{H_i}(s, T_k) \mathrm{d}s + \int_0^t \gamma_i(s, T_k) \mathrm{d}X_s^{T_{k+1}}\right)$$
(2)

with initial condition

$$H_i(0, T_k) = \frac{1}{\delta_k} \left(\frac{B_i(0, T_k) B_{i-1}(0, T_{k+1})}{B_{i-1}(0, T_k) B_i(0, T_{k+1})} - 1 \right).$$

 $X^{T_{k+1}}$ is defined as earlier and $b^{H_i}(s, T_k)$ is the drift term (we assume $b^{H_i}(s, T_k) = 0$, for $s > T_k \Rightarrow H_i(t, T_k) = H_i(T_k, T_k)$, for $t \ge T_k$).

Pre-default term structure of rating-dependent Libor rates

For each rating *i* and tenor date T_k we model $H_i(\cdot, T_k)$ as

$$H_i(t, T_k) = H_i(0, T_k) \exp\left(\int_0^t b^{H_i}(s, T_k) \mathrm{d}s + \int_0^t \gamma_i(s, T_k) \mathrm{d}X_s^{T_{k+1}}\right)$$
(2)

with initial condition

$$H_i(0, T_k) = \frac{1}{\delta_k} \left(\frac{B_i(0, T_k) B_{i-1}(0, T_{k+1})}{B_{i-1}(0, T_k) B_i(0, T_{k+1})} - 1 \right).$$

 $X^{T_{k+1}}$ is defined as earlier and $b^{H_i}(s, T_k)$ is the drift term (we assume $b^{H_i}(s, T_k) = 0$, for $s > T_k \Rightarrow H_i(t, T_k) = H_i(T_k, T_k)$, for $t \ge T_k$).

 \Rightarrow the forward Libor rate $L_i(\cdot, T_k)$ is obtained from relation

$$1+\delta_k L_i(t,T_k)=(1+\delta_k L(t,T_k))\prod_{j=1}^i(1+\delta_k H_j(t,T_k)).$$

Theorem

Assume that $L(\cdot, T_k)$ and $H_i(\cdot, T_k)$ are given by (1) and (2). Then:

(a) The rating-dependent forward Libor rates satisfy for every T_k and $t \leq T_k$

 $L(t,T_k) \leq L_1(t,T_k) \leq \cdots \leq L_{K-1}(t,T_k),$

i.e. Libor rates are monotone with respect to credit ratings.

(b) The dynamics of the Libor rate $L_i(\cdot, T_k)$ under $\mathbb{P}_{T_{k+1}}$ is given by

$$\begin{split} L_i(t,T_k) &= L_i(0,T_k) \exp\left(\int_0^t b^{L_i}(s,T_k) \mathrm{d}s + \int_0^t \sqrt{c_s} \sigma_i(s,T_k) \mathrm{d}W_s^{T_{k+1}} \right. \\ &+ \int_0^t \int_{\mathbb{R}^d} S_i(s,x,T_k) (\mu - \nu^{T_{k+1}}) (\mathrm{d}s,\mathrm{d}x) \right), \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

where

$$\sigma_i(s, T_k) := \ell_i(s -, T_k)^{-1} \left(\ell_{i-1}(s -, T_k) \sigma_{i-1}(s, T_k) + h_i(s -, T_k) \gamma_i(s, T_k) \right)$$

= $\ell_i(s -, T_k)^{-1} \left[\ell(s -, T_k) \sigma(s, T_k) + \sum_{j=1}^i h_j(s -, T_k) \gamma_j(s, T_k) \right]$

represents the volatility of the Brownian part and

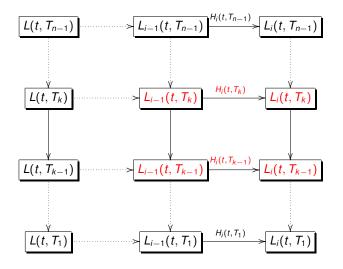
$$S_i(s, x, T_k) := \ln \left(1 + \ell_i(s - , T_k)^{-1} (\beta_i(s, x, T_k) - 1) \right)$$

controls the jump size. Here we set

$$egin{aligned} h_i(m{s}, T_k) &:= rac{\delta_k H_i(m{s}, T_k)}{1 + \delta_k H_i(m{s}, T_k)}, \ \ell_i(m{s}, T_k) &:= rac{\delta_k L_i(m{s}, T_k)}{1 + \delta_k L_i(m{s}, T_k)}, \end{aligned}$$

and

$$\begin{split} \beta_i(s,x,T_k) &:= \beta_{i-1}(s,x,T_k) \Big(1+h_i(s-,T_k)(e^{\langle \gamma_i(s,T_k),x\rangle}-1) \Big) \\ &= \Big(1+\ell(s-,T_k)(e^{\langle \sigma(s,T_k),x\rangle}-1) \Big) \\ &\times \prod_{j=1}^i \Big(1+h_j(s-,T_k)(e^{\langle \gamma_j(s,T_k),x\rangle}-1) \Big). \end{split}$$



Default-freeRating i - 1Rating iFigure:Connection between subsequent Libor rates

• = •

No-arbitrage condition for the rating based model

Recall the defaultable bond price process with fractional recovery of Treasury value q

$$B_{C}(t, T_{k}) = \sum_{i=1}^{K-1} B_{i}(t, T_{k}) \mathbf{1}_{\{C_{t}=i\}} + q_{C_{\tau_{-}}} B(t, T_{k}) \mathbf{1}_{\{C_{t}=K\}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで

No-arbitrage condition for the rating based model

Recall the defaultable bond price process with fractional recovery of Treasury value q

$$B_{C}(t, T_{k}) = \sum_{i=1}^{K-1} B_{i}(t, T_{k}) \mathbf{1}_{\{C_{t}=i\}} + q_{C_{\tau_{-}}} B(t, T_{k}) \mathbf{1}_{\{C_{t}=K\}}.$$

Note: the forward bond price process

$$\frac{B_C(\cdot, T_k)}{B(\cdot, T_j)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで

is a \mathbb{Q}_{T_i} -local martingale for every $k, j = 1, \ldots, n-1$

No-arbitrage condition for the rating based model

Recall the defaultable bond price process with fractional recovery of Treasury value q

$$B_{C}(t, T_{k}) = \sum_{i=1}^{K-1} B_{i}(t, T_{k}) \mathbf{1}_{\{C_{t}=i\}} + q_{C_{\tau_{-}}} B(t, T_{k}) \mathbf{1}_{\{C_{t}=K\}}.$$

iff the forward bond price process

$$\frac{B_{C}(\cdot, T_{k})}{B(\cdot, T_{j})} = \frac{B_{C}(\cdot, T_{k})}{B(\cdot, T_{k})} \underbrace{\frac{B(\cdot, T_{k})}{\underbrace{B(\cdot, T_{j})}}_{\frac{d\mathbb{Q}_{T_{k}}}{d\mathbb{Q}_{T_{j}}}\Big|_{\mathcal{G}}}$$

is a \mathbb{Q}_{T_k} -local martingale for every $k = 1, \ldots, n-1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

We postulate that the forward bond price process is given by

$$\frac{B_{C}(t, T_{k})}{B(t, T_{k})} := \sum_{i=1}^{K-1} \prod_{j=1}^{i} \prod_{l=0}^{k-1} \frac{1}{1 + \delta_{l} H_{j}(t, T_{l})} e^{\int_{0}^{t} \lambda_{i}(s) ds} \mathbf{1}_{\{C_{t}=i\}} + q_{C_{\tau_{-}}} \mathbf{1}_{\{C_{t}=K\}}$$

$$= \sum_{i=1}^{K-1} \mathbb{H}(t, T_{k}, i) e^{\int_{0}^{t} \lambda_{i}(s) ds} \mathbf{1}_{\{C_{t}=i\}} + q_{C_{\tau_{-}}} \mathbf{1}_{\{C_{t}=K\}},$$
(3)

where λ_i is some \mathbb{F} -adapted process that is integrable on $[0, T^*]$. (go to DFM)

We postulate that the forward bond price process is given by

$$\frac{B_{C}(t, T_{k})}{B(t, T_{k})} := \sum_{i=1}^{K-1} \prod_{j=1}^{i} \prod_{l=0}^{k-1} \frac{1}{1 + \delta_{l} H_{j}(t, T_{l})} e^{\int_{0}^{t} \lambda_{l}(s) ds} \mathbf{1}_{\{C_{t}=i\}} + q_{C_{\tau_{-}}} \mathbf{1}_{\{C_{t}=K\}}$$

$$= \sum_{i=1}^{K-1} \mathbb{H}(t, T_{k}, i) e^{\int_{0}^{t} \lambda_{l}(s) ds} \mathbf{1}_{\{C_{t}=i\}} + q_{C_{\tau_{-}}} \mathbf{1}_{\{C_{t}=K\}},$$
(3)

where λ_i is some \mathbb{F} -adapted process that is integrable on $[0, T^*]$. (go to DFM)

Note that this specification is consistent with the definition of H_i which implies the following connection of bond prices and inter-rating spreads:

$$\frac{B_j(t, T_k)}{B_{j-1}(t, T_k)} = \frac{B_j(t, T_{k-1})}{B_{j-1}(t, T_{k-1})} \frac{1}{1 + \delta_{k-1}H_j(t, T_{k-1})}$$

and relation

$$\frac{B_i(t,T_k)}{B(t,T_k)}=\frac{B_1(t,T_k)}{B(t,T_k)}\prod_{j=2}^{\prime}\frac{B_j(t,T_k)}{B_{j-1}(t,T_k)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで

Lemma

Let T_k be a tenor date and assume that $H_j(\cdot, T_k)$ are given by (2). The process $\mathbb{H}(\cdot, T_k, i)$ has the following dynamics under \mathbb{P}_{T_k}

$$\begin{split} \mathbb{H}(t,T_k,i) &= \mathbb{H}(0,T_k,i) \\ &\times \mathcal{E}_t \Biggl(\int_0^{\cdot} b^{\mathbb{H}}(s,T_k,i) \mathrm{d}s - \int_0^{\cdot} \sqrt{c_s} \sum_{j=1}^i \sum_{l=1}^{k-1} h_j(s-,T_l) \gamma_j(s,T_l) \mathrm{d}W_s^{T_k} \\ &+ \int_0^{\cdot} \int_{\mathbb{R}^d} \left(\prod_{j=1}^i \prod_{l=1}^{k-1} \left(1 + h_j(s-,T_l) (e^{\langle \gamma_j(s,T_l),x \rangle} - 1) \right)^{-1} - 1 \right) \\ &\times (\mu - \nu^{T_k}) (\mathrm{d}s,\mathrm{d}x) \Biggr), \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

where $b^{\mathbb{H}}(s, T_k, i)$ is the drift term.

No-arbitrage condition

Theorem

Let T_k be a tenor date. Assume that the processes $H_j(\cdot, T_k)$, j = 1, ..., K - 1, are given by (2). Then the process $\frac{B_C(\cdot, T_k)}{B(\cdot, T_k)}$ defined in (3) is a local martingale with respect to the forward measure \mathbb{Q}_{T_k} and filtration \mathbb{G} iff: for almost all $t \leq T_k$ on the set { $C_t \neq K$ }

$$b^{\mathbb{H}}(t, T_k, C_t) + \lambda_{C_t}(t) = \left(1 - q_{C_t} \frac{e^{-\int_0^t \lambda_{C_t}(s)ds}}{\mathbb{H}(t, T_k, C_t)}\right) \lambda_{C_t \kappa}(t)$$

$$+ \sum_{j=1, j \neq C_t}^{K-1} \left(1 - \frac{\mathbb{H}(t, T_k, j)e^{\int_0^t \lambda_j(s)ds}}{\mathbb{H}(t, T_k, C_t)e^{\int_0^t \lambda_{C_t}(s)ds}}\right) \lambda_{C_t j}(t).$$
(4)

No-arbitrage condition

Theorem

Let T_k be a tenor date. Assume that the processes $H_j(\cdot, T_k)$, j = 1, ..., K - 1, are given by (2). Then the process $\frac{B_C(\cdot, T_k)}{B(\cdot, T_k)}$ defined in (3) is a local martingale with respect to the forward measure \mathbb{Q}_{T_k} and filtration \mathbb{G} iff: for almost all $t \leq T_k$ on the set $\{C_t \neq K\}$

$$b^{\mathbb{H}}(t, T_k, C_t) + \lambda_{C_t}(t) = \left(1 - q_{C_t} \frac{e^{-\int_0^t \lambda_{C_t}(s)ds}}{\mathbb{H}(t - , T_k, C_t)}\right) \lambda_{C_t K}(t)$$

$$+ \sum_{j=1, j \neq C_t}^{K-1} \left(1 - \frac{\mathbb{H}(t - , T_k, j)e^{\int_0^t \lambda_j(s)ds}}{\mathbb{H}(t - , T_k, C_t)e^{\int_0^t \lambda_{C_t}(s)ds}}\right) \lambda_{C_t j}(t).$$
(4)

Sketch of the proof: Use the fact that the jump times of the conditional Markov chain *C* do not coincide with the jumps of any \mathbb{F} -adapted semimartingale, use martingales related to the indicator processes $\mathbf{1}_{\{C_l=i\}}, i \in \mathcal{K}$, and stochastic calculus for semimartingales.

Defaultable forward measures

Assume that $\frac{B_C(\cdot, T_k)}{B(\cdot, T_k)}$ is a *true martingale* w.r.t. forward measure \mathbb{Q}_{T_k} . (back to DFP)

Defaultable forward measures

Assume that $\frac{B_C(\cdot, T_k)}{B(\cdot, T_k)}$ is a *true martingale* w.r.t. forward measure \mathbb{Q}_{T_k} . (back to DFP)

The defaultable forward measure \mathbb{Q}_{C,T_k} for the date T_k is defined on $(\Omega, \mathcal{G}_{T_k})$ by

$$\frac{\mathrm{d}\mathbb{Q}_{\mathcal{C},\mathcal{T}_k}}{\mathrm{d}\mathbb{Q}_{\mathcal{T}_k}}\bigg|_{\mathcal{G}_t} := \frac{B(0,\mathcal{T}_k)}{B_{\mathcal{C}}(0,\mathcal{T}_k)}\frac{B_{\mathcal{C}}(t,\mathcal{T}_k)}{B(t,\mathcal{T}_k)}.$$

This corresponds to the choice of $B_C(\cdot, T_k)$ as a numeraire.

Defaultable forward measures

Assume that $\frac{B_C(\cdot, T_k)}{B(\cdot, T_k)}$ is a *true martingale* w.r.t. forward measure \mathbb{Q}_{T_k} . (back to DFP)

The defaultable forward measure \mathbb{Q}_{C,T_k} for the date T_k is defined on $(\Omega, \mathcal{G}_{T_k})$ by

$$\frac{\mathrm{d}\mathbb{Q}_{C,T_k}}{\mathrm{d}\mathbb{Q}_{T_k}}\bigg|_{\mathcal{G}_t} := \frac{B(0,T_k)}{B_C(0,T_k)}\frac{B_C(t,T_k)}{B(t,T_k)}.$$

This corresponds to the choice of $B_C(\cdot, T_k)$ as a numeraire.

Proposition

The defaultable Libor rate $L_C(\cdot, T_k)$ is a martingale with respect to $\mathbb{Q}_{C, T_{k+1}}$ and

$$\frac{\mathrm{d}\mathbb{Q}_{C,T_k}}{\mathrm{d}\mathbb{Q}_{C,T_{k+1}}}\bigg|_{\mathcal{G}_t}=\frac{B_C(0,T_{k+1})}{B_C(0,T_k)}(1+\delta_k L_C(t,T_k)).$$

Pricing problems I: Defaultable bond

Proposition

The price of a defaultable bond with maturity T_k and fractional recovery of Treasury value q at time $t \leq T_k$ is given by

$$B_{C}(t, T_{k})\mathbf{1}_{\{C_{t}\neq K\}} = B(t, T_{k})\sum_{i=1}^{K-1} \mathbf{1}_{\{C_{t}=i\}} \left[\mathbb{E}_{\mathbb{Q}_{T_{k}}}[1 - p_{iK}(t, T_{k})|\mathcal{F}_{t}] + \sum_{j=1}^{K-1} \frac{\mathbb{E}_{\mathbb{Q}_{T_{k}}}[\mathbf{1}_{\{t < \tau \leq T_{k}\}}\mathbf{1}_{\{C_{t}=i\}}\mathbf{1}_{\{C_{\tau-}=j\}}q_{j}|\mathcal{F}_{t}]}{\mathbb{E}_{\mathbb{Q}_{T_{k}}}[\mathbf{1}_{\{C_{t}=i\}}|\mathcal{F}_{t}]} \right].$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Pricing problems II: Credit default swap

- consider a maturity date T_m and a defaultable bond with fractional recovery of Treasury value q as the underlying asset
- protection buyer pays a fixed amount S periodically at tenor dates T₁,..., T_{m-1} until default
- protection seller promises to make a payment that covers the loss if default happens:

 $1 - q_{C_{\tau-}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

has to paid at T_{k+1} if default occurs in $(T_k, T_{k+1}]$

Pricing problems II: Credit default swap

- consider a maturity date T_m and a defaultable bond with fractional recovery of Treasury value q as the underlying asset
- protection buyer pays a fixed amount S periodically at tenor dates T₁,..., T_{m-1} until default
- protection seller promises to make a payment that covers the loss if default happens:

 $1 - q_{C_{\tau}}$

has to paid at T_{k+1} if default occurs in $(T_k, T_{k+1}]$

Proposition

The swap rate S at time 0 is equal to

$$S = \frac{\sum_{k=2}^{m} B(0, T_k) \sum_{j=1}^{K-1} \mathbb{E}_{\mathbb{Q}_{T_k}} [(1 - q_j) \mathbf{1}_{\{T_{k-1} < \tau \le T_k, C_{\tau-} = j\}}]}{\sum_{k=1}^{m-1} B(0, T_k) \mathbb{E}_{\mathbb{Q}_{T_k}} [1 - \rho_{iK}(0, T_k)]}$$

if the observed class at time zero is i.

Pricing problems III: use of defaultable measures

Proposition

Let Y be a promised \mathcal{G}_{T_k} -measurable payoff at maturity T_k of a defaultable contingent claim with fractional recovery q upon default and assume that Y is integrable with respect to \mathbb{Q}_{T_k} . The time-t value of such a claim is given by

 $\pi^{t}(Y) = B_{C}(t, T_{k}) \mathbb{E}_{\mathbb{Q}_{C, T_{k}}}[Y|\mathcal{G}_{t}].$

(日)

Pricing problems III: use of defaultable measures

Proposition

Let Y be a promised \mathcal{G}_{T_k} -measurable payoff at maturity T_k of a defaultable contingent claim with fractional recovery q upon default and assume that Y is integrable with respect to \mathbb{Q}_{T_k} . The time-t value of such a claim is given by

 $\pi^{t}(Y) = B_{C}(t, T_{k}) \mathbb{E}_{\mathbb{Q}_{C, T_{k}}}[Y|\mathcal{G}_{t}].$

(日)

Example: a cap on the defaultable forward Libor rate

Pricing problems III: use of defaultable measures

Proposition

Let Y be a promised \mathcal{G}_{T_k} -measurable payoff at maturity T_k of a defaultable contingent claim with fractional recovery g upon default and assume that Y is integrable with respect to \mathbb{Q}_{T_k} .

The time-t value of such a claim is given by

 $\pi^{t}(Y) = B_{C}(t, T_{k}) \mathbb{E}_{\mathbb{Q}_{C, T_{k}}}[Y|\mathcal{G}_{t}].$

Example: a cap on the defaultable forward Libor rate

The time-t price of a caplet with strike K and maturity T_k on the defaultable Libor rate is given by

$$C_t(T_k, K) = \delta_k B_C(t, T_{k+1}) \mathbb{E}_{\mathbb{Q}_{C, T_{k+1}}}[(L_C(T_k, T_k) - K)^+ | \mathcal{G}_t]$$

and the price of the defaultable forward Libor rate cap at time $t < T_1$ is given as a sum

$$\mathbb{C}_{t}(K) = \sum_{k=1}^{n} \delta_{k-1} B_{C}(t, T_{k}) \mathbb{E}_{\mathbb{Q}_{C, T_{k}}} [(L_{C}(T_{k-1}, T_{k-1}) - K)^{+} | \mathcal{G}_{t}].$$