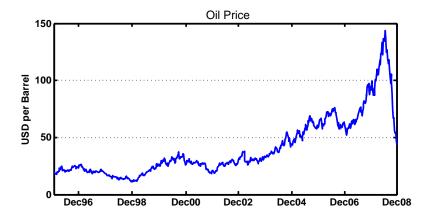
Commodity Derivatives Valuation with Autoregressive and Moving Average Components in the Price Dynamics

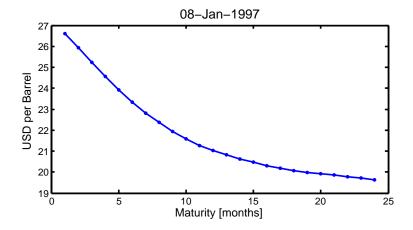
Marcel Prokopczuk ICMA Centre - Henley Business School

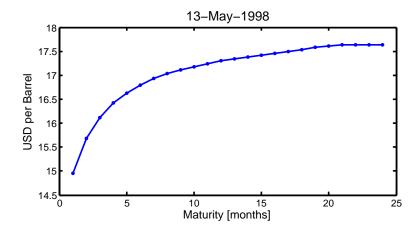
joint work with Raphael Paschke, Munich Re

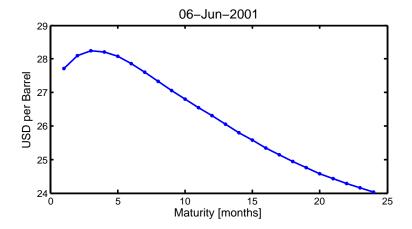
Bachelier Congress, Toronto, 2010

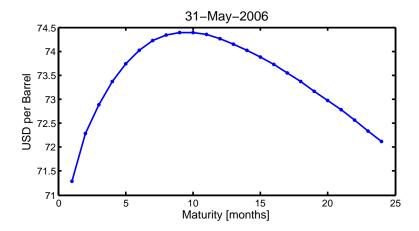
Motivation: Oil Price Development

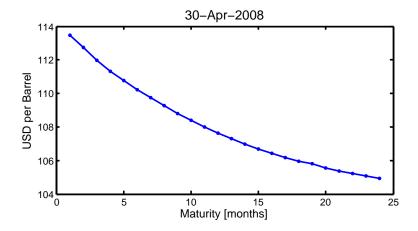












Pricing of Futures Contracts

Futures contracts can be priced by no-arbitrage arguments:

• Financial contracts: Cost-of-carry

$$F_t(T) = S_t e^{r(T-t)}$$

• With storage costs:

$$F_t(T) = S_t e^{(r+s)(T-t)}$$

- No explanation for backwardation
- Inferior empirical performance
- Equity futures can show backwardation due to dividends

$$F_t(T) = S_t e^{(r-q)(T-t)}$$

Pricing of Commodity Futures Contracts

- Commodities differ from pure financial assets as they are hold for consumption or production
- Similar to the dividend yield of a stock, the holder of the commodity receives a convenience yield from holding stocks of commodities
- Kaldor (1939): "... stocks of goods... also have a yield..., by enabling the producer to lay hands on them the moment they are wanted, and thus saving the cost and trouble of ordering frequent deliveries, or waiting for deliveries."

The Convenience Yield

Convenience yield deterministic function of price:

- Brennan/Schwartz (1985)
- Brennan (1991)
- → Poor empirical performance

Stochastic convenience yield:

- Gibson/Schwartz (1990)
- Schwartz (1997)
- Schwartz/Smith (2000)
- Cassasus/Collin-Dufresne (2005)
- → All models assume explicitly or implicitly that the convenience yield follows an Ornstein-Uhlenbeck process

Modelling the Convenience Yield

- The assumed Ornstein-Uhlenbeck process is the continuous limit of an AR(1) process
- An analysis of the approximated (net) convenience yield

$$\delta_{t,T-1,T} = \ln \left(\frac{F(t,T)}{F(t,T-1)} \right)$$

shows that an AR(1) is not able to capture the dynamics appropriately

 An ARMA(1,1) or higher order AR(q) model yield much better fit to the data

Modelling Idea

- Model the convenience yield as continuous autoregressive moving average process: CARMA(p,q)
- CARMA(p,q) processes have a long history in the statistics literature: Doob (1944), ..., Brockwell (2001)
- No usage in the finance literature
- One exception for interest rates: Benth, Koekebakker, and Zakamouline (2008)

Contribution

Our contribution to the literature:

 Formulation of a commodity pricing model in continuous time allowing for higher order autoregression and moving average components:

ABM-CARMA(p,q)

- 2. Derivation of closed-form solutions for futures and options prices
- Application to the crude oil futures market, demonstrating the model's superior empirical performance

- One non-stationary factor Z_t: long-term equilibrium modelled by an Arithmetic Brownian Motion
- One stationary factor Y_t: short-term deviations from the equilibrium modelled by a CARMA(1,0) process (Schwartz/Smith 2000)

$$\ln S_t = Z_t + Y_t$$
$$dZ_t = \mu dt + \sigma_Z dW_t^Z$$
$$dY_t = -kY_t dt + \sigma_Y dW_t^Y$$

- One non-stationary factor Z_t: long-term equilibrium modelled by an Arithmetic Brownian Motion
- One stationary factor Y_t: short-term deviations from the equilibrium modelled by a CARMA(2,0) process

$$\ln S_t = Z_t + Y_t$$
$$dZ_t = \mu dt + \sigma_Z dW_t^Z$$
$$d\dot{Y}_t = -k\dot{Y}_t dt + \sigma_Y dW_t^Y$$
$$dY_t = \dot{Y}_t dt$$

- One non-stationary factor Z_t: long-term equilibrium modelled by an Arithmetic Brownian Motion
- One stationary factor Y_t: short-term deviations from the equilibrium modelled by a CARMA(2,1) process

$$\ln S_t = Z_t + Y_t$$
$$dZ_t = \mu dt + \sigma_Z dW_t^Z$$
$$d\dot{Y}_t = -k\dot{Y}_t dt + \sigma_Y dW_t^Y$$
$$dY_t = \dot{Y}_t dt$$

- One non-stationary factor Z_t: long-term equilibrium modelled by an Arithmetic Brownian Motion
- One stationary factor Y_t: short-term deviations from the equilibrium modelled by a CARMA(2,1) process

$$\ln S_t = Z_t + Y_t + \beta \dot{Y}_t$$
$$dZ_t = \mu dt + \sigma_Z dW_t^Z$$
$$d\dot{Y}_t = -k \dot{Y}_t dt + \sigma_Y dW_t^Y$$
$$dY_t = \dot{Y}_t dt$$

Model Discussion

Model is formulated **directly under the equivalent martingale measure**

Closed form (affine) solutions for the futures price:

$$\ln F(Y_t, \dot{Y}_t, Z_t, t; T) = \underbrace{Z_t + A}_{ABM} + \underbrace{B\dot{Y}_t + CY_t + D}_{CARMA}$$

Difference to the standard Schwartz/Smith 2000 model:

• Term structure:

Much more flexible, especially at the short end

• Volatilities:

Non-monotonous structure and higher curvature

Model Implementation: Data

Data used:

- **Crude oil future**s traded at the New York Mercantile Exchange (NYMEX)
- Sample period: January 1996 to December 2008
- Weekly observations (Wednesday)
- Maturities 1 to 24 months
- Data source: Bloomberg

→ Panel data set of 676 x 24 observations

Model Implementation: Estimation

Implementation of the **ABM-CARMA(2,1)** model:

- Write discretized version in state space form
- Dynamics of latent factors:

Translation equation

- Add measurement error to the pricing formula: Measurement equation
- Kalman filter maximum likelihood estimation of parameters

→ Benchmark: Schwartz/Smith (2000)

In-Sample Pricing Errors

Root Mean Squared Error								
	Absolute		%-Decrease	Relative				
F01	0.0409	0.0486	15.8%	1.26%	1.49%			
F02	0.0283	0.0330	14.2%	0.87%	1.02%			
F03	0.0207	0.0230	10.0%	0.64%	0.71%			
All	0.0122	0.0141	13.5%	0.38%	0.43%			

$$AIC_{ABM-CARMA} = -157,285,$$
 $AIC_{SS2000} = -152,935,$
 $SIC_{ABM-CARMA} = -157,131,$ $SIC_{SS2000} = -152,795.$

Out-of-Sample Pricing Errors: Time-Series

Split Data Sample into two periods

- Estimation: First half
- Prediction: Second half

Root Mean Squared Error								
	Absolute		%-Decrease	Relative				
F01	0.0564	0.0627	10.1%	1.48%	1.59%			
F02	0.0510	0.0543	5.9%	1.33%	1.38%			
F03	0.0472	0.0488	3.2%	1.23%	1.24%			
All	0.0375	0.0381	1.6%	0.94%	0.95%			

Marcel Prokopczuk

Out-of-Sample Pricing Errors: Cross-Section

Split Data Sample into two parts

- Estimation: F01 F12
- Prediction: F13 F24

Root Mean Squared Error								
	Absolute		%-Decrease	Relative				
F15	0.0068	0.0090	24.4%	0.21%	0.29%			
F18	0.0115	0.0149	22.8%	0.36%	0.48%			
F21	0.0173	0.0216	19.9%	0.55%	0.71%			
F24	0.0237	0.0284	16.5%	0.75%	0.93%			
All	0.0144	0.0179	19.6%	0.46%	0.59%			

Conclusion

- AR(1) poor description of the convenience yield
- Extension of Schwartz/Smith model using continuous time limit of ARMA processes to describe the convenience yield
- Results in:
 - More flexible futures curves
 - Without the use of additional risk factors
- Applied to crude oil futures:
 - Better fit/prediction at the short end
 - Better prediction of long maturity contracts from short maturity contracts