Optimal Portfolio Selection under Disappointment Averse Utility

Ji Hee Yoon¹

June 24th, 2010

¹Dept. Mathematical Sciences, KAIST, Republic of Korea.

Yoon, JI HEE () [Optimal Portfolio Selection under Disappointment Averse Utility](#page-29-0) Averse Utility Aver

Introduction

Introduction

One Solution is :

The heterogeneous preferences, especially **Gul (1991)'s disappointment averse utility.**

Utility Functions

We can define a Utility Function by assuming (1) a *certainty equivalent* and (2) a *smooth utility function*.

• Certainty Equivalent $\mu(F)$: the value which, if received with certainty, would be indifferent to receive random outcome with distribution *F*.

$$
Value(\delta_{\mu(F)}) = Value(F)
$$

where $\delta_{\mu(F)}(z) = \mathbf{I}_{\{z > \mu(F)\}}$ for $z \in \mathbb{R}$.

• Smooth Utility Function *u* : a real-valued function of the certainty equivalent $\mu(F) \in [0, \infty)$.

Expected Utility

u is strictly increasing, strictly concave, continuously differentiable and $u'(0+) = \infty, u'(\infty) = 0$, and $\mu(X)$ is defined by

 $u(\mu(X)) = E[u(X)]$

for any random variable *X*.

Gul's Disappointment Averse Utility

For $u:(0,\infty) \to [0,\infty)$, a certainty equivalent μ associated with μ is implicitly defined by

$$
u(\mu(X)) = E\left[u(X) + (\frac{1}{A} - 1)(u(X) - u(\mu(X)))I_{\{X < \mu(X)\}}\right]
$$

Here, *A* ∈ (0, 1] is the *disappointment aversion coefficient*.

Disappointment Averse Utility

Disappointment Averse Utility

Figure: **Utility functions for wealth level**. The solid line is for the disappointment averse utility with $A = 0.4$, $\theta = 1$ and $u(x) = \frac{1}{0.5}x^{0.5}$ and the dashed line is for the smooth utility $u(x) = \frac{1}{0.5}x^{0.5}$.

Disappointment Averse Utility

DA Utility vs Loss-Averse (LA) Utility

Loss Averse Utility :

- *Endogenous* Certainty Equivalent(DA) vs *Exogenous* Reference Level(LA)
- Kahneman and Tversky (1979), Berkelaar *et al.* (2004), Gomes (2005)
- What is the Reference Level for LA Utility?
- Ang *et al.* (2005) : An optimal portfolio may not exist with LA utility.
- DA utility is derived from the Theoretical Axioms (Betweenness Axiom), while LA utility is not.

Disappointment Averse Utility

Why DA Utility ?

• Allais Paradox of the standard expected utility model

The disappointment averse utility is consistent with Allais type behavior from replacing the independence axiom by a weaker axiom called the betweenness axiom.

Disappointment Averse Utility

Why DA Utility ?

• Rabin's Gamble Problem (Ang et al. (2005))

Reject (-100/+110) gamble, then Reject (-1000/+any amount) gamble.

• Empirical Evidence based on market data :

Epstein and Zin(2001), Camerer and Ho(1994), Morone and Schmidt(2008)

Literature on Disappointment Aversion

History

- Ang, Bekaert and Liu(2005)
	- Find solutions of both static and dynamic portfolio choice under DA utility associated with the constant relative risk averse utility (CRRA utility)
	- Provide the explicit form of non-participation region of investors.
- Epstein and Zin(2001)
	- Consider an infinite time horizon asset pricing model with recursive framework of DA utility.
	- Using actual market data, find that DA utility provides a substantial improvement in the empirical performance of a representative agent.
- However, in my knowledge, no literature give a treatment of portfolio choice problem in the continuous time economy.

Our Purpose in this Paper

The Purpose

Optimal Portfolio Choice Problem

Provide an analytic method to solve the optimal portfolio choice problem when a disappointment averse investor want to maximize her utility on terminal wealth

Implications

The numerical results for a special utility function, for example, the disappointment averse utility function associated with the constant relative risk averse(CRRA) utility.

- lower investment on a risky asset which partially explain the portfolio puzzle.
- the change of strategies among the time horizon.

Assumptions

Economy

- Complete market during finite time horizon [0, *T*].
- risk-free asset, $S_0(t)$ and risky asset, $S(t)$

$$
\begin{cases}\ndS_0(t) = rS_0(t)dt \\
dS(t) = \mu S(t)dt + \sigma S(t)dB_t\n\end{cases}
$$

\n- $$
\mu > r > 0, \sigma > 0.
$$
\n- $\gamma = \frac{\mu - r}{\sigma}$: the market price of risk
\n- $H_t = \exp\left\{ -(r + \frac{1}{2}\gamma^2)t - \gamma B_t \right\}$: the pricing Kernel process
\n

- \bullet π_t : proportion of wealth invested in risky asset
- \bullet X_t : wealth process of the investor with initial wealth $X_0 = x > 0$

$$
dX_t = rX_t dt + (\mu - r)\pi_t X_t dt + \sigma \pi_t X_t dB_t
$$

Assumptions

General Problem

Problem

When an investor has the utility $u(x)$ on $\mu(X_T)$ which is the certainty equivalent of her terminal wealth X_T , the optimal investment problem is to find the admissible portfolio strategy π*^t* such that

> $max \; u(\mu(X_{T}))$ π*t*

subject to

$$
dX_t = rX_t dt + (\mu - r)\pi_t X_t dt + \sigma \pi_t X_t dB_t, \quad X_0 = x
$$

$$
X(t) \ge 0, \text{ for all } t \in [0, T]
$$

Solution

Expected Utility Case

Using the Martingale Method, we can derive the formulas for optimal wealth process and optimal portfolio process for our problem.

Solution for Expected Utility case

Let $I(y)$ be the inverse of the marginal utility function $u'(x)$ and λ be the unique solution of

$$
E[H_T I(\lambda H_T)] = x
$$

The optimal terminal wealth and intermediate wealth are

$$
X_T^* = I(\lambda H_T), \quad X_t^* = \frac{1}{H_t} E\left[H_T I(\lambda H_T)|\mathcal{F}_t\right]
$$

if there exists a portfolio process π^* satisfying that $X^{x,\pi^*}_{t} = X^{*}_{t}.$

A sufficient condition to exist π^* is provided by Karatzas and Wang(2001).

Solution

Disappointment Averse Utility Case

$$
\max_{\pi_t} u(\mu(X)) = \max_{\pi_t} E\left[u(X) + (\frac{1}{A} - 1)(u(X) - u(\mu(X)))I_{\{X < \mu(X)\}} \right]
$$

Step 1

Solve the following problem given $\mu(X_T) = \theta$,

$$
\max_{\pi_t} \ \ v(x,\pi;\theta) = \max_{\pi_t} \ \ E\left[u(X_T) + (\frac{1}{A}-1)(u(X_T) - u(\theta))I_{\{X_T < \theta\}}\right]
$$

subject to

$$
dX_t = rX_t dt + (\mu - r)\pi_t X_t dt + \sigma \pi_t X_t dB_t, \quad X_0 = x
$$

$$
X_t \ge 0, \text{ for all } t \in [0, T]
$$

By applying the Martingale Method, we can solve this step.

Solution

Disappointment Averse Utility Case

Step2

Let $X_t^*(\theta)$ and $\pi_t^*(\theta)$ be the optimal wealth process and the optimal portfolio process when $\mu(X_T) = \theta$ is given. Find the fixed point θ , in that the solution of the equation

$$
u(\theta)=v(x,\pi^*(\theta);\theta)=E\left[u(X_T^*(\theta))+(\frac{1}{A}-1)(u(X_T^*(\theta))-u(\theta))I_{\{X_T^*(\theta)<\theta\}}\right]
$$

Example : DA Utility associated with CRRA

• The CRRA utility function is defined by for any $x \in [0, \infty)$,

$$
u(x) := \frac{1}{\alpha} x^{\alpha} \quad \text{if } \alpha \leq 1 \text{ and } \alpha \neq 0
$$

where $(1 - \alpha)$ is the relative risk aversion of an investor.

• The DA utility associated CRRA utility The certainty equivalent is defined implicitly by

$$
\frac{1}{\alpha}\mu(X)^{\alpha} = E\left[\frac{1}{\alpha}X^{\alpha} + (\frac{1}{A} - 1)(\frac{1}{\alpha}X^{\alpha} - \frac{1}{\alpha}\mu(X)^{\alpha})I_{\{X < \mu(X)\}}\right]
$$

where $A \in (0, 1]$ is her disappointment aversion coefficient. The utility of the investor on her wealth *X* is $\frac{1}{\alpha}\mu(X)^{\alpha}$.

CRRA Utility

CRRA Utility

Theorem 4.1 (Optimal Portfolio and Optimal Wealth)

When an investor has CRRA utility with risk aversion (1 – α) and her initial endowment is $x > 0$, her optimal portfolio is

$$
\pi_t^* = \frac{\mu - r}{\sigma^2 (1 - \alpha)}, \quad \text{for } t \in [0, T]
$$

and her optimal wealth process is

$$
X_t^{x,\pi^*} = xH_t^{\frac{1}{\alpha-1}}\exp{\frac{\alpha}{\alpha-1}(r-\frac{\gamma^2}{2(\alpha-1)})t}, \quad \text{for } t \in [0, T]
$$

DA Utility associated with CRRA

DA Utility associated with CRRA Utility

Theorem 4.2 (Optimal Terminal Wealth)

Under the given value θ for the certainty equivalent of terminal wealth, the optimal wealth at terminal time T corresponding to θ is

$$
X_T^{x,\pi^*(\theta)} = \begin{cases} (\lambda^*(\theta)H_T)^{\frac{1}{\alpha-1}} & \text{if } \lambda^*(\theta)H_T < \theta^{\alpha-1} \\ \theta & \text{if } \theta^{\alpha-1} \leq \lambda^*(\theta)H_T \leq \frac{1}{A}\theta^{\alpha-1} \\ (A\lambda^*(\theta)H_T)^{\frac{1}{\alpha-1}} & \text{if } \frac{1}{A}\lambda^*(\theta)H_T < \theta^{\alpha-1} \end{cases}
$$

DA Utility associated with CRRA

Theorem 4.2 - Continue

where $\lambda^*(\theta)$ is the unique solution of the following equation.

$$
x = \theta e^{-rT} (N(\frac{1}{\gamma \sqrt{T}} \ln(\lambda) + \gamma \sqrt{T} + B_1(\theta)) - N(\frac{1}{\gamma \sqrt{T}} \ln(\lambda) + \gamma \sqrt{T} + B_2(\theta)))
$$

+
$$
\lambda^{\frac{1}{\alpha - 1}} \exp \{-\frac{\alpha}{\alpha - 1} (r - \frac{\gamma^2}{2(\alpha - 1)}) T\} N(-\frac{\alpha \gamma \sqrt{T}}{\alpha - 1} - \frac{1}{\gamma \sqrt{T}} \ln(\lambda) - B_1(\theta))
$$

+
$$
(A\lambda)^{\frac{1}{\alpha - 1}} \exp \{-\frac{\alpha}{\alpha - 1} (r - \frac{\gamma^2}{2(\alpha - 1)}) T\} N(\frac{\alpha \gamma \sqrt{T}}{\alpha - 1} + \frac{1}{\gamma \sqrt{T}} \ln(\lambda) + B_2(\theta))
$$

and

$$
B_1(\theta)=-\frac{1}{\gamma\sqrt{T}}((r+\frac{1}{2}\gamma^2)T+(\alpha-1)\ln(\theta)),\ \ B_2(\theta)=B_1(\theta)-\ln(A)
$$

DA Utility associated with CRRA

Theorem 4.3 (Optimal Wealth Process)

Under same assumptions of Theorem 4.2, the investor's optimal wealth at time $t \in [0, T)$ is

$$
X_t^{x, \pi^*(\theta)} = \theta e^{-r(T-t)} \left(N\left(\frac{K_1}{\gamma \sqrt{T-t}} + \gamma \sqrt{T-t} \right) - N\left(\frac{K_2}{\gamma \sqrt{T-t}} + \gamma \sqrt{T-t} \right) \right)
$$

$$
+ \left(\lambda^*(\theta) H_t \right)^{\frac{1}{\alpha-1}} e^{-\frac{\alpha}{\alpha-1} (r - \frac{\gamma^2}{2(\alpha-1)})(T-t)} N\left(-\frac{\alpha \gamma}{\alpha-1} \sqrt{T-t} - \frac{K_1}{\gamma \sqrt{T-t}} \right)
$$

$$
+ \left(A \lambda^*(\theta) H_t \right)^{\frac{1}{\alpha-1}} e^{-\frac{\alpha}{\alpha-1} (r - \frac{\gamma^2}{2(\alpha-1)})(T-t)} N\left(\frac{\alpha \gamma}{\alpha-1} \sqrt{T-t} + \frac{K_2}{\gamma \sqrt{T-t}} \right)
$$

where

$$
K_1 = \ln H_t + \ln \lambda^*(\theta) - (\alpha - 1) \ln \theta - (r + \frac{1}{2}\gamma^2)(T - t), \ \ K_2 = K_1 + \ln A
$$

DA Utility associated with CRRA

Theorem 4.3 (Optimal Prtfolio Process)

Under same assumptions of Theorem 4.2, her optimal portfolio weight at time *t* is

$$
\pi_t^*(\theta) = \frac{1}{\sigma X_t^{X, \pi^*(\theta)}} \left[\frac{\gamma}{1 - \alpha} (\lambda^*(\theta) H_t)^{\frac{1}{\alpha - 1}} e^{-\frac{\alpha}{\alpha - 1} (r - \frac{\gamma^2}{2(\alpha - 1)}) (T - t)} \times \left(N(-\frac{K_1}{\gamma \sqrt{T - t}} - \frac{\alpha \gamma}{\alpha - 1} \sqrt{T - t}) + A^{\frac{1}{\alpha - 1}} N(\frac{K_2}{\gamma \sqrt{T - t}} + \frac{\alpha \gamma}{\alpha - 1} \sqrt{T - t}) \right) - \frac{\theta}{\sqrt{2\pi (T - t)}} e^{-(r + \frac{1}{2}\gamma^2)(T - t)} (e^{-K_1 - \frac{K_1^2}{2\gamma^2(T - t)}} - e^{-K_2 - \frac{K_2^2}{2\gamma^2(T - t)}}) + \frac{(\lambda^*(\theta) H_t)^{\frac{1}{\alpha - 1}}}{\sqrt{2\pi (T - t)}} e^{-\frac{\alpha}{\alpha - 1} (r + \frac{1}{2}\gamma^2)(T - t)} (e^{-\frac{\alpha}{\alpha - 1} K_1 - \frac{K_1^2}{2\gamma^2(T - t)}} - A^{\frac{1}{\alpha - 1}} e^{-\frac{\alpha}{\alpha - 1} K_2 - \frac{K_2^2}{2\gamma^2(T - t)}}) \right]
$$

DA Utility associated with CRRA

Theorem 4.4 (Level of the Certainty Equivalent)

Let $\overline{\theta}$ be a constant defined by $\overline{\theta} = x \exp\{(r - \frac{\gamma^2}{2\alpha^2})\}$ $\frac{1}{2(\alpha-1)})$ $T\}$. The reference rate, $\mu(X_{\mathcal{T}}^{X,\pi^*})$ $T^{\lambda,\pi}_{\tau}$), is a solution in $(0,\theta)$ of the following equation.

$$
\theta^{\alpha} = \theta^{\alpha} \Big(\mathsf{N}(\frac{1}{\gamma\sqrt{T}}\ln(\lambda^*(\theta)) + \mathsf{B}_1(\theta)) - \frac{1}{\mathsf{A}}\mathsf{N}(\frac{1}{\gamma\sqrt{T}}\ln(\lambda^*(\theta)) + \mathsf{B}_2(\theta)) \Big) + (\lambda^*(\theta))^{\frac{\alpha}{\alpha-1}} e^{-\frac{\alpha}{\alpha-1}(r-\frac{\gamma^2}{2(\alpha-1)})T} \mathsf{N}(-\frac{\alpha\gamma\sqrt{T}}{\alpha-1} - \frac{1}{\gamma\sqrt{T}}\ln(\lambda^*(\theta)) - \mathsf{B}_1(\theta)) + \mathsf{A}^{\frac{1}{\alpha-1}}(\lambda^*(\theta))^{\frac{\alpha}{\alpha-1}} e^{-\frac{\alpha}{\alpha-1}(r-\frac{\gamma^2}{2(\alpha-1)})T} \mathsf{N}(\frac{\alpha\gamma\sqrt{T}}{\alpha-1} + \frac{1}{\gamma\sqrt{T}}\ln(\lambda^*(\theta)) + \mathsf{B}_2(\theta))
$$

Moreover, the optimal wealth and portfolio weight are obtained by substituting θ by the solution $\mu(X_{\tau}^{X,\pi^*})$ $T^{x,\pi}_{T}$).

Numerical Implications

Results - Optimal Terminal Wealth

Figure: **The optimal terminal wealth among the realized value of pricing kernel** H_T . The solid line is for a disappointment averse investor with $A = 0.44$ and $\alpha = 0.5$ and the dashed line is for a CRRA type investor with $\alpha = 0.5$. The parameters are $r = 0.0408$, $\mu = 0.1063$, and $\sigma = 0.2193$. Investor's initial wealth is $x = 1$ and length of life time is $T = 1$.

Numerical Implications

Figure: **The optimal intermediate wealth among** H_t at time $t = 0.5$. The solid line is for a disappointment averse investor with $A = 0.44$ and $\alpha = 0.5$ and the dashed line is for a CRRA type investor with $\alpha = 0.5$. The parameters are assumed as same as in figure 2.

Numerical Implications

Results - Optimal Portfolio Amount

Figure: **The optimal portfolio amount among** H_t at time $t = 0.5$. The solid line is for a disappointment averse investor with $A = 0.44$ and $\alpha = 0.5$ and the dashed line is for a CRRA type investor with $\alpha = 0.5$. The parameters are assumed as same as in figure 2.

Numerical Implications

Results - Optimal Portfolio Weight

Figure: **The optimal portfolio weight among investor's wealth level at time** $t = 0.5$. The solid line is for a disappointment averse investor with $A = 0.44$ and $\alpha = 0.5$ and the dashed line is for a CRRA type investor with $\alpha = 0.5$. The parameters are assumed as same as in figure 2.

Numerical Implications

Results - Reference Level (Certainty Equivalent)

Figure: The reference level $\mu(X_{\tau}^*)$ among disappointment aversion coefficient A. We assume that all parameters except for *A* are as same as in figure 2.

Numerical Implications

Results - Portfolio Weight among DA

Figure: **The optimal initial portfolio wight among disappointment aversion coefficient** A. Initial wealth level is $x = 1$ and all parameters except for A are assumed as same as in figure 2.

Numerical Implications

Results - Portfolio Weight among Time Horizon

Figure: **The optimal initial portfolio weight among the length of life time** *T*. The disappointment aversion coefficient is $A = 0.44$ and relative risk aversion is $\alpha = 0.5$. The parameters are $r = 0.0408$, $\mu = 0.1063$, and $\sigma = 0.2193$. Investor's initial wealth is $x = 1$.

Conclusion

Conclusion

- We provide an analytic method to solve the optimal investment problem for disappointment averse investors in a continuous time economy.
- The portfolio weight invested on a risk asset for a disappointment averse investor is lower than the portfolio weight for an investor who has the standard expected utility.
- • The portfolio weight under the disappointment aversion model is changed among the time horizon, while it is constant under the CRRA utility model.