Pricing a European Gas Storage Facility Using a Continuous-Time Spot Price Model with GARCH Diffusion

Stephan Schlüter & Matt Davison

June 17, 2010

Department of Statistics and Econometrics, Friedrich-Alexander-University of Erlangen-Nuremberg, Department of Applied Mathematics and of Statistical & Actuarial Sciences, The University of Western Ontario

stephan.schlueter@wiso.uni-erlangen.de, mdavison@uwo.ca

Stephan Schlüter & Matt Davison () [Gas Storage Pricing](#page-30-0) June 17, 2010 1/31

 OQ

Motivation

Gas is stored in salt caverns or depleted oil/gas reservoirs

Source: http://www.iz-klima.de.

- \triangleright Gas storage: salt cavern, depleted oil/gas reservoir, aquifers, LNG storage.
- The main storage characteristics are injection, withdrawal and cycling rate.
- \triangleright Salt caverns, for example, allow high injection/withdrawal rates.

Stephan Schlüter & Matt Davison () [Gas Storage Pricing](#page-0-0) June 17, 2010 2 / 31

イロト イ母ト イミト イヨト OQ

Liquid spot markets offer more profit at a higher risk

- \triangleright Historically, in Europe, gas is bought in the summer and sold in the winter.
- \triangleright But: The traded volume rose on European gas hubs by 57 % from 2007 to 2008 (IEA, 2009). The Dutch Title Transfer Facility (TTF) established itself as the main continental hub in Europe.
- \triangleright New chances for storage operators: Facilities can be used as physical hedges for option trading on short-term gas markets.
- \triangleright These new strategies are complex and riskier.
- \blacktriangleright Two major questions arise:
	- 1. What is an adequate model for the short-term gas price?
	- 2. Given new operational possibilities: How to price a storage facility and how to determine the optimal strategy?

 OQ

イロト イ部 トイモト イモト

- 1. A TTF day-ahead gas price model
- 2. Pricing a gas storage facility
	- 2.1 A review of methods for gas storage pricing
	- 2.2 The pricing algorithm

3. A German example

- 3.1. The Trianel GmbH
- 3.2. Running the algorithm

4. Conclusion

 OQ

1. A TTF day-ahead gas price model

- 2. Pricing a gas storage facility
	- 2.1 A review of methods for gas storage pricing
	- 2.2 The pricing algorithm

3. A German example

- 3.1. The Trianel GmbH
- 3.2. Running the algorithm

4. Conclusion

 OQ

イロト イ部 トイモト イモト

Characteristics of the TTF day-ahead price

Source: APX Group.

We see:

- \triangleright There is little evidence of seasonality,
- \triangleright extreme price jumps disappear after 2006.

Stephan Schlüter & Matt Davison () [Gas Storage Pricing](#page-0-0) June 17, 2010 6 / 31

 OQ

A new model for the TTF day-ahead price

- \triangleright We fit an Ornstein-Uhlenbeck process and see that volatility is not constant over time.
- \triangleright There are different ways to incorporate dynamic volatility, e.g. regime-switching models, Poisson-jumps, rolling volatility, ...
- ► In discrete world GARCH (see Engle, 1982) works very well. Drost & Werker (1996) derive a continuous-time limit.
- \triangleright We use their approach and our model for the price P at time t reads

$$
dP_t = \lambda(\mu - P_t)dt + \sigma_t dW_t^{(1)},
$$

\n
$$
d\sigma_t^2 = \theta(\omega - \sigma_t^2)dt + \sqrt{2\eta\theta}\sigma_t^2 dW_t^{(2)}, dW_t^{(1)}, dW_t^{(2)} \sim \mathcal{N}(0, t),
$$

\nwith $\lambda, \theta, \eta > 0, \mu, \omega \in \mathbb{R}$.

F Risk-adjustment is done by modifying μ and ω (see e.g. Heston, 1993).

 OQ

イロト イ押ト イヨト イヨト

- 1. A TTF day-ahead gas price model
- 2. Pricing a gas storage facility
	- 2.1 A review of methods for gas storage pricing
	- 2.2 The pricing algorithm

3. A German example

- 3.1. The Trianel GmbH
- 3.2. Running the algorithm

4. Conclusion

There are three different types of storage pricing methods

1. Monte Carlo simulation:

- \triangleright Price paths are simulated; testing of different price models is simple.
- \triangleright Deriving the optimal strategy requires complex extensions like Least Squares Monte Carlo.

2. Binomial tree method:

- \blacktriangleright Forward differencing method is applied.
- \triangleright Requires large computational resources to store the tree structure.
- \blacktriangleright It is difficult to incorporate flux limiters.

3. Partial differential equations:

- \triangleright The method is capable of handling hyperbolic equations.
- \blacktriangleright It is relatively easy to incorporate flux limiters.
- \triangleright When starting from the Bellman equation, we have a necessary and sufficient condition for optimality (see e.g. Bellman, 1957).

 OQ

イロト イ押ト イヨト イヨト

1. A TTF day-ahead gas price model

2. Pricing a gas storage facility

2.1 A review of methods for gas storage pricing

2.2 The pricing algorithm

3. A German example

- 3.1. The Trianel GmbH
- 3.2. Running the algorithm

4. Conclusion

The variables

The current storage value is the sum of discounted future cash flows

- \triangleright Real options theory: Applying option valuation methods e.g. to investment decisions or to operate industrial facilities.
- ▶ Option characer of a gas storage: "Inject, withdraw or do nothing?"
- \triangleright The storage value V in time t is computed as

$$
V(P, \sigma^2, I, t) = \max_{c(P, I, t)} E\left[\int_t^T e^{-\rho(\tau - t)}(c - a(I, c))P_\tau d\tau\right].
$$

E is the expectation over price and volatility paths under the risk-neutral measure. As $t \to 0$ we obtain the current storage value and optimal strategy.

- \blacktriangleright For the price dynamics we use the model of Section 1.
- \triangleright Inventory level dynamics: $dl = -cdt$.

 OQ

イロト イ母ト イヨト イヨト

Introducing a time step dt yields the Bellman equation

The trick is to split up the intregral...

$$
V = \max_{c} E\left[\int_{t}^{t+dt} e^{-\rho(\tau-t)}(c-a(l,c))P d\tau + \int_{t+dt}^{T} e^{-\rho(\tau-t)}(c-a(l,c))P d\tau\right]
$$

Following this procedure, we arrive at the Bellman equation which is a necessary and sufficient optimality condition:

$$
V = \max_{c} E\left[(c - a(l, c))Pdt + e^{-\rho dt}V(P + dP, \sigma^2 + d\sigma^2, l + dl, t + dt) \right].
$$

- \triangleright Then simplification via Ito's Lemma and $dt \rightarrow 0$.
- \triangleright Solution via backward induction and finite differences.

 OQ

K ロ > K @ > K 등 > K 등 >

A two-step mechanism to compute the storage value

Starting in terminal time T we proceed backwards in time. At time t:

Step 1: Identify the optimal strategy c_{opt} by solving

max_c $[-cV_1 + (c - a(1, c))P]$ s.t $c_{min}(I) \leq c \leq c_{max}(I)$.

Step 2: Solve the following equations

$$
(c_{opt} - a)P - c_{opt}V_I - \rho V + V_t + 0.5\sigma^2 V_{PP}
$$

+ $\lambda\theta (\sigma^2)^2 V_{\sigma^2\sigma^2} + \eta(\mu - P)V_P + \theta(\omega - \sigma^2)V_{\sigma^2} = 0,$

where ρ is the long-run risk-free interest rate.

 OQ

イロト イ母ト イヨト イヨト

- 1. A TTF day-ahead gas price model
- 2. Pricing a gas storage facility
	- 2.1 A review of methods for gas storage pricing
	- 2.2 The pricing algorithm

3. A German example

- 3.1. The Trianel GmbH
- 3.2. Running the algorithm

4. Conclusion

The location of Epe in Europe

The storage volume in Epe is the largest in Europe

Technical data of the caverns run by the Trianel GmbH

- \triangleright Scenario: We are renting storage capacity for a period T. The gas market is liquid, i.e. we can sell and buy gas at any time.
- \triangleright Type of gas: H-Gas with 87% 99% methane and a caloric value of 11, 5 kWh/m^3 .
- \blacktriangleright The risk-free interest rate is about 1%.
- Storage volume: 314 million (M) m^3 (237M m^3 working gas).

$$
\triangleright c_{min} = -36.3612 \sqrt{\frac{1}{1+77} - \frac{1}{314}}, \quad c_{max} = 0.4677 \sqrt{1}.
$$

 \triangleright We estimate the following parameters for the price process:

$$
dP_t = 0.01(17.76 - P_t)dt + \sigma_t dW_t^{(1)},
$$

\n
$$
d\sigma_t^2 = 0.01(5.26 - \sigma_t^2)dt + 0.31\sigma_t^2 dW_t^{(2)}, dW_t^{(1)}, dW_t^{(2)} \sim \mathcal{N}(0, t).
$$

F Terminal condition: $V(P, \sigma^2, I, T) = \mu I$.

 Ω

イロト イ母ト イミト イヨト

- 1. A TTF day-ahead gas price model
- 2. Pricing a gas storage facility
	- 2.1 A review of methods for gas storage pricing
	- 2.2 The pricing algorithm

3. A German example

- 3.1. The Trianel GmbH
- 3.2. Running the algorithm

4. Conclusion

3. A German example 3.2 Running the algorithm

The control surface is split into three areas

Area 1:

Future payoff exceeds the instant costs.

Area 2:

Costs of injection are higher than the resulting benefit.

Area 3:

Immediate payoff exceeds future payoff.

イロト イ団ト イミト

 OQ

The value surface shows an option-like structure

For $I = 0\%$ the structure respects a put-option, for $I = 100\%$ we see the shape of a call option. Between these extremes the storage value has a straddle-like shape.

 \leftarrow \Box \rightarrow

 $\rightarrow \overline{c} \rightarrow \rightarrow \overline{c} \rightarrow$

 OQ

A sensitivity analysis

Higher volatility leads to higher storage value

The dashed line represents $\sigma^2=0.3$ at $t=0$, the solid (dotted) line $\sigma^2 = 1.25(2.5)$.

 \leftarrow

点 \mathbf{b} \sim \equiv OQ

Lower mean reversion leads to higher storage value

The solid (dashed) line shows the value surface for $\lambda = 0.014$ (0.1).

 \leftarrow \Box \rightarrow

The sensitivity of further parameters

- \triangleright The discounted long-run mean marks the border between withdrawing and remaining idle. It shifts as μ is changed.
- \triangleright Although the volatility parameters influence the value surface, they do not influence the control surface. Every parameter shift that enhances volatility increases the storage value – however just around the discounted long-term mean. In the extreme regions, the effect diminishes.
- \triangleright The terminal condition has together with the lease period a significant influence on both the control and the value surface.

 OQ

イロト イ母ト イミト イヨト

An example for the terminal condition

$$
V(P,\cdot,T,I) = \left\{ \begin{array}{ll} P\cdot(I-100) & \text{if } I > 100, \\ 1.25 \cdot P\cdot(I-100) & \text{if } I < 100, \\ 0 & \text{if } I = 100. \end{array} \right.
$$

 OQ

イロト イ団ト イミト

- 1. A TTF day-ahead gas price model
- 2. Pricing a gas storage facility
	- 2.1 A review of methods for gas storage pricing
	- 2.2 The pricing algorithm

3. A German example

- 3.1. The Trianel GmbH
- 3.2. Running the algorithm

4. Conclusion

The major results are:

- 1. The larger the volatility at $t = 0$, the higher the storage value. The effect, however, is decreasing for extremely high and low prices.
- 2. Mean reversion and all volatility parameters do not influence the control surface, but the value surface.
- 3. The long-term mean determines the structure of the control surface.
- 4. The terminal condition has in combination with the lease period a significiant influence on the control surface.

 OQ

イロト イ母ト イミト イヨト

References

- ► Bellman R E. Dynamic programming. Princeton University Press: Princeton, NJ; 1957.
- \triangleright Boogert A, de Jong C. Gas storage valuation using a Monte Carlo method. Journal of Derivatives 2008; 15(3); 81–91.
- International Energy Agency (IEA). Natural gas market review 2009. Maulde & Renou: Paris; 2009.
- ► Dixit A K, Pindyck R S. *Investment under uncertainty*. Princeton University Press: Princeton, NJ; 1994.
- \triangleright Drost F C, Werker B J M: Closing the GARCH gap: continuous time GARCH modelling. Journal of Econometrics 1996; 74; 31-57.
- \triangleright Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 1982; 50(4); 987–1007.
- \blacktriangleright Harten A. High resolution schemes for hyperbolic conservation laws. *Journal* of Computational Physics 1983; 49; 357–393.

References

- \blacktriangleright Heston S L. A Closed-Form Solution for Options with Stochastic Volatility. The Review of Financial Studies 1993; 6(2); 327–343.
- \blacktriangleright Hull J C, White A. Valuing derivative securities using the explicit finite difference method. Journal of Financial and Quantitative Analysis 1990; $25(1)$; 87-100.
- \blacktriangleright Hull J C. Options, futures, & other derivatives, 4th ed. Prentice Hall: New Jersey; 1999.
- ► Landesamt für Bergbau, Energie und Geologie (LBEG). Current capacities of gas storage facilities in the federal state of Niedersachsen. URL: http://www.lbeg.niedersachsen.de. [last access: Dec 17th, 2009].
- ▶ Thompson M, Davison M, Rasmussen H: Natural gas storage valuation and optimization: a real options application. Naval Research Logistics 2009: 56(3); 226–238.
- ► Trianel Gasspeicher Epe GmbH & Co. KG (Trianel). URL: http://www.trianel-gasspeicher.com/index.php?id=364 [last acess: June 17th, 2010].

 OQ

イロト イ部 トイミト イミトー

Thank You for Your Attention!