00000000 000000 000000 000	Background	Methodology	Main Findings	Final Thoughts
	00000000	000000	00000000	000

On the relative pricing of long maturity S&P 500 index options and CDX tranches

Pierre Collin-Dufresne Robert Goldstein Fan Yang

Bachelier World Congress: June 2010

Background	Methodology	Main Findings	Final Thoughts
•0000000	000000	00000000	000

Securitized Credit Markets Crisis

- Pre-crisis saw large growth in securitized credit markets (CDO).
- Pooling and tranching used to create 'virtually risk-free' AAA securities, in response to high demand for highly rated securities.
- During the crisis all AAA markets were hit hard:
 - Home equity loan CDO prices fell (ABX.HE AAA < 60%).
 - Super Senior (30-100) tranche spreads > 100bps.
 - CMBX.AAA (super duper) >750bps.
- Raises several questions:
 - Q? Were ratings incorrect (ex-ante default probability higher than expected)?
 - Q? Are ratings sufficient statistics (risk \neq expected loss)?
 - Q? Were AAA tranches mis-priced (relative to option prices)?
- Many other surprises:
 - Corporate Credit spreads widened (CDX-IG > 200bps).
 - Cash-CDS basis negative (-200 bps for IG; -700bps for HY).
 - LIBOR-Treasury and LIBOR-OIS widened (> 400bps).
 - Long term Swap spreads became negative (30 year swap over Treasury < -50 bps).
 - Defaults on the rise (Bear Stearns, Lehman).

Background	Methodology	Main Findings	Final Thoughts
0000000	000000	00000000	000

Evidence from ABX markets

► ABX.HE (subprime) AAA and BBB spreads widened dramatically (prices dropped)

J.P.Morgan DataQuery

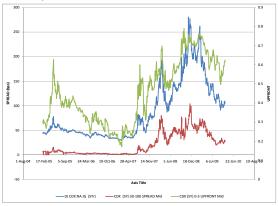
J.P.Morgan Inc.

Background	Methodology	Main Findings	Final Thoughts
00000000	000000	00000000	000

Evidence from CMBX markets

> CMBX (commercial real estate) AAA spreads widened even more dramatically

J.P.Morgan DataQuery

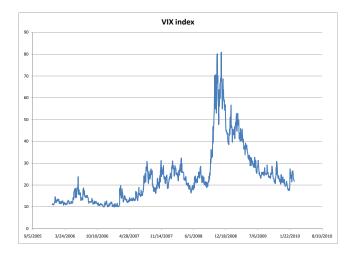


J.P.Morgan Inc.

Background	Methodology	Main Findings	Final Thoughts
0000000	000000	00000000	000

Corporate IG CDX Tranche spreads

The impact on tranche prices was dramatic



- Implied correlation on equity tranche hit > 40%
- ▶ Correlation on Super-Senior tranches > 100%(!) with standard recovery assumption
- Relative importance of expected loss in senior tranche versus in equity tranche indicates increased crash risk.

Background	Methodology	Main Findings	Final Thoughts
0000000	000000	00000000	000

Evidence from S&P500 Option markets

Implied volatility index widened dramatically: increased market and crash risk.

Background	Methodology	Main Findings	Final Thoughts
000000000	000000	00000000	000

CDX Index & CDX Tranche Markets

- Credit Default Swaps (CDS)
 - Buyer of protection makes regular (quarterly) payments = CDS spread
 - Seller of protection makes buyer whole if underlying bond defaults
 - CDS spread \approx corporate bond spread $(y r_f)$
- CDX Investment Grade (IG) Index
 - portfolio of 125 IG credits
 - Buyer of protection makes regular payments on remaining portfolio notional
 - Seller of protection makes buyer whole at time of each bond default
 - CDX index spread pprox weighted average of CDS spreads
- CDX (IG) Tranches written on same portfolio
 - Associated with standard attachment/detachment points (subordination levels):
 - 0-3% (Equity tranche)
 - 3-7% (Mezzanine tranche)
 - 7-10%
 - 10-15%
 - 15-30% (Senior tranche)
 - 30-100% (Super-senior tranche)
 - Buyer of protection makes regular payments on remaining tranche notional
 - Seller of protection makes buyer whole for each bond default which reduces tranche notional
- > CDS, CDX index spreads determined from marginal default probabilities.
- CDX tranche spreads need entire joint distribution (correlation market).

Background	Methodology	Main Findings	Final Thoughts
0000000000	000000	00000000	000

Relation Between SP500 Index Option Prices and CDX Tranche Spreads

- Given the Arrow-Debreu (or state) prices for every date and every state of nature, one can determine the arbitrage-free price of any (derivative) security
- Given option prices across all strikes (and dates) of SP500 index options, one can back out the A/D prices
 - Breeden and Litzenberger (1978)
- Due to diversification effects of 125 firms composing CDX index, CF's associated with CDX tranche positions closely tied to overall market performance
 - $\Rightarrow\,$ Identifying state prices from option prices should be useful for estimating tranche spreads
- ▶ In practice, strikes typically limited to (70% 130%) of current index levels
- Can we extrapolate state prices from SP500 option prices to price credit derivatives?
 - ▶ Payoffs of most senior tranches associated with losses well below 70% of current levels
 - Need to extrapolate well beyond observable prices

Background	Methodology	Main Findings	Final Thoughts
00000000	000000	00000000	000

Structural/Copula Models of Default

Specify market (S&P500) value dynamics as:

$$\frac{dM}{M} = (r - \delta_M) dt + \sigma_M dz_M^Q$$

Specify firm asset value dynamics via CAPM (market plus idiosyncratic risks):

$$\frac{dA_i}{A_i} = (r - \delta_i) dt + \beta_i \sigma_M dz_M^Q + \sigma_i dz_i^Q$$

Note: total variance is sum of market variance plus idiosyncratic variance

$$\mathbf{v}_i^2 = (\beta_i \sigma_M)^2 + \sigma_i^2$$

• Default occurs if $A(t) \leq B$ for t < T

From Black/Scholes/Merton, to determine CDS spread, only need to know v^2

- To determine CDX index spread on 2 (or 125) identical firms, only need to know v^2
- ▶ Consider insurance contract (~ CDX tranches) that pays iff exactly 1 firm defaults
 - If $v^2 = (\beta \sigma_M)^2$, returns perfectly correlated: either zero firms or all firms will default • value of insurance on exactly one default is zero
 - If $v^2 > (\beta \sigma_M)^2$, returns are imperfectly correlated: a single default is possible
 - value of insurance on exactly one default is positive

Background	Methodology 000000	Main Findings	Final Thoughts
			000

Coval, Jurek and Stafford (CJS, 2009)

- ▶ Model Specification (~ standard copula with Option-implied market factor)
 - Estimate 5-year state prices using 5-year SP500 option prices (~ local vol model)
 - Specify idiosyncratic risk as Gaussian diffusion
 - Calibrate model to match the 5-year CDX index spread
 - Have only 5-year state prices; estimating PV[CF's] (0-5 years)
- Findings: Observed spreads on
 - equity tranche too high compared to model predictions
 - other tranches (except super-senior) too low compared to model predictions

	0-3%	3-7%	7-10%	10-15%	15-30%	30-100%
data	1472	135	37	17	8	4
CJS	914	267	150	87	28	1

Interpretation:

- sellers of insurance on senior tranches naive:
 - focused on high credit ratings/low probability of payout
 - did not properly account for the level of systematic risk exposure

Background	Methodology	Main Findings	Final Thoughts
00000000	00000	00000000	000

Our Approach

- Methodology:
 - Specify several (jump-diffusion-SV) structural model for both market (S&P500) and individual (CDX) firm dynamics.
 - Price options (closed-form) and tranches (Monte-carlo simulations).
 - Calibrate market dynamics to match all maturities and strikes of SP500 options.
 - Calibrate idiosyncratic dynamics to match <u>all maturities</u> of CDX index spreads.
 - Calibrate to beta and total variance (estimated from CRSP/Compustat for constituents of CDX index).
- Main Findings:
 - Spread on super-senior tranche too far out of the money to estimate using option prices
 - Taking Super Senior spreads as input, other tranche spreads well estimated by <u>any</u> model
- Interpretation:
 - sellers of insurance on senior tranches sophisticated:
 - Required fair (relative) compensation for risks involved
 - \blacktriangleright May have enjoyed the "window dressing" associated with highly rated securities (\sim rating 'arbitrage').

Background	Methodology	Main Findings	Final Thoughts
00000000	00000	00000000	000

A structural model for pricing long-dated S&P500 options

The market model is the Stochastic Volatility Common Jump (SVCJ) model of Broadie, Chernov, Johannes (2009):

$$\begin{aligned} \frac{dM_t}{M_t} &= (r-\delta) dt + \sqrt{V_t} dw_1^Q + (e^y - 1) dq - \bar{\mu}_y \lambda^Q dt + (e^{y_c} - 1) (dq_c - \lambda_c^Q dt) \\ dV_t &= \kappa_v (\bar{V} - V_t) dt + \sigma_v \sqrt{V_t} (\rho dw_1^Q + \sqrt{1 - \rho^2} dw_2^Q) + y_v dq \\ d\delta_t &= \kappa_\delta (\bar{\delta} - \delta_t) dt + \sigma_\delta \sqrt{V_t} (\rho_1 dw_1^Q + \rho_2 dw_2^Q + \sqrt{1 - \rho_1^2 - \rho_2^2} dw_3^Q) + y_\delta dq. \end{aligned}$$

- ▶ We add stochastic dividend yield (SVDCJ) to help fit long-dated options as well.
- The parameters of the model are calibrated to 5-year index option prices obtained from CJS.
- State variables are extracted given parameters from time-series of short maturity options (obtained from OptionMetrics).
- Advantage of using structural model: Arbitrage-free extrapolation into lower strikes (needed for senior tranches).

Background	Methodology	Main Findings	Final Thoughts
00000000	00000	00000000	000

A structural model of individual firm's default

• Given market dynamics, we assume individual firm *i* dynamics:

$$\begin{aligned} \frac{dA_i(t)}{A_i(t)} + \delta_A dt - rdt &= \beta_i \left(\sqrt{V_t} dw_1^Q + (e^y - 1) dq - \bar{\mu}_y \lambda^Q dt \right) + \sigma_i dw_i \\ &+ (e^{y_c} - 1) \left(dq_c - \lambda_c^Q dt \right) + (e^{y_i} - 1) \left(dq_i - \lambda_i^Q dt \right). \end{aligned}$$

Note

- β : exposure to market excess return (i.e., systematic diffusion and jumps).
- *dq_C*: 'catastrophic' market wide jumps.
- *dq_i*: idiosyncratic firm specific jumps.
- *dw_i*: idiosyncratic diffusion risks.

• Default occurs the first time firm value falls below a default barrier B_i (Black (1976)):

$$\tau_i = \inf\{t : A_i(t) \le B_i\}. \tag{1}$$

• Recovery upon default is a fraction $(1 - \ell)$ of the remaining asset value.

Background	Methodology	Main Findings	Final Thoughts
00000000	00000	00000000	000

Pricing of the CDX index via Monte-Carlo

- The running spread on the CDX index is closely related to a weighted average of CDS spreads.
- ▶ Determined such that the present value of the **protection leg** $(V_{idx,prot})$ equals the PV of the **premium leg** $(V_{idx,pret})$:

$$V_{idx,prem}(S) = S E \left[\sum_{m=1}^{M} e^{-rt_m} (1 - n(t_m)) \Delta + \int_{t_{m-1}}^{t_m} du \, e^{-ru} (u - t_{m-1}) \, dn_u \right]$$
$$V_{idx,prot} = E \left[\int_0^T e^{-rt} \, dL_t \right].$$

- We have defined:
 - The (percentage) defaulted notional in the portfolio: $n(t) = \frac{1}{N} \sum_{i} \mathbf{1}_{\{\tau_i < t\}}$
 - ► The cumulative (percentage) loss in the portfolio: $L(t) = \frac{1}{N} \sum_{i} \mathbf{1}_{\{\tau_i \leq t\}} (1 R_i(\tau_i))$

00000000 000000 00000 000	Background	Methodology	Main Findings	Final Thoughts
	00000000	000000	00000000	000

Pricing of the CDX Tranches via Monte-Carlo

The tranche loss as a function of portfolio loss is

$$T_j(L(t)) = \max \left[L(t) - K_{j-1}, 0
ight] - \max \left[L(t) - K_j, 0
ight].$$

The initial value of the protection leg on tranche-j is

$$Prot_{j}(0,T) = \mathsf{E}^{Q}\left[\int_{0}^{T} e^{-rt} dT_{j}(L(t))\right]$$

For a tranche spread S_i , the initial value of the premium leg on tranche-*j* is

$$Prem_{j}(0, T) = S_{j} E^{Q} \left[\sum_{m=1}^{M} e^{-rt_{m}} \int_{t_{m-1}}^{t_{m}} du \left(K_{j} - K_{j-1} - T_{j}(L(u)) \right) \right].$$

Appropriate modifications to the cash-flows

- Equity tranche (upfront payment),
- Super-senior tranche (recovery accounting).

Background	Methodology	Main Findings	Final Thoughts
00000000	00000●	00000000	000

Calibration of firms' asset value processes

- Calibrate 7 (unlevered) asset value parameters $(\beta, \sigma, B, \lambda_1, \lambda_2, \lambda_3, \lambda_4)$ to match median CDX-series firm's:
 - Market beta
 - Idiosyncratic risk (estimated from rolling regressions for CDX series constituents using CRSP-Compustat)
 - Term structure of CDX spreads (1 to 5 year)
- Set jump size to -2 (\sim jump to default).
- ▶ When present, calibrate catastrophic jump intensity to match super-senior ($\lambda_C < 1$ event per 1000 years).
- Set loss given default 1ℓ to 40% (\sim match historical average) in normal times.
- Set $1 \ell = 20\%$ if catastrophe jump occurs (~ Altman et al.).
- Market volatility, jump-risk, dividend-yield all estimated from S&P500 option data in previous step.

Background	Methodology	Main Findings	Final Thoughts
00000000	000000	●00000000	000

Average tranche spreads predicted for pre-crisis period

- ▶ We report six tranche spreads averaged over the pre-crisis period Sep 04 Sep 07:
 - The historical values;
 - Benchmark model: Catastrophic jumps calibrated to match the super-senior tranche; Idiosyncratic jumps and default boundary calibrated to match the 1 to 5 year CDX index.
 - $\lambda_c^Q = 0$: No catastrophic jumps; Idiosyncratic jumps and default boundary calibrated to match 1 to 5 year CDX index;
 - λ^Q = 0: Catastrophic jumps calibrated to match the super-senior tranche; No idiosyncratic jumps; Default boundary calibrated to match only the 5Y CDX index.
 - $\lambda_Q^Q = 0$, $\lambda_Q^Q = 0$: No catastrophic jumps; No idiosyncratic jumps; Default boundary calibrated to match only the 5Y CDX index;
 - The results reported by CJS

-	0-3%	3-7%	7-10%	10-15%	15-30%	30-100%	0-3% Upfrt
data	1472	135	37	17	8	4	0.34
benchmark	1449	113	25	13	8	4	0.33
$\lambda_c^Q = 0$	1669	133	21	6	1	0	0.40
$\lambda_i^{Q} = 0$	1077	206	70	32	12	4	0.22
$\lambda_{C}^{Q} = 0, \ \lambda_{i}^{Q} = 0$	1184	238	79	31	6	0	0.26
CJS '	914	267	150	87	28	1	na
CJS — Data Benchmark — Data	24.3	6	9.4	17.5	∞	∞	

Background Methodolo	gy Main Findings	Final Thoughts
000000 000000	00000000	000

Interpretation

- Errors are an order of magnitude smaller than those reported by CJS.
- However, model without jumps ($\lambda_c^Q = 0$, $\lambda_i^Q = 0$) generates similar predictions to CJS.
- Why? Problem is two-fold:
 - Backloading of defaults in standard diffusion model:

Average CDA index spreads for different models							
	1 year	2 year	3 year	4 year	5 year		
Data	13	20	28	36	45		
Benchmark	13	20	28	36	45		
$\lambda_{c}^{Q} = 0$	13	20	28	36	45		
$\lambda_i^{Q} = 0$	6	7	16	29	45		
$(\lambda_C^{'Q} = 0, \lambda_i^Q = 0)$	0	3	13	28	45		

Average CDX index spreads for different models

Idiosyncratic jumps generates a five-year loss distribution that is more peaked around the risk-neutral expected losses of 2.4%.
 (loss distribution with λ^Q_c = 0, λ^Q_i = 0 has std dev of 2.9%, whereas loss distribution with (λ^Q_i > 0, λ^Q_c = 0) has std dev of 1.7%).

Background	Methodology	Main Findings	Final Thoughts
00000000	000000	0000000	000

More Generally....

- ► We claim that if:
 - ► Take any "reasonable" dynamic model of market returns to match SP500 option prices
 - Specify idiosyncratic dynamics as a diffusion process
 - Calibrate the model to match the 5-year CDX index
- Then model will generate:

Short term credit spreads that are well below observed levels

	Tranche	spreads	similar	to	those	found	by	CJS
--	---------	---------	---------	----	-------	-------	----	-----

	1 year	2 year	3 year	4 year	5 year
data	13	20	28	36	45
E ^Q [#def]	0.27	0.83	1.75	3.00	4.69
our model	0	3	13	28	45
SVCJ	0	3	14	29	45
Heston	0	2	12	28	45
E ^Q [#def]	0.01	0.13	0.81	2.33	4.69

Background	Methodology	Main Findings	Final Thoughts
00000000	000000	0000000	000

More Generally....

- ▶ We claim that if:
 - ► Take any "reasonable" dynamic model of market returns to match SP500 option prices
 - Specify idiosyncratic dynamics as a diffusion process
 - Calibrate the model to match the 5-year CDX index
- Then model will generate:
 - Short term credit spreads that are well below observed levels
 - Tranche spreads similar to those found by CJS

	0-3% Upfrt	0-3%	3-7%	7-10%	10-15%	15-30%	30-100%
data	0.34	1472	135	37	17	8	4
our model	0.26	1184	238	79	31	6	0
SVCJ	0.22	1078	243	96	44	11	0
Heston	0.23	1097	230	83	39	10	0
CJS	na	914	267	150	87	28	1

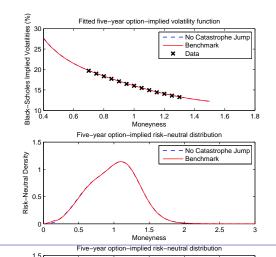
Background	Methodology	Main Findings	Final Thoughts
00000000	000000	00000000	000

Intuition for Findings

- > Diffusion-based structural models can't explain short maturity spreads for IG debt
 - Some level of jumps captured in market dynamics implied from options
 - However, most risk at individual firm level is idiosyncratic
 - Need to specify idiosyncratic dynamics with jumps to capture short term spreads
- ▶ By calibrating model to 5Y CDX index, all models agree on 5Y expected loss
- > By calibrating model to observed term structure of spreads, defaults occur earlier
 - eliminate "backloading" of defaults
 - crucial for pricing equity tranche spreads
 - $\blacktriangleright\,$ first default associated with $\approx 16\%$ drop in insurance premium payments
 - timing of defaults so crucial that equity tranche typically priced with an up-front premium
 - > Agents willing to pay more initially if future payments expected to drop more quickly
 - "Backloading" biases equity tranche spreads downward
 - Downward bias on equity tranche generates an upward bias on senior tranches
- In addition, calibrating model to short maturity spreads increases proportion of idiosyncratic risk to systematic risk
 - Tends to make loss distribution more peaked
 - ► Also tends to increase spreads on equity tranche/decrease spreads on senior tranches

Background	Methodology	Main Findings	Final Thoughts
00000000	000000	000000000	000

Calibrating Model to Term Structure of CDX Index Spreads


- When models are calibrated to match short term credit spreads, the results of CJS disappear, and sometimes are even reversed!!
- Predicted super-senior tranche spreads ≈ 0

	0-3% Upfrt	0-3%	3-7%	7-10%	10-15%	15-30%	30-100%
data	0.34	1472	135	37	17	8	4
our model SVCJ	0.40 0.35	1669 1505	133 166	21 45	6 19	1 4	0 0
Heston	0.34	1500	157	42	18	5	0

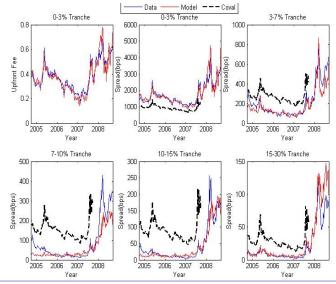
Background	Methodology	Main Findings	Final Thoughts
00000000	000000	0000000000	000

Calibrating Model to Term Structure of CDX Index Spreads and SS Spread

- However, can add a "catastrophic jump" to market dynamics
 - Rietz (1988), Barro (2006)
 - has negligible impact on observed option prices
 - has large impact on SS spreads.

Background	Methodology	Main Findings	Final Thoughts
00000000	000000	00000000	000

Calibrating Model to Term Structure of CDX Index Spreads and SS Spread


- However, can add a "catastrophic jump" to market dynamics
 - Rietz (1988), Barro (2006)
 - has negligible impact on observed option prices
 - has large impact on SS spreads.
 - Can improve fit further by taking tranche spreads in-sample
 - Mortensen (2006), Longstaff and Rajan (2008), Eckner (2009)

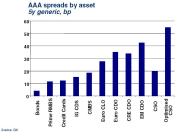
	0-3% Upfrt	0-3%	3-7%	7-10%	10-15%	15-30%	30-100%
data	0.34	1472	135	37	17	8	4
our model	0.33	1449	113	25	13	8	4
SVCJ	0.30	1330	138	47	26	12	
Heston	0.29	1301	142	46	24	12	4
CJS	na	914	267	150	87	28	1

Background	Methodology	Main Findings	Final Thoughts
00000000	000000	00000000	000

Time Series Performance

Model fits data well, both pre-crisis and crisis periods

Background	Methodology	Main Findings	Final Thoughts
00000000	000000	00000000	0 00


Conclusion

- ► CF's associated with CDX tranche spreads occur throughout 5 year horizon
 - need dynamic model of market and idiosyncratic dynamics to price consistently
- Market dynamics (mostly) extracted from option prices
- idiosyncratic dynamics extracted from term structure of credit spreads
 - need idiosyncratic jumps to explain short maturity spreads
- without these jumps:
 - default events are "backloaded"
 - ratio of idiosyncratic to market risk is off
 - CDX equity tranche spreads biased downward
 - CDX senior tranche spreads biased upward
- Super senior tranche spreads cannot be estimated via extrapolation
 - Instead, need to take them as input
 - Other tranche spreads well-predicted by <u>any</u> model that also matches option prices, CDS spreads
- Calibrating model to term structure of credit spreads imposes <u>more</u> structure/ less freedom
 - We used "HJM approach"
 - More consistently, can add state variables driving idiosyncratic jump processes

Background	Methodology	Main Findings	Final Thoughts
00000000	000000	00000000	000

Are senior tranches priced inefficiently by naive investors?

- Investors care only about expected losses (~ ratings) and not about covariance (ironic since they trade in correlation markets!).
- \Rightarrow Spreads across AAA assets should be equalized. Are they?

 \Rightarrow All spreads should converge to **Physical** measure expected loss.

- We observe large risk-premium across the board $(\lambda^Q/\lambda^P > 6.)$
- Large time-variation in that risk-premium.

 \Rightarrow Time-variation in spreads should be similar to that of rating changes (smoother?).

 Evidence seems inconsistent with marginal price setters caring only about expected loss (~ ratings).

What drives differences between structured AAA spreads?

- 'Reaching for yield' by rating constrained investors who want to take more risk because their incentives (limited liability) and can because ratings simply do not reflect risk and/or expected loss.
- Taking more risk by loading on systematic risk was the name of the game (agency conflicts).
- Possible that excess 'liquidity'/leverage lead to spreads being 'too' narrow in all markets, but little evidence that markets were ex-ante mis-priced on a relative basis.
- Ex-post (during the crisis) other issues, such as availability of collateral and funding costs, seem more relevant to explain cross-section of spreads across markets.
- Indeed, how to explain negative and persistent:
 - swap spreads?
 - cds basis?