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Realized Variance

• Filtered probability space (Ω,F , (Ft)t≥0,Q)

• Price process (e.g. S&P 500 index): semimartingale S

• Annualized realized variance on t = t0 < · · · < tk = T :

RV2
t,T =

k

n

k∑
i=1

(
log

Sti

Sti−1

)2

where n = number of trading days per year

• Approximate by quadratic variation, for k →∞:

k∑
i=1

(
log

Sti

Sti−1

)2

→ [log S ]T − [log S ]t

• Justified for daily sampling



Quadratic
Variance Swap

Models

D. Filipović
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Variance Swaps

• A variance swap initiated at t with maturity T pays

RV2
t,T −VS2

t,T

• VS2
t,T = variance swap rate fixed at t

• Assume deterministic risk-free rate r :

VS2
t,T =

1

T − t
EQ [[log S ]T − [log S ]t | Ft ]

• Provides hedging instrument against volatility increases,
which often coincide with drops of stock prices
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S-Characteristics

• Assume

dSt

St−
= rt dt +σt dWt +

∫
R

(e x − 1) (µ(dt, dx)− νt(dx)dt)

• In particular,

∆ log St =

∫
R

x µ(dt, dx)

• Hence

[log S ]T − [log S ]t =

∫ T

t
σ2
s ds +

∫ T

t

∫
R

x2 µ(ds, dx)
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Model-Free Replication

• Britten–Jones and Neuberger [2], Jiang and Tian [11],
Carr and Wu [4], a.o. showed:

[log S ]T − [log S ]t

=

∫ Ft

0

2

K 2
(K − ST )+ dK +

∫ ∞
Ft

2

K 2
(ST − K )+ dK

+ 2

∫ T

t

(
1

Fs−
− 1

Ft

)
dFs

− 2

∫ T

t

∫
R

(
e x − 1− x − x2

2

)
µ(ds, dx)

• Ft = St/P(t,T ) = T -futures price of S
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Model-Free Valuation

• Taking Q-expectation:

VS2
t,T =

2

T − t

∫ ∞
0

Θt(K ,T )

P(t,T )K 2
dK + ε

with error term

ε = − 2

T − t
EQ

[∫ T

t

∫
R

(
e x − 1− x − x2

2

)
νs(dx)ds | Ft

]
• Θt(K ,T ) = out-of-the-money option price



Quadratic
Variance Swap

Models

D. Filipović
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VIX

• Chicago Board Options Exchange Volatility Index (VIX)

VIXt =
√

VS2
t,t+30 days × 100 [%]

calculated as weighted blend of options on S&P 500 index

• Introduced in 1993, revised in 2003

• Industry benchmark for market volatility
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Term-Structure Models
• OTC variance swaps at many different maturities available
⇒ design and estimate term-structure models of variance
swap rates and risk premiums!

Figure: Variance swap rates
√

VS2
t,t+τ on the S&P 500 index from

Jan 4, 1996 to Apr 2, 2007. Source: Bloomberg
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Forward Variance

• Define the forward variance

f (t,T ) = EQ

[
σ2
T +

∫
R

x2 νT (dx) | Ft

]
• Then the variance swap rates equal

VS2
t,T =

1

T − t
EQ

[∫ T

t
σ2
s ds +

∫ T

t

∫
R

x2 µ(ds, dx) | Ft

]
=

1

T − t

∫ T

t
f (t, s) ds

• The spot variance is

vt = lim
T↓t

VS2
t,T = f (t, t)

• Note the analogy to yields vs. forward rates
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Term-Structure Models: Program

• Exogenous (factor) model of f (t,T ), or vt , under P and Q
• Define index Q-dynamics . . .

dSt

St−
= rt dt+σt dWt+

∫ (
e δt(ξ) − 1

)
(µ(dt, dξ)− νt(dξ)dt)

• . . . such that spot variance satisfies

vt = σ2
t +

∫
δt(ξ)2 νt(dξ)

and

d [v , log S ]t ≤ 0 (“leverage effect”)

• E.g. Buehler [3], Egloff et al. [9], Cont and Kokholm [7],
a.o.
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Factor Model

• Forward variance factor model

f (t,T ) = g(T − t,Xt)

• State space X ⊆ R open

• Jump-diffusion state process

dXt = b(Xt)dt+Σ(Xt)dWt+

∫
R
ξ (µ(dt, dξ)−ν(Xt−, dξ)dt)

• b, Σ, γ, g nice enough . . . in particular linear growth

b(x)2 + Σ(x)2 +

∫
R
ξ2 ν(x , dξ) ≤ K (1 + x2)
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Quadratic Term Structure

Theorem 2.1.
The forward variance model admits a quadratic term structure:

g(t, x) = φ(t) + ψ(t)x + π(t)x2

if (and essentially only if) the state process X is quadratic:

b(x) = b + βx

Σ2(x) = a + αx + Ax2

ν(x , dξ) = n(dξ) + ν(dξ)x + N(dξ)x2.

Moreover, . . .
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Quadratic Term Structure

Theorem 2.1 (cont’d).

. . . the functions φ, ψ, π satisfy the linear ODE

d

dt

φψ
π

 =

0 b a +
∫
R ξ

2 n(dξ)
0 β 2b + α +

∫
R ξ

2 ν(dξ)
0 0 2β + A +

∫
R ξ

2 N(dξ)

φψ
π


with initials φ0, ψ0, π0 determined by the spot variance
function

g0(x) ≡ g(0, x) = φ0 + ψ0x + π0x2.
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Proof

• Kolmogorov backward equation:

∂g(t, x)

∂t
= b(x)

∂g(t, x)

∂x
+

1

2
Σ2(x)

∂2g(t, x)

∂x2

+

∫
R

(
g(t, x + ξ)− g(t, x)− ∂g(t, x)

∂x
ξ

)
ν(x , dξ)

• Reads here:

φ′(t) + ψ′(t)x + π′(t)x2 = b(x) (ψ(t) + 2π(t)x) + Σ2(x)π(t)

+

∫
R
π(t)ξ2 ν(x , dξ)

= ψ(t)P1(x) + π(t)P2(x)
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Proof

• Hence

P1(x) = b(x)

P2(x) = 2b(x)x + Σ2(x) +

∫
R
ξ2 ν(x , dξ)

are quadratic polynomials in x

• Necessity follows for diffusion case (ν(x , dξ) = 0)

• Separate terms in 1, x , x2 yields the result
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Quadratic Processes

Theorem 2.2.
The process X is quadratic if and only if

E [X n
t | X0 = x ] =

n∑
k=0

Mkn(t)xk

for all n ≥ 0. Moreover, the (n + 1)× (n + 1)-matrix M solves
the ODE

d

dt
M(t) = BM(t)

M(0) = Id

That is, M(t) = eBt , where . . .



Quadratic
Variance Swap

Models

D. Filipović
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Quadratic Processes

Theorem 2.2 (cont’d).

. . . the matrix B is upper triangular, and reads for the diffusion
case (for simplicity):

B =



0 b 2 a
2 0 · · · 0

0 β 2
(
b + α

2

)
3 · 2 a

2 0
...

0 0 2
(
β + A

2

)
3
(
b + 2α2

) . . . 0

0 0 0 3
(
β + 2A

2

) . . . n(n − 1) a2
... 0

. . . n
(
b + (n − 1)α2

)
0 . . . 0 n

(
β + (n − 1)A2

)



• Zhou [13], Forman and Sørensen [10], Cuchiero et al. [8]



Quadratic
Variance Swap

Models

D. Filipović
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Eigenpolynomials and Moments

• Spectral decomposition

B = S diag (λ0, . . . , λn) S−1

with eigenvalues λk = Bkk , k = 0, . . . , n

• Gives eigenpolynomials pk(x) =
∑k

j=0 Sjkx j s.t.

E [pk(Xt) | X0 = x ] = eλk tpk(x), k = 0, . . . , n

• Stationary moments given by first row of S−1:

E
[
X k
t

]
= S−1

0k , k = 0, . . . , n

• Very efficiently computable! (e.g. with Mathematica)
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Variance
Swaps

Quadratic
Term
Structures

Quadratic
(Pearson)
Diffusions

Model
Estimation

Quadratic Interest Rate vs.
Variance Swap Models

• An interest rate factor model r = r(X ) admits a quadratic
term structure if

E
[
e−

∫ t
0 r(Xs)ds | X0 = x

]
= eΦ(t)+Ψ(t)x+Π(t)x2

• Ahn, Dittmar, and Gallant [1], Leippold and Wu [12], a.o.

• Chen, Filipović, and Poor [5]: the only (!) consistent
jump-diffusion state process X is Gaussian

dXt = (b + βXt) dt + Σ dWt

• Quadratic variance swap term-structure models are much
more flexible!
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Variance
Swaps

Quadratic
Term
Structures

Quadratic
(Pearson)
Diffusions

Model
Estimation

Model Identification

• The quadratic property of X is invariant w.r.t. affine
transformations

X 7→ c + γX

• Can be offset with affine transformation of the quadratic
forward variance function:

φ+ψx + πx2  
(
φ+ ψc + πc2

)
+ (ψγ + 2πγ) x + πγ2x2

• Need canonical representation of X for econometric model
identification!
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Canonical Representation

• Forman and Sørensen [10]

Theorem 3.1.
Denote by D = α2 − 4aA the discriminant of the diffusion
function of the quadratic diffusion process

dXt = (b + βXt) dt +
√

a + αXt + AX 2
t dWt .

Suppose A > 0. Then X falls in one of the following three
equivalence classes . . .
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Class 1: D < 0

• State space X = R
• Canonical representative:

dXt = (b + βXt)dt +
√

1 + AX 2
t dWt

for b ≥ 0 and β ∈ R
• If β < 0: ∃ stationary density

µ(x) ∝
(
1 + Ax2

)β/A−1
exp

[
2b√

A
arctan[

√
Ax ]

]
(Pearson’s type IV, or skew t-distribution)

• For A→ 0: Gaussian limit with stationary density

µ(x) ∝ exp
[
2bx + βx2

]
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Class 2: D = 0

• State space X = (0,∞)

• Canonical representative:

dXt = (b + βXt)dt +
√

AX 2
t dWt

for b ≥ 0 and β ∈ R
• If b > 0 and β < 0: ∃ stationary density

µ(x) ∝ x2β/A−2 exp

[
− 2b

Ax

]
(inverse Gamma distribution)

• Also called GARCH diffusion
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Class 3: D > 0

• State space X = (0,∞)

• Canonical representative:

dXt = (b + βXt)dt +
√

Xt + AX 2
t dWt

for b ≥ 1
2 and β ∈ R

• If β < 0: ∃ stationary density

µ(x) ∝ x2b−1(1 + Ax)2β/A−2b−1

(scaled F -distribution)

• For A→ 0: affine limit case with stationary density

µ(x) ∝ x2b−1 exp[2βx ]

(Gamma distribution)
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Measure Change

• Aim: equivalent change of measure Q ∼ P preserving
quadratic property of X :

dXt =
(

bQ + βQXt

)
dt

+
√

a + αXt + AX 2
t

(
dWt +

`+ λXt√
a + αXt + AX 2

t

dt

)
︸ ︷︷ ︸

=dWQ
t

• With return variance risk premium parameters

` = b − bQ, λ = β − βQ

• Problem: Novikov’s condition fails in general

• But equivalent measure change works here, due to . . .
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. . . Measure Change Theorem

Theorem 3.2 (Cheridito, Filipović, and Yor [6]).

Let b, σ, λ be locally bounded functions on X , and

Xt = X0 +

∫ t

0
b(Xs) ds +

∫ t

0
Σ(Xs) dWs .

Assume that the martingale problem for

Ãf (x) = (b(x) + Σ(x)λ(x)) f ′(x) +
1

2
Σ(x)2f ′′(x)

is well posed in X . Then stochastic exponential

Et(λ(X)> •W ) = exp

(∫ t

0
λ(Xs)>dWs −

1

2

∫ t

0
‖λ(Xs)‖2 ds

)
is a martingale.
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Application: Martingality of S

• Recall quadratic state process

dXt = (b + βXt) dt +
√

a + αXt + AX 2
t dW 1

t

• Let ρ : X → [−1, 1] be Lipschitz and s.t. for some x∗ > 0:

ρ(x)

{
≤ 0, x ≥ x∗,

≥ 0, x ≤ −x∗

• Model the discounted S&P 500 index process as

dSt

St
=
√

g0(Xt)

(
ρ(Xt) dW 1

t +
√

1− ρ2(Xt) dW 2
t

)
• It satisfies (with high probability) the “leverage effect”

d [g0(X ), log S ]t = g ′0(Xt)
√

g0(Xt)ρ(Xt) ≤ 0
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Application: Martingality of S

• Question: is S a true Q-martingale? (vital for pricing!)

• Yes! Write S as stochastic exponential

St = S0 Et
(
λ(X)> •W

)
with

λ(x) =
√

g0(x)

(
ρ(x)√

1− ρ2(x)

)
• . . . and note that the martingale problem for

Ãf (x) =
(

b + βx +
√

a + αx + Ax2
√

g0(x)ρ(x)
)

f ′(x)

+
1

2

(
a + αx + Ax2

)
f ′′(x)

is well posed in X (Yamada–Watanabe)
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Generalized Method of Moments

• Model parameters

θ = (a(= 0, 1), α(= 0, 1),A, b, β, `, λ, φ0, ψ0, π0)

• Observations: 5-vector of VS rates

Yt = (VS2
t,t+τ1

, . . . ,VS2
t,t+τ5

)>, t = 1, . . . ,T

• Define (martingale increments) vector-valued function

ht = h(Yt ,Yt−1, θ)

such that

1

T

T∑
t=1

ht ≈ Eθ0 [h(G (Xt),G (Xt−1), θ0)] = 0

where G (x) = (g(τ1, x), . . . , g(τ5, x))>

• Notice: eigenpolynomials of Xt in closed form: Forman and Sørensen [10] provide explicit optimal

martingale estimating functions for Xt . Problem: Xt is not observed
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Extended Kalman Filter

• De facto standard estimation method

• Pros:
• Faster and more stable than GMM (simulation study)
• Uses all data
• Filters latent factor Xt (useful for pricing)

• Cons: asymptotically inconsistent (but here finite sample!)

• Approximate state transition equation (QML):

Xt+1 ∼ N (Eθ[Xt+1 | Xt ], varθ[Xt+1 | Xt ])

• Linearize observation equation:

Yt+1 = G (X̂t+1|t, θ) + G ′(X̂t+1|t, θ)(Xt+1 − X̂t+1|t) + εt+1

where X̂t+1|t = predicted state
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Data

Figure: Variance swap rates
√

VS2
t,t+τ on the S&P 500 index from

Jan 4, 1996 to Apr 2, 2007. Source: Bloomberg
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Variance
Swaps

Quadratic
Term
Structures

Quadratic
(Pearson)
Diffusions

Model
Estimation

Summary Statistics

Panel A: Variance swap rates
Maturity Mean Std Skew Kurt Q22 ADF

2 20.76 6.80 0.87 4.09 49,806.04 −3.84
3 20.90 6.54 0.78 3.87 52,308.54 −3.65
6 21.48 6.32 0.78 3.93 54,570.82 −3.45

12 22.25 6.06 0.62 3.19 56,549.61 −3.07
24 22.86 5.90 0.55 2.75 57,460.86 −2.86

Panel B: Calculated VIX
2 20.68 6.14 0.71 3.38 51,405.71 −3.63
3 20.71 5.80 0.63 3.20 51,697.76 −3.40
6 20.78 5.23 0.47 2.79 55,149.03 −3.22

Table: Panel A: Summary statistics of the variance swap rates on the
S&P 500 index at different maturities (in months) from January 4,
1996 to April 2, 2007, for a total of 2832 observations.
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Summary Statistics cont’d

• Panel A cont’d: The table reports mean, standard
deviation (Std), skewness (Skew), kurtosis (Kurt); the
Ljung–Box portmanteau test for up to 22nd order
autocorrelation, Q22, 10% critical value is 30.81; the
augmented Dickey–Fuller test for unit root involving 22
augmentation lags, a constant term and time trend, ADF,
10% critical value is −3.16.

• Panel B: summary statistics of the two-, three- and
six-month VIX calculated using SPX options and applying
the revised CBOE VIX methodology.
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Variance
Swaps

Quadratic
Term
Structures

Quadratic
(Pearson)
Diffusions

Model
Estimation

Principal Component Analysis

• PCA of variance swap curve τ 7→
√

VS2
t,t+τ

• One major factor (level), explains 96% of variance

• Second factor (slope), explains 3% of variance

Figure: First two variance swap curve loadings
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Model Specifications

• Full specification: no restrictions

dXt = (b + βXt) dt +
√

a + αXt + AXt dWt

f (t, t) = φ0 + ψ0Xt + π0X 2
t

• Nested restricted specifications:
• A = 0: affine X -dynamics
• π = 0: linear spot variance function
• ψ2

0 = 4φ0π0: spot variance function has exactly one zero
• φ0 = ψ0 = 0: sv function has exactly one zero at x = 0

• Report likelihood ratio

LR = 2 (log LFull − log LREST) ∼ χ2
# rest
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Estimation Results: Overview

Type Full A = 0 π = 0 ψ2
0 = 4φ0π0 φ0 = ψ0 = 0

a 0 0 0 0 0
α 1 1 1 0 0
A 0.402 0 1.620 0.462 0.320
b 2.005 0.529 4.083 0.979 0.098
β -0.742 -0.264 -0.839 -1.034 -0.849
` -0.023 -0.003 -1.273 0.300 0.032
λ -0.243 0.020 -1.503 -0.590 -0.458
φ0 0.016 0.000 0.693 0.002 0
ψ0 -0.002 0.007 0.008 0.010 0
π0 0.002 0.009 0.003 0.013 1.640
LR 0 386 620 264 286
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Variance
Swaps

Quadratic
Term
Structures

Quadratic
(Pearson)
Diffusions

Model
Estimation

Estimation Results

• Full model of class 3 gives best fit

dXt = (b + βXt) dt +
√

Xt + AX 2
t dWt

• All nested restricted specifications strongly rejected, in
particular the affine ones (“A = 0”, “π = 0”)

• Class 3 combines affine behavior for small Xt and
quadratic behavior for large Xt

• Quadratic terms allow for extreme movements and hump
shaped VS term structure

• Drawback: spot variance function bounded away from zero
(≥ 0.12)
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In-Sample Analysis: Predicted VS

Figure: Very good fit of predicted (filtered) variance swap rates vs.
data for 6 months maturity
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In-Sample Analysis: Humps

Figure: Hump shaped VS term structure on 15-Dec-1998. Quadratic
model (left), linear model (π = 0) right.
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Out-of-Sample Analysis: VIX
Futures Pricing

Figure: Challenging exercise for the model: VIX futures on Feb 15,
2007. Maturities 30, 60, 90, 120, 150, 180, 270, 420 days.
Systematic pricing error for VIX due to jumps. Acceptable result.
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Nonlinear Phenomena

Figure: Simulation of a spot volatility trajectory over 100 years. In
black the linearized model. We see volatility spikes and clustering.
Do we need jumps after all?
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Conclusion

• Need for variance swap term-structure models

• Quadratic term structure (closed form) led to quadratic
factor process

• Quadratic models are much more flexible than linear-affine
models

• Data imply strong statistical evidence for quadratic terms

• Quadratic models capture nonlinear phenomena: rare
events, volatility clustering
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