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1 Literature Review

• Theoretical: Carmona and Touzi [2008] develop a mathematical frame-
work for swing options viewed as nested optimal-stopping problems.

• Binomial and Trinomial Trees: Thompson [1995], Clewlow, Strickland,
and Kaminski [2001a,b] describe features and valuation approach of sin-
gle year swing contract using trinomial tree approach.

• Simulation: Ib́ãnez [2004] seeks to determine an approximate optimal
strategy before pricing by simulation.

• Stochastic Programming: Barrera-Esteve, et al.[2006].

• Quantization: Bally et al. [2005], Bardou et al. [2007]. A quantization
approach is implemented to price the Swing option without penalty.

• Pentanomial Tree: Wahab and Lee [2009]. A pentanomial tree approach
is implemented to price swing options under GBM.
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2 Issues Addressed in This Presentation

• Regime Switching Dynamics for the forward prices.

• Pentanomial tree approach to approximate the regime switching dynam-

ics.

• Formulation of optimisation problem to account for make-upand carry-

forward features under regime switching.

• Numerical implementations.
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3 Basic Swing Contracts

• A basic swing contract is a contract for the supply ofdaily quantities

of gas (within certain constraints) over a specified number of years at

a specified set of contract prices. There is usually an annualcontract

quantity (ACQTi
)

• Eachgas year there is a minimum volume of gas (Take-or-Pay or Mini-

mum Bill) which will be charged for regardless of the actual quantity of

gas taken (MBTi
).

• Eachday of the gas year there is a maximum volume of gas which can

be taken. Hence eachgas year there is a maximum volume of gas which

can be taken (MAXTi
).
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3.1 A Basic Take-or-Pay Contract as a Strip of Call Op-
tions

• A Take-or-Pay contract can be viewed as a variable volume swap or a

strip of variable volume options with constraints.

• In the absence of a Take-or-Pay constraint

Minimum Bill = 0

the optimal strategy each day is to purchase the max. allowable quantity

when the market price is above the contract purchase price and nothing

otherwise.

• In this case the contract has the maximum amount of flexibility and the

value is equivalent to a strip of European Call options.
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Figure 2: Payoff Diagram: Take-or-Pay as Strip of Call Options.
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3.2 A Basic Take-or-Pay Contract as a Swap

• If

Minimum Bill = Maximum Annual Quantity,

the optimal daily strategy typically is to purchase the maximum allow-

able quantity regardless of the market price (depends on form of penalty).

• Now the contract is equivalent to a swap and has the minimum amount

of flexibility and value.
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Figure 3: Payoff Diagram: Take-or-Pay as Swap
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3.3 A Take-or-Pay Contract is a Combination of Call Strip
and a Swap

• If

0 < Minimum Bill < Maximum Annual Quantity,

then the optimal strategy is to exercise like a strip of call options until

the time left (to end of contract) is just sufficient to reach min. bill by

taking the max. each day.

• In the constrained region there is a critical spot price (maybe less than

the contract price) above which it is optimal to take the max.daily quan-

tity, even though this results in a loss relative to the spot price case.
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Figure 4: Payoff Diagram: Take-or-Pay as Combination of a Swap and Call

Strip.
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3.4 Swing Contracts with Make-Up and Carry Forward

• Make-Up

− In years where the gas taken is less than Minimum Bill the shortfall

(paid for in current year) is added to theMake-Up Bank (MTi
).

− In later years where the gas taken is greater than some reference level

(typically Minimum Bill or ACQ) additional gas can be taken from

the Make-Up Bank and a refund paid.

• Carry Forward

− In years where the gas taken is greater than some reference level

(typically ACQ) the excess gas is added to theCarry Forward Bank

(CTi
).

− In later years Carry Forward Bank gas can be used to reduce the

Minimum Bill for that year.
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Figure 5: Carry Forward Bank

Qi = quantity taken in yeari

CBTi
= carry forward base in yeari

CTi
= (1 − βi−1)CTi−1

+ max{Qi − CBTi
, 0}

[evolution of carry forward bank ]
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=MB

(0)
Ti
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4 Forward Price Curve with Regime Switching

• The stochastic or random nature of commodity prices plays a central

role in the models for valuing financial contingent claims, for example,

swing options on commodities and gas storage contracts.

• The observed quantity –F (t, T )

F (t, T ) = forward price at timet for delivery of gas at timeT.

• Those contracts are widely traded on many exchanges with prices read-

ily observed.

• The nearest maturity forward price is used as a proxy for the spot price.

• The longer dated contracts are used to imply the convenienceyield.
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4.1 Stochastic volatility needed

• Deterministic volatility models− the volatility curve is fixed and the

volatility of a specific forward price can change deterministically only

with maturity.

• To properly describe the actual evolution of the volatilitycurve, one

needs a process consisting of both deterministic and randomfactors.

• The drawback of diffusion models is that theycannot generate sudden
and sufficiently large shifts of the volatility curve.

• Adding traditional type jump processes, for example Poisson jumps, one

finds that,the frequency of the jumps is too large while the magni-
tude of the jumps is too small.
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4.2 Regime Switching is better

• An appropriate framework for modelling the dynamics of volatilities:

a class ofpiecewise-deterministic processeswhich allow volatility to

follow an almost deterministic process between two random jump times.

• The simplest process in this class is the continuous-time homogeneous

Markov chain with a finite number of jump times. Models with such

a process approximate the actual jumps in volatility with jumps over a

finite set of values.

• Hidden Markov Model (HMM) - EM Algorithm , Markov Chain
Monte Carlo (MCMC) approach are able to estimate the parameters

of such models.
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4.3 Regime Switching Forward Price Curve

We use the following model for the forward prices in the natural gas market.

dF (t, T )

F (t, T )
= σ1(t, T )dW1(t) + σ2(t, T )dW2(t),

σ1(t, T ) = < σ1, Xt > c(t)
(

e−<α1,Xt>(T −t)(1 − σl1) + σl1

)

,

σ2(t, T ) = < σ2, Xt > c(t)
(

σl2 − e−<α2,Xt>(T −t)
)

,

c(t) = c +
J

∑

j=1

(dj(1 + sin(fj + 2πjt))) .
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4.4 One Factor Model: An Example

• To price the gas swing contract, we consider the one factor model:

dF (t, T )

F (t, T )
=< σ, Xt > c(t) · e−α(T −t)dWt,

whereWt is a standard BM andXt is a finite state Markov Chain and

c(t) = c +
∑J

j=1 (dj(1 + sin(fj + 2πjt))) captures the seasonal

effect.

• Here, the spot volatilityσ will take different values depending on the

state of the Markov ChainXt. Consequently, the spot price will follow:

S(t) = F (0, t) · exp

(
∫ t

0

< σ, Xs > c(s) · e−α(t−s)dWs − 1

2
Λ2

t

)

,

whereΛ2
t =

∫ t

0
(< σ, Xs > c(s) · e−α(t−s))2ds.
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5 Pentanomial Tree Construction

• Bollen (1998) constructed a pentanomial lattice to approximate a regime

switching GBM and to price both European and American options.

• Wahab and Lee (2009) extended the pentanomial lattice to a multinomial

tree and studied the price of swing options under the regime switching

GBM dynamics.

• To construct a discrete pentanomial lattice approximatingthe spot price

processS(t), we letYt =
∫ t

0
< σ, Xs > c(s) · e−α(t−s)dWs.

• We build a discrete lattice to approximateYt first, we know that:

dYt = −αYtdt+ < σ, Xt > c(t)dWt.
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5.1 Nodes

• Assume there are only two regimes for the volatility, namelylow volatil-

ity σL and high volatilityσH .

• In pentanomial tree in Figure 9, each regime is represented by a trino-

mial tree with one branch being shared by both regimes.

• In order to minimize the number of nodes in the tree, nodes from both

regimes are merged by setting the step sizes of both regimes at a 1 : 2

ratio.
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Chiarella, Clewlow and Kang BFS 2010 23



Figure 9: The Alternative Branching Processes for the mean reverting pro-

cesses. The level where the tree switches from one branchingto another

depends on the attenuation parameterα and the time step∆t.
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• The time values in the tree isti = i∆t, where∆t is the time step.

• The levels ofY are equally spaced and have the formYi,j = j∆Y ,

where∆Y is the space step.

• Any node in the tree can therefore be referenced by a pair of integers

(i, j) that is the node at thei−th time step andj−th level.

• From stability and convergence considerations, a reasonable choice for

the relationship between the space step∆Y and the time step∆t is

given by (see Wahab and Lee (2009)):

∆Y =

{

σL

√
3∆t, σL ≥ σH/2;

σH

2

√
3∆t, σL < σH/2.
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5.2 Transition probabilities

• The trinomial branching process and the associated probabilities are

chosen to be consistent with the conditional drift and variance of the

process.

• When the volatility is in the low regime,σ = σL, looking at the inner

trinomial tree, we want to match:

E[∆Y ] = −αYi,j∆t, E[∆Y 2] = σ2
L∆t + E[∆Y ]2;

equating the first and second moments of∆Y in the tree we have:
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pL
u,i,j((k + 1) − j) + pL

m,i,j(k − j) + pL
d,i,j((k − 1) − j) =

−αYi,j∆t/∆Y,

pL
u,i,j((k + 1) − j)2 + pL

m,i,j(k − j)2 + pL
d,i,j((k − 1) − j)2 =

(σ2
L∆t + (−αYi,j∆t)2)/∆Y 2,

together withpL
u,i,j + pL

m,i,j + pL
d,i,j = 1 we can obtain

pL
u,i,j =

1
2

[

σ2

L∆t+α2Y 2

i,j∆t2

∆Y 2
+ (k − j)2 − αYi,j∆t

∆Y
(1 − 2(k − j)) − (k − j)

]

,

pL
d,i,j =

1
2

[

σ2

L∆t+α2Y 2

i,j∆t2

∆Y 2
+ (k − j)2 +

αYi,j∆t

∆Y
(1 + 2(k − j)) + (k − j)

]

,

pL
m,i,j = 1 − pL

u,i,j − pL
d,i,j.
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• When the volatility is in high regime,σ = σH ,we will have:

pH
u,i,j =

1
8

[

σ2

H∆t+α2Y 2

i,j∆t2

∆Y 2
+ (k − j)2 − αYi,j∆t

∆Y
(2 − 2(k − j)) − 2(k − j)

]

,

pH
d,i,j =

1
8

[

σ2

H∆t+α2Y 2

i,j∆t2

∆Y 2
+ (k − j)2 +

αYi,j∆t

∆Y
(2 + 2(k − j)) + 2(k − j)

]

,

pH
m,i,j = 1 − pH

u,i,j − pH
d,i,j.
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5.3 State prices for both regimes

• We will displace the nodes in the above simplified tree by adding the

proper driftsai which are consistent with the observed forward prices.

• For x = L, H we define state pricesQx
i,j as the present value of a

security that pay off$1 if Y = j∆Y andXi∆t = x at timei∆t and

zero otherwise.

• Hence those state prices are accumulated according to

QL
0,0 = 1, QH

0,0 = 0; for lower volatility regime

QL
0,0 = 0, QH

0,0 = 1; for higher volatility regime

QL
i+1,j =

∑

j′

(QL
i,j′p

X
L,L + QH

i,j′p
X
H,L)pL

j′,jP (i∆t, (i + 1)∆t);
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QH
i+1,j =

∑

j′

(QL
i,j′p

X
L,H + QH

i,j′p
X
H,H)pH

j′,jP (i∆t, (i + 1)∆t);

• WherepX
x,x′ is the probabilities the Markov Chain transits from the state

x to the statex′ andpL
j′,j andpH

j′,j are the probabilities the spot transits

from j′ to j but arriving at low and high volatility regime respectively

and P (i∆t, (i + 1)∆t) denotes the price at timei∆t of the pure

discount bond maturing at time(i + 1)∆t.

• To use the state prices to match the forward price curve we use:

P (0, i∆t)F (0, i∆t) =
∑

j

(QL
i,j + QH

i,j)Si,j,

• Hence the adjustment needed to ensure the tree correctly returns the

observed futures curve can be calculated.
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Figure 10: Spot Price Tree which is consistent with the Seasonal Forward

Curve.
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6 Evaluation of Swing Contract

• LetV ∗
t (S, Q, i) andq∗

t (S, Q, i), t = 0, 1, . . . , T be the timet value

and decision function of a Take-or-Pay contract when the spot price is

S, the period-to-date consumption isQ and the system is in regimei.

• MB - Minimum Bill; K - Contract Price.

• Optimal decisions(q∗
T (S, Q, i)) and optimal value functions(V ∗

T (S, Q, i))

at the maturity of the contract are as follows

q∗
T (S, Q, i) =

{

1, S > K;

min(max(MB − Q, 0), 1), S ≤ K.

V ∗
T (S, Q, i) = (S−K)q∗

T (S, Q, i)−K max(0, Q+q∗
T (S, Q, i)−MB).
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• For t = T − 1, · · · , 0, working backward in time we have:

V ∗
t (S, Q, i) =

max
q∈[0,1]







q(S − K) + e−rdt

N
∑

j=1

pijE
i
S[V ∗

t+1(St+1, Q + q, j)]







;

q∗
t (S, Q, i) =

argmaxq







q(S − K) + e−rdt

N
∑

j=1

pijE
i
S[V ∗

t+1(St+1, Q + q, j)]







.

together with the following boundary conditions:

V ∗
t (S, Qmax, i) = 0, q∗

t (S, Qmax, i) = 0,

which means that the value function will be zero and there is no gas to use if
the period to date consumption reaches the maximal quantity.

Chiarella, Clewlow and Kang BFS 2010 33



7 Numerical Examples

One year take-or-pay contract price differences when

• Volatilities: σL = 0.5, σH = 1.0;

• Mean reversion rate:α = 5;

• Forward curve:F (0, t) = 100;

• Interest rate:r = 0;

• Contract price:K = 100;

• Maturity time:T = 365.

• Minimal Bill: MB = 365 × 80% = 292;

• Transition matrix of the hidden MC:P =





0.8516 0.1484

0.7080 0.2920



 .
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Figure 11: Part of the Pentanomail tree based on the above parameters.
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Figure 12: A typical evolution of Markov ChainX(t).
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Figure 13: Day 0 price differences in two different regimes.
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Figure 14: Day 0 decision differences in two different regimes.
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Figure 15: Day 0 spot delta differences in two different regimes.
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One year take-or-pay contract price differences when

• Volatilities: σL = 0.5, σH = 1.0;

• Mean reversion rate:α = 5;

• Forward curve:F (0, t) = 100;

• Interest rate:r = 0;

• Contract price:K = 100;

• Maturity time:T = 365;

• Minimal Bill: MB = 365 × 80% = 292;

• Transition matrix of the hidden MC:P =





0.99 0.01

0.01 0.99



 .
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Figure 16: A typical evolution of Markov ChainX(t).
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Figure 17: Day 0 price differences in two different regimes.
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Figure 18: Day 0 decision differences in two different regimes.
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Figure 19: Day 0 spot delta differences in two different regimes.
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Figure 20: Different realizations of the Markov Chains.
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8 Conclusions

• Set up swing option contracts

• Allowed for make-up and carry-forward banks

• Regime Switching model for forward curve dynamics

• Implement the pentanomial tree approach

• Some numerical examples

• Future work

− Hedging strategies.
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