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Panel A: Riskless Yield Curves

 Panel B: Credit Spread Curves
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Single-Name Credit Risk Pricing – What do we do?

Develop general yet tractable Markovian HJM models that

fully incorporate information on riskless and credit spread
term structures

allow different volatility structures for forward rates, that
can be initialized to closely match empirical structures

credit spreads and yield curves are represented by a finite
set of state variables

allow arbitrary interest rate-credit spread correlations

permit shocks to the economy to impact riskless yield
curves and credit spreads
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Multi-Name Credit Risk Pricing – What do we do?

Extend single-name Markovian HJM models to

multi-name infection-type models

Using Kalman filter parameter estimates, we show the
importance of

interest rate-credit spread correlations

default contagion

the initial credit spread curve distribution
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HJM Models: Riskless Dynamics

Let P(t , T ) be the price at date t of a pure riskless discount
bond that pays $1 at date T :

P(t , T ) = e
−

R
T

t
f (t ,u)du,

where f (t , u) represents the date-t forward rate for the
future time increment [u, u + dt ].

We assume

df (t , T ) = µf (t , T )dt + σf (t , T )dzf (t) + cf (t , T )dNf (t),

given f (0, T ). Nf (t) is independent Poisson process with
intensity ηf .
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Dynamics of Riskless Bond Prices

Apply Ito’s lemma for jump-diffusion processes to obtain

dP(t , T )

P(t , T )
=

�
r(t) +

1
2
σp(t , T )σ�p(t , T )−

�
T

t

µf (t , u)du

�
dt

−σp(t , T ) dzf (t) +
�

e
−Kp(t ,T ) − 1

�
dNf (t),

where

σp(t , T ) =

�
T

t

σf (t , u) du,

Kp(t , T ) =

�
T

t

cf (t , u) du.



HJM Models: Risky Debt

For firm A that has not defaulted prior to date t , we have

dYA(t) =

�
1 with probability ηA(Xt)dt

0 with probability 1− ηA(Xt)dt ,

The date-t price of a bond issued by A is given by

ΠA(t , T ) = VA(t , T )1τA>t ,

where

VA(t , T ) = e
−

R
T

t
(f (t ,u)+λA(t ,u)) du

= P(t , T ) SA(t , T ).

λA(t) = ηA(t)�A(t) is firm A’s forward credit spread, ηA(t) is
the default arrival intensity, and �A(t) denotes LGD.
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Credit Spreads Dynamics

We assume

dλA(t , T ) = µA(t , T ) dt + σA(t , T ) dzA(t) + cfA(t , T ) dNf (t), t ≤ τA,

where

correlation with diffusive riskless term structure:

E(dzf (t)dz
�
A
(t)) = ΣA

m×n dt =
�
ρA

ij

�
dt

a jump in riskless rates could transmit to shocks in the
credit spreads

σA(t , T ) is predictable

cfA(t , T ) is a deterministic function of time to maturity, T − t



Proposition 1: HJM Restrictions on the Drift Terms

No arbitrage implies

µf (t , T ) = σp(t , T )σ�
f
(t , T )− cf (t , T )e−Kp(t ,T )ηf

µA(t , T ) = σSA
(t , T )σ�

A
(t , T ) + σf (t , T )ΣAσ�

SA
(t , T )

+σp(t , T )ΣAσ�
A
(t , T ) + gA(t , T ),

where

gA(t , T ) = ηf

�
cf (t , T )e−Kp(t,T ) − (cf (t , T ) + cfA(t , T ))e−(Kp(t,T )+KfA(t,T ))

�
.

Problem with HJM models:
In general, the dynamics are not Markovian in a small
number of state variables

To overcome this issue, we curtail the volatility structures
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Markovian HJM: Volatilities and Jump-Impact Factors

Volatilities are given by

σfi
(t , T ) = hfi

(t) e
−κf

i
(T−t),

σAj
(t , T ) = hAj

(t) e
−κA

j
(T−t)

.

where hfj
(t) and hAj

(t) are predictable functions.

Example: hf (t) = min
�

|h̃f (t)|, h̄f

�
, where h̄f is a large yet

finite constant, and

h̃f (t) = σf r(t)

Jump-impact factors are of the form

cf (t , T ) = cf e
−γf (T−t),

cfA(t , T ) = cfA e
−γfA(T−t)
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Proposition 2: Markovian Models for Riskless Debt
Under volatility restrictions, we get exponential affine riskless bond prices:

P(t , T ) =
P(0, T )
P(0, t)

exp

0

@−
2X

i=1

mX

j=1

Hij(t , T )ψij(t)− H3(t , T )ψ3(t) + HJ(t , T )

1

A ,

where

H1j(t , T ) = 1/κ2
fj

“
1− e

−κf
j
(T−t)

”
, for j = 1, . . . , m

H2j(t , T ) = −1/(2κ2
fj
)

“
1− e

−2κf
j
(T−t)

”
, for j = 1, . . . , m

H3(t , T ) = cf /γf

“
1− e

−γf (T−t)
”

,

HJ(t , T ) = ηf e
− c

f
γ

f

Z
T

t

„
e

c
f

γ
f

e
−γ

f
(u−t)

− e

c
f

γ
f

e
−γ

f
u

«
du.

The dynamics of the state variables are

dψ1j(t) = (h2
fj
(t)− κfj

ψ1j(t))dt + κfj
hfj

(t)dzfj
(t)

dψ2j(t) = (h2
fj
(t)− 2κfj

ψ2j(t))dt

dψ3(t) = −γf ψ3(t)dt + dNf (t).



Proposition 2: Markovian Models for Risky Debt
Under volatility restrictions, and assuming RMV, the risky bond price at t is
ΠA(t , T ) = P(t , T )SA(t , T )1τA>t , where SA(t , T ) is exponential affine:

SA(t , T ) =
SA(0, T )
SA(0, t)

exp[−A0(t , T )−
nX

j=1

(K0,j(t , T )ξ0,j − K1,j(t , T )ξ1,j)

+
mX

i=1

nX

j=1

(K2,ij(t , T )ξ2,ij − K3,ij(t , T )ξ3,ij − K4,ij(t , T )ξ4,ij)

−K5(t , T )ξ5(t)].

The dynamics of the state variables are

dξ0,j(t) = (h2
Aj

(t)− κAj
ξ0j(t)) dt + κAj

hAj
(t) dzAj

(t)

dξ1,j(t) = (h2
Aj

(t)− 2κAj
ξ1j(t)) dt

dξ2,ij(t) = (hfi
(t)hAj

(t)− (κAj
+ κfi

)ξ2,ij(t)) dt

dξ3,ij(t) = (hfi
(t)hAj

(t)− κfi
ξ3,ij(t)) dt

dξ4,ij(t) = (hfi
(t)hAj

(t)− κAj
ξ4,ij(t)) dt

dξ5(t) = −γfAξ5(t) + dNf (t).



Stochastic Drivers vs State Variables

Assume forward rates are driven by m stochastic drivers,
and credit spreads by n

Computational burden is limited to that of (m + n) -dim
affine models with jumps

Number of state variables: 3mn + 2(m + n + 1)

Number of state variables can sometimes be reduced:

m = n = 1: 8

m = n = 1, no jumps and constant h(·) functions: 2

m = n = 1, no jumps and no correlations between interest
rates and credit spreads: 4
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What’s the Big Deal?

Consider a HJM model with m = n = 1, and no jumps.
Assume a 30-year time horizon.

Standard HJM:

Forward rates of 30× 12 = 360 monthly interest rates and
credit spreads need to be tracked.

As such, the model is Markovian in 720 state variables.

If the time partitions are refined to weeks, the number of
state variables increases to 2,880.

Markovian HJM:

A maximum of 8 state variables need to be maintained, no
matter what the partition.
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Are the Volatility Restrictions Severe?

Empirical evidence suggests that there could be a hump in
the volatility structure of forward rates.

This can easily be accommodated in our multifactor
models (m > 1, n > 1).

Proposition 2 can be generalized to enable humped
volatility structures even when m = n = 1.

In fact, we are able to establish arbitrary shapes:

σf (t , T ) = hf (t)
k�

j=1

aj e
−κj (T−t), k > 1.
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Relationship with Duffie-Kan Affine Models

Our models are built on different underlying stochastic
processes, where the number of state variables is larger
than the number of stochastic drivers.

The drift terms of the path statistics offset spot rate
volatilities in a manner that allows bond yields to be affine
in the states, even though the state variables themselves
do not have to be affine processes.

As a result, the family of models we have established are
very rich in structure, yet are easy to implement.

In that sense, our analysis complements Duffie-Kan ’96.
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Empirical Evidence: Using Kalman Filter
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Importance of Interest Rate-Credit Spread
Correlations
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Systemic Credit Shocks and Default Clustering

The model already allows market-wide events to affect the
riskless yield curve and credit spread curves.

We now allow a primary firm’s default to impact the credit
spread of surviving (secondary) firms.

Examples: Secondary firm

could carry significant debt of the primary firm,

may sell much of its goods to a primary firm,

may be in competition with the primary firm.
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Credit Spread Dynamics: Secondary Firms

We assume

dλB(t , T ) = µB(t , T )dt + σB(t , T )dzB(t) + cfB(t , T )dNf (t)

+
mB�

i=1

cAi B
(1− YAi

(t))dYAi
(t), ∀t ≤ τB,

where

correlation with diffusive riskless term structure:

E(dzf (t)dz
�
B
(t)) = ΣB

m×n dt =
�
ρB

ij

�
dt

correlation with firm A’s diffusive term:

E(dzA(t)dz
�
B
(t)) = ΣAB

n×n dt =
�
ρAB

ij

�
dt

volatility structures are curtailed



Proposition 3: Pricing Risky Debt of Secondary Firms

The price of a risky bond issued by a secondary firm is given by
ΠB(t , T ) = VB(t , T )1τB>t , where VB(t , T ) = P(t , T )SB(t , T ) and

SB(t , T ) =
SB(0, T )

SB(0, t)
e
−B0(t ,T )−

P
n

j=1(K
B

0,j (t ,T )ξB

0,j−K B

1,j (t ,T )ξB

1,j )

×e

P
m

i=1
P

n

j=1

“
K B

2,ij (t ,T )ξB

2,ij−K B

3,ij (t ,T )ξB

3,ij−K B

4,ij (t ,T )ξB

4,ij

”

×e
−K B

5 (t ,T )ξB

5 (t)

×e

Pm
B

i=1

““
1−e

−c
A

i
B

(T−t)
”

UA
i
B(t)−cA

i
B(T−t)YA

i
(t)

”

.

Here, B0(t , T ) =
� T

t

� t

0 gB(v , u) dv du. The K B coefficients and ξB

state variables are defined as in Proposition 2, and

UAi B
(t) =

� t∧τA
i

0
ηAi

(u)e−cA
i
B(t−u)

du, for i = 1, . . . , mB.



Importance of Default Contagion: Counterparty Risk in
Insurance Contracts
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Importance of Default Contagion: CDS Index Tranches
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Generating Default Clustering
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Importance of the Initial Credit Spread Curve Distr.

Distribution of initial credit spread curves Tranche spreads
10–15 15–25 25–35

λ(0, t) = 0.05 3451 1450 111
λ(0, 0) ∼ Uniform(0.025, 0.075) and λ(0, t) = λ(0, 0) 3523 1528 128
λ(0, 0) ∼ Uniform(0, 0.1) and λ(0, t) = λ(0, 0) 3528 1528 121

λ(0, t) incr from λ(0, t) = 0.0125 to λ(0, t) = 0.0875 2698 1340 107
λ(0, t) incr from λ(0, t) = 0.025 to λ(0, t) = 0.075 2883 1366 108
λ(0, t) incr from λ(0, t) = 0.0375 to λ(0, t) = 0.0625 3130 1405 110
λ(0, t) = 0.05 3451 1450 111
λ(0, t) decr from λ(0, t) = 0.0625 to λ(0, t) = 0.0375 3857 1514 115
λ(0, t) decr from λ(0, t) = 0.075 to λ(0, t) = 0.025 4345 1601 120
λ(0, t) decr from λ(0, t) = 0.0875 to λ(0, t) = 0.0125 4947 1772 141



Summary

Develop a family of models for pricing interest and credit
derivatives on single and multiple names

Fairly easy to implement

Models have exponentially affine representations for
riskless and risky bond prices

Yet the variance structures need not be affine

The number of state variables is decoupled from the
number of stochastic drivers

Allow flexible specification of correlations between interest
rates and credit spreads

Permit default clustering through a variety of channels
(diffusive correlations, jumps, contagion effects)
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