| Introduction | Model | A Near-optimal Strategy | Results<br>00000 | Conclusion and Future Work $_{\rm O}$ |
|--------------|-------|-------------------------|------------------|---------------------------------------|
|              |       |                         |                  |                                       |

# Investment, Income, and Incompleteness

Björn Bick<sup>1</sup> Holger Kraft<sup>1</sup> Claus Munk<sup>2</sup>

<sup>1</sup>Goethe University Frankfurt

<sup>2</sup>Aarhus University

Bachelier Finance Society Toronto June 24th, 2010

| Introduction<br>●○ | Model<br>0000 | A Near-optimal Strategy | Results<br>00000 | Conclusion and Future Work |
|--------------------|---------------|-------------------------|------------------|----------------------------|
| Motivati           | on            |                         |                  |                            |

- Apart from financial wealth, human wealth is a dominant asset for most individuals and households
- Labor income is typically not spanned by financial assets and insurance contracts offered by governments and insurance companies are far from perfect
- → It seems impossible to find closed-form expressions for the strategies maximizing the life-time utility of an investor

| Introduction<br>o • | Model<br>0000 | A Near-optimal Strategy | Results | Conclusion and Future Work |
|---------------------|---------------|-------------------------|---------|----------------------------|
| Contribu            | utions        |                         |         |                            |

- Consideration of a continuous time life-cycle optimization problem of an investor receiving uncertain and unspanned labor income until retirement
- Suggestion of an easy procedure for finding a simple consumption and investment strategy which is near-optimal
- Testing the strategy and checking the robustness of the results
- Extension of the model to endogenous labor supply

| Introduction | Model  | A Near-optimal Strategy | Results | Conclusion and Future Work |
|--------------|--------|-------------------------|---------|----------------------------|
| Contribu     | utions |                         |         |                            |

- Consideration of a continuous time life-cycle optimization problem of an investor receiving uncertain and unspanned labor income until retirement
- Suggestion of an easy procedure for finding a simple consumption and investment strategy which is near-optimal
- Testing the strategy and checking the robustness of the results
- Extension of the model to endogenous labor supply

| Introduction | Model  | A Near-optimal Strategy | Results | Conclusion and Future Work |
|--------------|--------|-------------------------|---------|----------------------------|
| Contribu     | utions |                         |         |                            |

- Consideration of a continuous time life-cycle optimization problem of an investor receiving uncertain and unspanned labor income until retirement
- Suggestion of an easy procedure for finding a simple consumption and investment strategy which is near-optimal
- Testing the strategy and checking the robustness of the results
- Extension of the model to endogenous labor supply

| Introduction | Model  | A Near-optimal Strategy | Results | Conclusion and Future Work |
|--------------|--------|-------------------------|---------|----------------------------|
| Contribu     | utions |                         |         |                            |

- Consideration of a continuous time life-cycle optimization problem of an investor receiving uncertain and unspanned labor income until retirement
- Suggestion of an easy procedure for finding a simple consumption and investment strategy which is near-optimal
- Testing the strategy and checking the robustness of the results
- Extension of the model to endogenous labor supply

| Introduction | Model<br>●000 | A Near-optimal Strategy | Results | Conclusion and Future Work<br>o |
|--------------|---------------|-------------------------|---------|---------------------------------|
| Financia     | al Assets     |                         |         |                                 |

- Available assets: bank account with constant risk-free interest rate *r* and a single stock
- Bank account

$$dM_t = M_t r dt$$

Stock

$$dS_t = S_t \left[ (r + \sigma_S \lambda_S) dt + \sigma_S dW_t \right]$$

- $W = (W_t)$  standard Brownian motion
- For simplicity, let  $\lambda_S$ ,  $\sigma_S$  be constants

| Introduction | Model<br>o●oo | A Near-optimal Strategy | Results<br>00000 | Conclusion and Future Work<br>o |
|--------------|---------------|-------------------------|------------------|---------------------------------|
| Income       |               |                         |                  |                                 |

• Exogenously given labor income rate until retirement date  $\tilde{T}$ 

$$dY_t = Y_t \left[ \alpha \, dt + \beta \left( \rho \, dW_t + \sqrt{1 - \rho^2} \, d\tilde{W}_t \right) \right], \quad 0 \le t \le \tilde{T}$$

- $\tilde{W} = (\tilde{W}_t)$  another Brownian motion, independent of W
- Assume  $\alpha, \beta, \rho$  to be constants

| Introduction | Model<br>0000 | A Near-optimal Strategy | Results<br>00000 | Conclusion and Future Work |
|--------------|---------------|-------------------------|------------------|----------------------------|
| Wealth       |               |                         |                  |                            |

- Choice of consumption strategy c = (c<sub>t</sub>) and investment strategy π<sub>S</sub> = (π<sub>St</sub>)
- Financial wealth at time t: X<sub>t</sub>

$$dX_t = X_t \left[ (r + \pi_{St} \sigma_S \lambda_S) dt + \pi_{St} \sigma_S dW_t \right] + \left( \mathbf{1}_{\{t \leq \tilde{T}\}} Y_t - c_t \right) dt$$

• Strategy  $(c, \pi_S)$  admissible, if it is adapted and  $X_T \ge 0$ 

| Introduction | Model | A Near-optimal Strategy | Results | Conclusion and Future Work |
|--------------|-------|-------------------------|---------|----------------------------|
|              | 0000  |                         |         |                            |
|              |       |                         |         |                            |

# Optimization Problem of the Investor

An admissible strategy generates the expected utility

$$J(t, x, y; c, \pi_{\mathcal{S}}) = \mathrm{E}_t \left[ \int_t^T e^{-\delta(s-t)} U(c_s) \, ds + \varepsilon e^{-\delta(T-t)} U(X_T) \right]$$

 δ: subjective time preference rate; conditioned on X<sub>t</sub> = x and Y<sub>t</sub> = y

#### **Indirect Utility**

The indirect utility function is given by

$$J(t, x, y) = \max_{(c, \pi_S) \in \mathcal{A}_t} J(t, x, y; c, \pi_S)$$

Utility function of CRRA type with  $\gamma > 1$ 

| Introduction | Model<br>0000 | A Near-optimal Strategy<br>●ooooooo | Results | Conclusion and Future Work<br>o |
|--------------|---------------|-------------------------------------|---------|---------------------------------|
| Main Pr      | ohlem         |                                     |         |                                 |

- Assumption: income is spanned, i.e.  $|\rho| = 1$
- $\, \hookrightarrow \,$  indirect utility function is given by

$$J^{\text{com}}(t,x,y) = \frac{1}{1-\gamma} (g^{\text{com}}(t))^{\gamma} (x+yF^{\text{com}}(t))^{1-\gamma}$$
(1)

- A separation like (1) does not hold in the incomplete market
- Resort to numerical methods

| Introduction | Model     | A Near-optimal Strategy | Results | Conclusion and Future Work |
|--------------|-----------|-------------------------|---------|----------------------------|
| A Way o      | ut of thi |                         |         |                            |

- Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitanić
  - and Karatzas (1992): Solution to the incomplete market identical to the least favorable of solutions in artificially completed markets

- Augment the market by adding an additional asset
- Look at this subset of artificially completed markets where simple closed-form solutions exist
- By ignoring the investment in the hypothetical asset, we obtain strategies in the true incomplete market
- Utility maximization over this family of strategies

| Introduction | Model<br>0000 | A Near-optimal Strategy | Results | Conclusion and Future Work<br>o |  |  |
|--------------|---------------|-------------------------|---------|---------------------------------|--|--|
| A \A/        |               |                         |         |                                 |  |  |

- A Way out of this Problem
  - Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitanić and Karatzas (1992): Solution to the incomplete market identical to the least favorable of solutions in artificially completed markets

- Augment the market by adding an additional asset
  - Look at this subset of artificially completed markets where simple closed-form solutions exist
- By ignoring the investment in the hypothetical asset, we obtain strategies in the true incomplete market
- Utility maximization over this family of strategies

| Introduction | Model<br>0000 | A Near-optimal Strategy | Results | Conclusion and Future Work<br>o |  |  |
|--------------|---------------|-------------------------|---------|---------------------------------|--|--|
| A \A/        |               |                         |         |                                 |  |  |

- A Way out of this Problem
  - Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitanić and Karatzas (1992): Solution to the incomplete market identical to the least favorable of solutions in artificially completed markets

- Augment the market by adding an additional asset
- Look at this subset of artificially completed markets where simple closed-form solutions exist
- By ignoring the investment in the hypothetical asset, we obtain strategies in the true incomplete market
- Utility maximization over this family of strategies

|              | 0000  |                         | 00000   |                            |
|--------------|-------|-------------------------|---------|----------------------------|
| Introduction | Model | A Near-optimal Strategy | Results | Conclusion and Future Work |

- A Way out of this Problem
  - Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitanić and Karatzas (1992): Solution to the incomplete market identical to the least favorable of solutions in artificially completed markets

- Augment the market by adding an additional asset
- Look at this subset of artificially completed markets where simple closed-form solutions exist
- By ignoring the investment in the hypothetical asset, we obtain strategies in the true incomplete market
- Utility maximization over this family of strategies

| Introduction<br>00 | Model | A Near-optimal Strategy | Results | Conclusion and Future Work |  |  |
|--------------------|-------|-------------------------|---------|----------------------------|--|--|
| A \A/              |       |                         |         |                            |  |  |

## A Way out of this Problem

 Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitanić and Karatzas (1992): Solution to the incomplete market identical to the least favorable of solutions in artificially completed markets

- Augment the market by adding an additional asset
- Look at this subset of artificially completed markets where simple closed-form solutions exist
- By ignoring the investment in the hypothetical asset, we obtain strategies in the true incomplete market
- Utility maximization over this family of strategies

| Introduction | Model | A Near-optimal Strategy | Results | Conclusion and Future Work |
|--------------|-------|-------------------------|---------|----------------------------|
|              |       | 0000000                 |         |                            |
|              |       |                         |         |                            |

# Completing the Market: Shiller Contract

• Until  $\tilde{T}$  the individual can trade in a hypothetical asset  $I_t$ :

$$dI_t = I_t \left[ (r + \lambda_I) \, dt + \, d \, \tilde{W}_t \right]$$

- Market price of risk  $\lambda_I \Rightarrow$  family of complete markets
- Fraction of wealth invested in Shiller contract: π<sub>It</sub>
- $\hookrightarrow$  Change in wealth dynamics

$$dX_{t} = X_{t} \Big[ \left( r + \pi_{St} \sigma_{S} \lambda_{S} + \mathbf{1}_{\{t \leq \tilde{T}\}} \pi_{lt} \lambda_{l} \right) dt \\ + \pi_{St} \sigma_{S} dW_{t} + \mathbf{1}_{\{t \leq \tilde{T}\}} \pi_{lt} d\tilde{W}_{t} \Big] + \left( \mathbf{1}_{\{t \leq \tilde{T}\}} Y_{t} - c_{t} \right) dt$$

 $\hookrightarrow$  Change in indirect utility

$$J^{\operatorname{art}}(t, x, y; \lambda_{I}) = \max_{(c, \pi_{S}, \pi_{I})} J(t, x, y; c, \pi_{S}, \pi_{I})$$

| Introduction | Model | A Near-optimal Strategy | Results | Conclusion and Future Work |
|--------------|-------|-------------------------|---------|----------------------------|
|              |       | 0000000                 |         |                            |
|              |       |                         |         |                            |

# Solution with Shiller Contracts

#### Theorem

If the investor has access to Shiller contracts with constant  $\lambda_l$ until retirement, then his indirect utility is given by

$$J^{\text{art}}(t, x, y; \lambda_l) = \frac{1}{1 - \gamma} g^{\text{art}}(t; \lambda_l)^{\gamma} (x + y F^{\text{art}}(t; \lambda_l))^{1 - \gamma}$$

Fraction of Wealth optimally invested

$$\pi_{St}^{\text{art}} = \frac{\lambda_S}{\gamma \sigma_S} \frac{X_t + Y_t F^{\text{art}}(t;\lambda_l)}{X_t} - \frac{\beta \rho}{\sigma_S} \frac{Y_t F^{\text{art}}(t;\lambda_l)}{X_t}$$

Transform  $\pi_S$ :

$$\pi_{St}^{\text{art}} = \frac{\lambda_S}{\gamma \sigma_S} + \left(\frac{\lambda_S}{\gamma \sigma_S} - \frac{\beta \rho}{\sigma_S}\right) \frac{Y_t F^{\text{art}}(t;\lambda_l)}{X_t}$$

| Introduction | Model | A Near-optimal Strategy | Results | Conclusion and Future Work |
|--------------|-------|-------------------------|---------|----------------------------|
|              |       | 00000000                |         |                            |
|              |       |                         |         |                            |

## Bounds on Utilities

- For the moment only constant λ<sub>I</sub>
- For any choice of  $\lambda_I$ :

$$J(t, x, y) \leq J^{\operatorname{art}}(t, x, y; \lambda_I)$$

- Find λ
  <sub>I</sub> = arg min<sub>λI</sub> J<sup>art</sup>(t, x, y; λI) → upper bound for the incomplete market J
   (t, x, y) := J<sup>art</sup>(t, x, y; λI)
- Performance of any admissible strategy in the incomplete market via percentage wealth loss L

$$J(t, x, y; c, \pi_S) = \overline{J}(t, x[1 - L], y[1 - L])$$

| Introduction           | Model | A Near-optimal Strategy | Results | Conclusion and Future Work |  |
|------------------------|-------|-------------------------|---------|----------------------------|--|
|                        | 0000  | 00000●00                | 00000   | o                          |  |
| An Admissible Strategy |       |                         |         |                            |  |

- Take investment and consumption strategy  $(c^{art}, \pi_S^{art})$  from the artificially completed market and disregard the investment in Shiller contract *I*
- To assure an admissible strategy, we need to modify the strategies

## Strategies

$$c_{t}(\lambda_{l}) = \frac{X_{t} + \mathbf{1}_{\{X_{t} > k\}} Y_{t} F^{\operatorname{art}}(t;\lambda_{l})}{g^{\operatorname{art}}(t;\lambda_{l})}$$
$$\pi_{St}(\lambda_{l}) = \frac{\lambda_{S}}{\gamma \sigma_{S}} \frac{X_{t} + \mathbf{1}_{\{X_{t} > k\}} Y_{t} F^{\operatorname{art}}(t;\lambda_{l})}{X_{t}} - \mathbf{1}_{\{X_{t} > k\}} \frac{\beta \rho}{\sigma_{S}} \frac{Y_{t} F^{\operatorname{art}}(t;\lambda_{l})}{X_{t}}$$

| Introduction Mod | del A Near-optima<br>○○ ○○○○○○○ | al Strategy Results | Conclusion and Future Work |
|------------------|---------------------------------|---------------------|----------------------------|

## Expected Utility and Welfare Loss

- For any given λ<sub>I</sub>, we can compute the expected utility *J*(*t*, *x*, *y*; *c*(λ<sub>I</sub>), π<sub>S</sub>(λ<sub>I</sub>)) by MC simulation of the processes *X* and *Y* (only until *T̃*)
- Maximize over λ<sub>l</sub>:

$$\hat{\lambda}_I = rg\max_{\lambda_I} J(t, x, y; c(\lambda_I), \pi_{\mathcal{S}}(\lambda_I))$$

 $\hookrightarrow$ 

$$\left(\boldsymbol{c}(\hat{\lambda}_{I}), \pi_{\mathcal{S}}(\hat{\lambda}_{I})\right) \rightarrow \hat{J}(t, \boldsymbol{x}, \boldsymbol{y}) \equiv J(t, \boldsymbol{x}, \boldsymbol{y}; \hat{\boldsymbol{c}}, \hat{\pi}_{\mathcal{S}})$$

• Unknown optimal utility bounded from above and below

$$\hat{J}(t, x, y) \leq J(t, x, y) \leq \bar{J}(t, x, y)$$



Expected utilities and the welfare loss for a correlation of  $\rho = 0.4$ 

Introduction Model A Near-optimal Strategy Results Conclusion and Future Work

## Benchmark Parameter Values

Benchmark values are similar to those used in the existing literature

- Investor characteristics:  $X_0 = 2$  (~ USD 20,000),  $\delta = 0.03, \gamma = 4, t = 0, \tilde{T} = 20, T = 40$
- Financial market: r = 0.02,  $\lambda_S = 0.25$ ,  $\sigma_S = 0.2$
- Labor income:  $Y_0 = 2, \alpha = 0.02, \beta = 0.1$
- Simulation parameters: time steps per year=250, runs=10000, *k* = 0.3

| Introduction | Model<br>0000 | A Near-optimal Strategy | Results<br>o●ooo | Conclusion and Future Work $_{\rm O}$ |
|--------------|---------------|-------------------------|------------------|---------------------------------------|
|              |               |                         |                  |                                       |

## Welfare Losses

|                  | Income-stock correlation $\rho$ |       |       |       |       |  |
|------------------|---------------------------------|-------|-------|-------|-------|--|
|                  | 0                               | 0.2   | 0.4   | 0.6   | 0.8   |  |
| $\epsilon = 0.1$ | 2.18%                           | 1.53% | 1.19% | 0.86% | 0.46% |  |
| $\epsilon = 1$   | 2.20%                           | 1.55% | 1.20% | 0.86% | 0.48% |  |
| $\epsilon = 10$  | 2.22%                           | 1.56% | 1.22% | 0.88% | 0.48% |  |

Welfare loss for the near-optimal strategy with constant  $\lambda_I$ 

| 00           | 0000  |                         | 00000   |                            |
|--------------|-------|-------------------------|---------|----------------------------|
| Introduction | Model | A Near-optimal Strategy | Results | Conclusion and Future Work |

- Can these results be further improved by time-dependent market prices of risk of the affine form?
- The closed-form solution carries over to this case with a slight modification of g<sup>art</sup>(t) and F<sup>art</sup>(t)

 $\lambda_{I}(t) = \Lambda_{1}t + \Lambda_{0}, \quad \Lambda_{1}, \Lambda_{0} \in \mathbb{R}.$ 

|                                                          |         | Income-stock correlation $\rho$ |         |         |         |  |  |
|----------------------------------------------------------|---------|---------------------------------|---------|---------|---------|--|--|
|                                                          | 0       | 0.2                             | 0.4     | 0.6     | 0.8     |  |  |
| $\bar{\Lambda}_1$                                        | -0.0165 | -0.0163                         | -0.0154 | -0.0135 | -0.0102 |  |  |
| $\bar{\Lambda}_0$                                        | 0.4059  | 0.3947                          | 0.3675  | 0.3207  | 0.2415  |  |  |
| L                                                        | 1.04%   | 0.36%                           | 0.12%   | 0.04%   | 0.01%   |  |  |
| olfare loss for the near-optimal strategy with affine ). |         |                                 |         |         |         |  |  |

vennenn

| Introduction | Model<br>0000 | A Near-optimal Strategy | Results<br>000●0 | Conclusion and Future Work<br>o |
|--------------|---------------|-------------------------|------------------|---------------------------------|
| Misspeo      | cified Mo     | odel                    |                  |                                 |

We evaluate the welfare loss from using the consumption and investment strategy derived under a complete market assumption ( $|\rho| = 1$ ) when the labor income is really unspanned (,i.e. true market incomplete)

|                  | Income-stock correlation $\rho$ |       |       |       |       |
|------------------|---------------------------------|-------|-------|-------|-------|
|                  | 0                               | 0.2   | 0.4   | 0.6   | 0.8   |
| $\epsilon = 0.1$ | 14.41%                          | 9.95% | 6.21% | 3.25% | 1.15% |
| $\epsilon = 1$   | 14.43%                          | 9.93% | 6.21% | 3.24% | 1.14% |
| $\epsilon = 10$  | 14.39%                          | 9.94% | 6.20% | 3.24% | 1.15% |

Welfare loss for the misspecified strategy with exogenous income and constant  $\lambda_I$ 

| Introduction | Model<br>0000 | A Near-optimal Strategy | Results | Conclusion and Future Work<br>o |
|--------------|---------------|-------------------------|---------|---------------------------------|
| Extensio     | ns of th      | ne Model                |         |                                 |

- Flexible labor supply
  - individual decides on his leisure
  - additional control variable
- Stochastic Interest Rates modeled by an Vasicek process: welfare losses are of the same order

Introduction Model A Near-optimal Strategy Ocococo Results Conclusion and Future Work

# Conclusion and Future Work

- We provide and test an easy procedure for finding a simple, near-optimal consumption and investment strategy of an investor receiving an unspanned labor income stream
- We extend the model to endogenous labor supply and stochastic interest rates and provide strategies
- Can we generalize the procedure?
- Compute a numerical solution for the incomplete market