Diversity and Arbitrage in a Regulatory Breakup Model

Winslow Strong Jean-Pierre Fouque

Department of Statistics and Applied Probability, University of California Santa Barbara

> Bachelier World Congress Toronto, 2010

> > < □ > < @ > < 注 > < 注 > ... 注

- The Model
- Diversity Implies Arbitrage in Standard Models

(日) (四) (코) (코) (코) (코)

- Regulatory Procedure
- Examples of Regulated Market Models

The Model

• Diversity Implies Arbitrage in Standard Models

(日) (四) (코) (코) (코) (코)

- Regulatory Procedure
- Examples of Regulated Market Models

Market Model

• Stock capitalization (total shares×price per share) process $X_t = (X_{1,t}, \dots, X_{n,t})$ is the unique strong solution to

$$dX_{i,t} = X_{i,t} \left[b_i(X_t) dt + \sum_{\nu=1}^d \sigma_{i\nu}(X_t) dW_{\nu,t} \right], \quad 1 \le i \le n.$$

- Money market account $B \equiv 1$, $(r \equiv 0)$.
- *d* ≥ *n*, and the covariance matrix σ(x)σ(x)' ∈ ℝ^{n×n}, is uniformly elliptic. That is, there exists κ > 0 such that

$$\xi'\sigma(x)\sigma(x)'\xi\geq\kappa\left\Vert \xi
ight\Vert ^{2},\quadorall\xi\in\mathbb{R}^{n},\,orall x\in(0,\infty)^{n}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Diversity

• Market weight process μ :

$$\mu_{i,t}:=\mu_i(X_t):=\frac{X_{i,t}}{\sum_{j=1}^n X_{j,t}},\quad 1\leq i\leq n.$$

• Each X_i is strictly positive, so μ lives in the simplex

$$\Delta^n_+ := \left\{ (\pi_1,\ldots,\pi_n) \in (0,\infty)^n \mid \sum_i^n \pi_i = 1 \right\}.$$

• Reverse order statistics notation:

$$x_{(1)} \geq x_{(2)} \geq \ldots \geq x_{(n)}.$$

Definition

A market is *diverse* on horizon T if there exists $\delta \in (0,1)$ such that

$$\mu_{(1),t} < 1 - \delta, \ \forall t : \ 0 \le t \le T.$$

- The Model
- Diversity Implies Arbitrage in Standard Models

(日) (四) (코) (코) (코) (코)

- Regulatory Procedure
- Examples of Regulated Market Models

Diversity Implies Arbitrage

R. Fernholz [Fer99, Fer02]: diversity and equivalent martingale measures (EMMs) are incompatible. Standard Model Assumptions:

- Capitalizations are Itô processes (\Rightarrow continuous paths);
- covariance is uniformly elliptic;
- continuous trading;
- no transaction costs;
- no dividends;
- number of companies is constant.

Under these assumptions diversity can be maintained only via singular repulsive down-drift of $\mu_{(1)}$ [FKK05]. Such models admit relative arbitrage with respect to the market portfolio over any horizon. These arbitrages are functionally generated from μ , not requiring knowledge of *b* or σ to construct. Are diversity and no-arbitrage compatible if diversity is maintained by a regulator breaking up any company that becomes too large?

<ロト <四ト <注入 <注下 <注下 <

- The Model
- Diversity Implies Arbitrage in Standard Models

・ロト ・四ト ・ヨト ・ヨト

12

- Regulatory Procedure
- Examples of Regulated Market Models

Regulatory Procedure I

Confine market weights μ to U^{μ} by redistribution of capital via a deterministic mapping \mathfrak{R}^{μ} upon μ 's exit from U^{μ} . Assumption: Total capital is conserved.

Definition

A regulation rule \mathfrak{R}^{μ} with respect to the open, nonempty set $U^{\mu} \subset \Delta^{n}_{+}$ is a Borel function

$$\mathfrak{R}^{\mu}: \partial U^{\mu} \to U^{\mu}$$

The regulation rule is equivalently described as acting on X via

$$egin{aligned} &U^{ imes} := \mu^{-1}(U^{\mu}) = \{x \in (0,\infty)^n \mid \mu(x) \in U^{\mu}\} \ &\mathfrak{R}^{ imes} : \partial \, U^{ imes} o U^{ imes} \ &\mathfrak{R}^{ imes}(x) := \left(\sum_{i=1}^n x_i
ight) \mathfrak{R}^{\mu}(\mu(x)) \end{aligned}$$

Regulatory Procedure II

- U^x is a conic region, i.e. $x \in U^x \Rightarrow \lambda x \in U^x$, $\forall \lambda > 0$, allowing any total market value for a given $\mu \in U^{\mu}$.
- Regulation is first applied at the exit and stopping time

$$\alpha_1 := \inf \left\{ t > 0 \mid \mu_t \in \partial U^{\mu} \right\} = \inf \left\{ t > 0 \mid X_t \in \partial U^{\times} \right\}$$

- After α₁ the capitalizations "reset" as if starting afresh from initial point ℜ[×](X_{α1}) until exit from U[×] again.
- Applying this procedure inductively defines the regulated capitalization process.
- To obtain a diverse regulated market, choose e.g.

$$U^{\mu}=\{\pi\in\Delta^n_+\mid\pi_{(1)}<1-\delta\}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

$$au_0 = 0, \quad W^1 := W, \quad X^1 = X, \quad au_1 := lpha_1 := \inf \left\{ t > 0 \mid X_t^1 \in \partial U^x \right\}.$$

By induction define the following for $k \ge 2$, on $\{\tau_{k-1} < \infty\}$,

$$\begin{split} & W_t^k := W_{\tau_{k-1}+t} - W_{\tau_{k-1}}, \quad \forall t \ge 0, \quad \text{a B.M. on } \{\tau_{k-1} < \infty\} \\ & dX_{i,t}^k = X_{i,t}^k \left(b_i(X_t^k) dt + \sum_{\nu=1}^d \sigma_{i\nu}(X_t^k) dW_t^k \right), \quad 1 \le i \le n, \\ & X_0^k = \Re^x(X_{\alpha_{k-1}}^{k-1}), \\ & \alpha_k := \inf \left\{ t > 0 \mid X_t^k \in \partial U^x \right\}, \quad \tau_k := \sum_{j=1}^k \alpha_j. \end{split}$$

 X^k is the unique strong solution to the SDE above, on $\{\tau_{k-1} < \infty\}$ with filtration $\{\mathscr{F}_{\tau_{k-1}+t}\}_{t \ge 0}$.

Regulated Capitalization Process

• There is a possibility of explosion, that is of $\lim_{k\to\infty} \tau_k < \infty$.

$$N_t := \sum_{k=1}^{\infty} \mathbf{1}_{\{t > \tau_k\}} \in \mathscr{F}_t, \qquad \quad au_{\infty} := \lim_{k \to \infty} au_k.$$

Definition

For regulation rule $(U^{\mu}, \mathfrak{R}^{\mu})$ and initial point $y_0 \in U^{\times}$, the *regulated capitalization process* is defined as

$$\begin{split} Y_t(\omega) &:= y_0 \mathbf{1}_{\{0\}}(t) + \sum_{k=1}^{\infty} \mathbf{1}_{(\tau_{k-1}, \tau_k]}(\omega, t) X_{t-\tau_{k-1}}^k(\omega), \quad (\omega, t) \in [0, \tau_{\infty}). \\ Y_0 &= y_0 = x_0 = X_0^1 \end{split}$$

If $P(\tau_{\infty} = \infty) = 1$, then call the triple $(y_0, U^{\mu}, \mathfrak{R}^{\mu})$ viable.

 The examples in this talk are viable. For the technical details, see our paper [SF10].

Split-Merge Regulation

- Split the largest company and simulataneously force the smallest two to merge.
- Let p(i) return the index of the *i*th largest capitalization, e.g. p(1) = i, when x_i is the largest of $\{x_j\}_{1}^{n}$.
- For $n \ge 3$ and any open, nonempty $U^{\mu} \subseteq \Delta^n_+$, define $\mathfrak{R}^{\mu}: \partial U^{\mu} \to U^{\mu}$ via

$$\mu_{p(1)} \mapsto \mu_{(1)}/2,$$

$$\mu_{p(n-1)} \mapsto \mu_{(1)}/2,$$

$$\mu_{p(n)} \mapsto \mu_{(n-1)} + \mu_{(n)},$$

$$\mu_{p(i)} \mapsto \mu_{i}, \text{ for } i \notin \{1, n-1, n\}$$

 This will be the regulatory rule used in applications, with U^μ to be specified later.

٠

Portfolios in the Regulated Market I

- Assumption: Portfolio wealth is conserved at regulation events: V_{τ⁺_μ} = V_{τ_k}. Realistic for breakups and merges.
- This implies that capital gains are not given by $(H \cdot Y)_t$.
- Would like to represent the capital gains process as a stochastic integral.
- Define a net capitalization process \hat{Y} , reflecting only the non-regulatory movements of Y:

$$\hat{Y}_t := Y_t - \sum_{k=1}^{N_t} \Delta Y_k, \qquad \Delta Y_k := Y_{\tau_k^+} - Y_{\tau_k}.$$

• Recalling that $Y_{ au_k^+} = \mathfrak{R}^{\star}(Y_{ au_k}^k) = X_0^{k+1}$ on $\{ au_k < \infty\}$, then

$$\hat{Y}_t = X_0^1 + \sum_{k=1}^{N_t} (X_{\alpha_k}^k - X_0^k) + (X_{t-\tau_{N_t}}^{N_t+1} - X_0^{N_t+1}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Portfolios in the Regulated Market II

- A wealth process V^H in the regulated model should be locally self-financing on $(\tau_{k-1}, \tau_k]$, for each $k \in \mathbb{N}$.
- This combined with the assumption of wealth-conservation at $\{\tau_k\}_1^{\infty}$ leads to the following definitions.

Definition

Admissible trading strategies are predictable processes H which are \hat{Y} -integrable, and for which there exists a constant K > 0:

$$(H \cdot \hat{Y})_t \ge -K$$
, a.s., $\forall t \ge 0$.

A *self-financing* wealth processes in the regulated model is any V^H which satisfies:

$$V_t^H = V_0^H + (H \cdot \hat{Y})_t \qquad \forall t \ge 0.$$

FTAP

NFLVR for \hat{Y} is equivalent to existence of an equivalent local martingale measure (ELMM) for \hat{Y} .

 \hat{Y} obeys the SDE

$$d\hat{Y}_{i,t} = Y_{i,t}\left(b_i(Y_t)dt + \sum_{\nu=1}^d \sigma_{i\nu}(Y_t)dW_t^k\right), \quad 1 \leq i \leq n.$$

Since $\sigma(\cdot)$ is uniformly elliptic, there exists a market price of risk, $\theta := \sigma'_t (\sigma_t \sigma'_t)^{-1} b_t$. When

$$\int_0^T |\theta(Y_t)|^2 dt < \infty, \qquad \text{a.s., } \forall T > 0$$

then we may define the local martingale and supermartingale,

$$Z_t := \mathscr{E}(-(\theta(Y) \cdot W))_t = \exp\left\{-\left(\int_0^t \theta(Y_s) dW_s + \frac{1}{2}\int_0^t |\theta(Y_s)|^2 ds\right)\right\}$$

Theorem

If Z is a martingale, then the measure Q generated from $\frac{dQ}{dP} := Z_T$ is a local martingale measure for \hat{Y} on [0, T].

The usual tools, e.g. the Kazamaki and Novikov criteria, provide sufficient conditions for Z to be a martingale.

Proposition

If Q is an ELMM for \hat{Y} and σ is bounded, then Q is an EMM and there is no relative arbitrage with respect to the market portfolio.

(日) (四) (문) (문) (문)

In particular, this can rule out functionally-generated relative arbitrages with respect to the market.

Standard vs Regulated: Compare/Contrast

Standard Model

Regulated Model

 $dX_t = X_t \star [b(X_t)dt + \sigma(X_t)dW_t]$

- $\mu_t \in \Delta^n_+$
- $X_t \in (0,\infty)^n$
- $V_t^H = V_0 + H \cdot X$
- ELMM if θ(X) is well-behaved
- Diversity can be maintained only through b
- Diversity and no-arbitrage not compatible

 $d\hat{Y}_t = Y_t \star [b(Y_t)dt + \sigma(Y_t)dW_t]$

•
$$\mu_t \in U^{\mu} \subseteq \Delta^n_+$$

•
$$Y_t \in U^x \subseteq (0,\infty)^n$$

•
$$V_t^H = V_0 + H \cdot \hat{Y}$$

- ELMM if θ(Y) is well-behaved
- σ an b may both be constant and Y be diverse
- Diversity and no-arbitrage compatible

- The Model
- Diversity Implies Arbitrage in Standard Models

(日) (四) (코) (코) (코) (코)

- Regulatory Procedure
- Examples of Regulated Market Models

Regulated and Diverse GBM

Take a geometric Brownian motion model

$$dX_{i,t} = X_{i,t} \left[b_i dt + \sum_{\nu=1}^n \sigma_{i\nu} dW_{\nu,t} \right].$$

Impose diversity by choosing the regulatory region

$$U^{\mu} := \{ \pi \in \Delta^n_+ \mid \pi_{(1)} < 1 - \delta \}.$$

- Choose \Re^{μ} to be the split-merge rule.
- The resulting regulated market is viable.
- $\theta = \sigma^{-1}b$ is a constant, so Z is a martingale and NFLVR and no relative arbitrage hold.

Log-Pole Market

- A diverse market where each company behaves like a geometric Brownian motion when it is not the largest [FKK05].
- The volatility σ is constant. The drift $b(\cdot)$ is given by

$$b_i(x) := g_i \mathbb{1}_{\mathscr{Q}_i^c}(x) - rac{c}{\delta} rac{\mathbb{1}_{\mathscr{Q}_i}(x)}{\log\left((1-\delta)/\mu_i(x)
ight)}, \qquad 1 \le i \le n,$$

where $\{g_i\}_1^n$ are non-negative numbers, c is a positive number, and when $x \in \mathcal{Q}_i$, then x_i is the largest of the $\{x_j\}_1^n$ with ties going to the smaller index.

- The largest company is repulsed away from the log-pole-type singularity in its drift at 1δ in μ -space.
- The market is diverse and has constant volatility, so over any horizon there are long-only relative arbitrage portfolios that are functionally generated from the market portfolio.

Regulated Log-Pole Market

- Blocking access to the singularity removes the arbitrage.
- Choose $\delta' \in (\delta, rac{n-1}{n+1})$ and

$$U^{\mu} := \{ \pi \in \Delta^n_+ \mid \pi_{(1)} < 1 - \delta' \}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Set ℜ^µ as the split-merge rule. Then the regulated market is viable and b ↾_{U^x} (·) is bounded.
- This implies that θ is bounded, the Novikov condition is satisfied, and so Z is a true martingale.
- The regulated market is diverse, satisfies NFLVR and no relative arbitrage.

Summary and Outlook

- EMMs (with respect to \hat{Y}) and diversity (with respect to Y) are compatible in this regulatory breakup model.
- The key condition here is that $\theta \upharpoonright_{U^{\times}} (\cdot)$ be well-behaved.
- When companies may split, diversity no longer imposes constraints on *b*.
- The assumption of constant number of companies, i.e. splits and merges occurring simultaneously, may be eliminated. No arbitrage and diversity remain compatible.
- Future work: Incorporate more stylized facts into equity market models. This will lead to further insights and clarifications regarding the feasibility of relative arbitrage with respect to the market portfolio.

- E. Robert Fernholz, *On the diversity of equity markets*, Journal of Mathematical Economics **31** (1999), 393–417.
- Stochastic portfolio theory, first ed., Springer, Berlin, 2002.
- E. Robert Fernholz, Ioannis Karatzas, and Constantinos Kardaras, *Diversity and relative arbitrage in equity markets*, Finance and Stochastics **9** (2005), 1–27.

<ロト <四ト <注入 <注下 <注下 <

Winslow Strong and Jean-Pierre Fouque, Diversity and arbitrage in a regulatory breakup model, Preprint. arXiv:1003.5650 [q-fin.GN] (2010).