Motivation	Copulae and Value-at-Risk	Copula estimation	Empirical Analysis	VaR Applications	Results

Modeling Co-movements and Tail Dependency in the International Stock Market via Copulae

Katja Ignatieva, Eckhard Platen

Bachelier Finance Society World Congress 22-26 June 2010, Toronto

Motivation ●0000	Copulae and Value-at-Risk 0000	Copula estimation	Empirical Analysis 00000000	VaR Applications	Results 00
Linear	Portfolio				

Linear Portfolio

• value of portfolio
$$w = (w_1, \dots, w_d)^\top$$
 of assets $S_t = (S_{1,t}, \dots, S_{d,t})^\top$:

$$V_t = \sum_{j=1}^d w_j S_{j,t}$$

• profit and loss (P&L) function:

$$L_{t+1} = (V_{t+1} - V_t) = \sum_{j=1}^d w_j S_{j,t} (e^{X_{j,t+1}} - 1)$$
$$X_{t+1} = (\log S_{t+1} - \log S_t)$$

• Value-at-Risk at level α :

$$VaR(\alpha) = F_L^{-1}(\alpha)$$

Motivation	Copulae and Value-at-Risk	Copula estimation	Empirical Analysis	VaR Applications	Results
00000					

The VaR depends on the distribution F_X of the risk factor increments $X = (X_1, \ldots, X_d)^{\top}$.

- How to model the dependency among X_1, \ldots, X_d ?
- How does F_X and the dependency among X_1, \ldots, X_d vary over time ?

- the conditional distribution of log-returns is multivariate normal: X_t ~ N(0, Σ_t)
- the covariance matrix Σ_t is estimated by:

$$\widehat{\Sigma}_t = (e^{\lambda} - 1) \sum_{s < t} e^{-\lambda(t-s)} X_{t-s} X_{t-s}^{\mathsf{T}}$$

- decay factor λ (0 < λ < 1) is determined by backtesting
- $\lambda = 0.94$ provides best results (Morgan/Reuters, 1996)
- Drawbacks:
 - does not allow to generate tail dependence
 - does not allow heavy tails

Motivation 000●0	Copulae and Value-at-Risk 0000	Copula estimation	Empirical Analysis	VaR Applications	Results 00
Copula	based approac	h			

• the conditional distribution of log-returns is modelled with Copula *C*:

$$X_t \sim C\{F_{X_1}(x_1), \ldots, F_{X_d}(x_d), \theta_t\}$$

- F_{X_1}, \ldots, F_{X_d} are marginal distributions
- θ_t dependence parameter

 \Downarrow

- Specify marginal distributions
- Specify dependence structure

Motivation 0000●	Copulae and Value-at-Risk 0000	Copula estimation	Empirical Analysis 00000000	VaR Applications	Results 00
Outline	9				

- Motivation \checkmark
- Opulae and Value-at-Risk
- Opula Estimation
- Empirical Analysis
 - Specify marginals
 - Specify dependence structure
- Solution State State
- Onclusion

Motivation 00000	Copulae and Value-at-Risk ●000	Copula estimation	Empirical Analysis 00000000	VaR Applications	Results 00
Conula	٩				

Theorem (Sklar's Theorem)

Let F be a d-dimensional distribution function with marginals $F_1 \dots, F_d$. Then there exists a copula C with

$$F(x_1,...,x_d) = C\{F_1(x_1),...,F_d(x_d)\}$$
(1)

for every $x_1, \ldots, x_d \in \mathbb{R}$. If F_1, \ldots, F_d are continuous, then C is unique. On the other hand, if C is a copula and F_1, \ldots, F_d are distribution functions, then the function F defined in (1) is a joint distribution function with marginals F_1, \ldots, F_d .

Motivation 00000	Copulae and Value-at-Risk 0●00	Copula estimation	Empirical Analysis 00000000	VaR Applications	Results 00
Genera	ting tail depend	dence			

- Elliptical Copulae
 - Gaussian Copula (no tail dependence) $C_{\Psi}^{Ga}(u_1, \ldots, u_d) = \Phi_{\Psi} \{ \Phi^{-1}(u_1), \ldots, \Phi^{-1}(u_d) \}$ where Φ_{Ψ} *d*-dimensional standard normal cdf
 - Student-t Copula (symmetric tail dependence) $C_{\nu,\Psi}^t(u_1,\ldots,u_d) = t_{\nu,\Psi}\{t_{\nu}^{-1}(u_1),\ldots,t_{\nu}^{-1}(u_d)\}$ where $t_d(\nu,0,\Psi)$ is Student-t cdf, Ψ is the correlation matrix, ν df

Archimedean Copulae, Mixture Copula Models

- Clayton (lower tail dependence) $heta \in (0,\infty)$
- Gumbel (upper tail dependence) $heta \in (1,\infty)$
- Survival Copulae

$$C^{*}(u_{1}, u_{2}) = 1 - u_{1} - u_{2} + C(1 - u_{1}, 1 - u_{2})$$

- survival Clayton (upper tail dependence)
- survival Gumbel (low tail dependence)

Motivation 00000	Copulae and Value-at-Risk 00●0	Copula estimation	Empirical Analysis 00000000	VaR Applications	Results 00
Value-a	at-Risk with Co	pulae			

The process $\{X_t\}_{t=1}^T$ of log-returns can be modelled as

$$X_{j,t} = \mu_{j,t} + \sigma_{j,t}\varepsilon_{j,t}$$

with $E[\varepsilon_{j,t}] = 0$, $E[\varepsilon_{j,t}^2] = 1, j = 1, \dots, d$ and

$$E[X_{j,t} \mid \mathcal{F}_{t-1}] = \mu_{j,t}$$

$$E[(X_{j,t}-\mu_{j,t})^2 \mid \mathcal{F}_{t-1}] = \sigma_{j,t}^2$$

where \mathcal{F}_t is the available information at time t.

- $\varepsilon_t = (\varepsilon_{1,t}, \dots, \varepsilon_{d,t})^{\top}$ are standardized *i.i.d.* innovations with a joint distribution function F_{ε}
- ε_j , $j = 1, \ldots, d$ have continuous marginal distributions F_j

Motivation 00000	Copulae and Value-at-Risk 000●	Copula estimation	Empirical Analysis	VaR Applications	Results 00
VaR wi	ith Copulae				

For the log-returns $\{x_{j,t}\}_{t=1}^T$, j = 1, ..., d Value-at-Risk at level α is estimated:

- **(**) determination of the innovations $\hat{\varepsilon}_t$ (e.g. by deGARCHing)
- **2** specification and estimation of marginal distributions $F_j(\hat{\varepsilon}_j)$
- (a) specification of a copula C and estimation of dependence parameter $\boldsymbol{\theta}$
- **(**) simulation of innovations ε and losses L
- **o** determination of $\widehat{VaR}(\alpha)$, the empirical α -quantile of F_L .

Motivation 00000	Copulae and Value-at-Risk 0000	Copula estimation ●0	Empirical Analysis	VaR Applications	Results 00
Copula	estimation				

The distribution of $X = (X_1, ..., X_d)^{\top}$ with marginals $F_{X_j}(x_j, \delta_j)$, j = 1, ..., d is given by:

$$F_X(x_1,\ldots,x_d)=C\{F_{X_1}(x_1;\delta_1),\ldots,F_{X_d}(x_d;\delta_d);\theta\}$$

and its density is given by

$$f(x_1, \ldots, x_d; \delta_1, \ldots, \delta_d, \theta)$$

= $c\{F_{X_1}(x_1; \delta_1), \ldots, F_{X_d}(x_d; \delta_d); \theta\} \prod_{j=1}^d f_j(x_j; \delta_j)$

where *c* is a copula density.

Motivation 00000	Copulae and Value-at-Risk 0000	Copula estimation ○●	Empirical Analysis	VaR Applications	Results 00
Copula	estimation				

• For a sample of observations $\{x_t\}_{t=1}^T$ and $\vartheta = (\delta_1, \dots, \delta_d, \theta)^\top \in \mathbb{R}^{d+1}$ the likelihood function is

$$L(\vartheta; x_1, \ldots, x_T) = \prod_{t=1}^T f(x_{1,t}, \ldots, x_{d,t}; \delta_1, \ldots, \delta_d, \theta)$$

and the corresponding log-likelihood function $\ell(\vartheta; x_1, \dots, x_T) = \sum_{t=1}^T \log c\{F_{X_1}(x_{1,t}; \delta_1), \dots, F_{X_d}(x_{d,t}; \delta_d); \theta\} + \sum_{t=1}^T \sum_{j=1}^d \log f_j(x_{j,t}; \delta_j)$

- Estimation methods:
 - Exact Maximum Likelihood
 - Inference for Margins
 - Canonical Maximum Likelihood

Motivation 00000	Copulae and Value-at-Risk	Copula estimation	Empirical Analysis •0000000	VaR Applications	Results 00
Data S	et				

Data used

- for regional indices
 - S&P 500
 - Dow Jones EURO STOXX 50
 - FTSE 100
 - TOPIX

• Sample period from 01 January 1987 to 10 March 2006

Motivation Copulae and Value-at-Risk Copula estimation Oco VaR Applications Results Oco Specify Marginal Distribution

Symmetric generalized hyperbolic (SGH) family of distributions:

$$f_X(x) = \frac{1}{\delta\sigma K_{\lambda}(\bar{\alpha})} \sqrt{\frac{\bar{\alpha}}{2\pi}} \left(1 + \frac{x^2}{(\delta\sigma)^2} \right)^{\frac{1}{2}(\lambda - \frac{1}{2})} K_{\lambda - \frac{1}{2}} \left(\bar{\alpha} \sqrt{1 + \frac{x^2}{(\delta\sigma)^2}} \right)$$

- $K_{\lambda}(\cdot)$ Bessel function
- λ and $\bar{\alpha}$ are the shape parameters: $\bar{\alpha} \neq 0$ if $\lambda \geq 0$ and $\delta \neq 0$ if $\lambda \leq 0$
 - Variance Gamma (VG) distribution: $\bar{lpha}=0$ and $\lambda>0$
 - Student-t distribution: $\bar{\alpha} = 0$ and $\lambda < 0$ (consider $\lambda \leq -1$ for $\nu = -2\lambda \geq 2$, std.dev. $\sigma_X = \sigma \sqrt{\frac{\nu}{\nu-2}}$)
 - *Hyperbolic* (HYP) distribution: $\lambda = 1$
 - Normal Inverse Gaussian (NIG) distribution: $\lambda = -0.5$

Motivation	Copulae and Value-at-Risk	Copula estimation	Empirical Analysis	VaR Applications	Results
00000	0000	00	00000000	000	00
c · c		111 A.A.			

Specify Marginal Distribution

Figure: Logarithm of the histogram for the pooled data vs. normal density (left panel) and Student-t density (right panel). Pooled data is taken for indices S&P 500, Dow Jones EURO STOXX 50, FTSE100, TOPIX from 01 January 1987 to 10 March 2006. Estimated number of degrees of freedom for the Student-t distribution is $\nu = 3.15$.

 Goodness-of-fit testing: Anderson-Darling (AD) distance and the Kolmogorov-Simirnov (KS)

$$AD = \frac{\sup_{x \in \mathcal{R}} |F_s(x) - \hat{F}(x)|}{\sqrt{\hat{F}(x)(1 - \hat{F}(x))}},$$

$$KS = \sup_{x \in \mathcal{R}} |F_s(x) - \hat{F}(x)|,$$

- $F_s(x)$ denotes the empirical sample distribution
- $\hat{F}(x)$ is the estimated distribution.

Motivation Copulae and Value-at-Risk Copula estimation Empirical Analysis OOOO VaR Applications Results OOO OOO OOO OOO OOO OOO OOO

Specify Marginal Distribution

Figure: Box-plots for Anderson-Darling distance for modelling marginal distributions of the S&P 500, Dow Jones EURO STOXX 50, FTSE100, TOPIX with alternative residual distributions.

Model	Soloction: stat				
Motivation 00000	Copulae and Value-at-Risk 0000	Copula estimation	Empirical Analysis 00000€00	VaR Applications	Results 00

• Akaike information criterion (AIC):

$$AIC = -2L(\alpha; x_1, \ldots, x_T) + 2q$$

favors:

- Student-t copula vs. mixture Gumbel & survival Gumbel for two-constituents portfolios where TOPIX is not included
- Student-t copula vs. mixture Gumbel & survival Gumbel model for a 3-constituent portfolio (S&P 500, DJ EURO STOXX 50, FTSE 100)
- Mixture Clayton & Gumbel model vs. Student-t copula for a 4-constituent portfolio (S&P 500, DJ EURO STOXX 50, FTSE 100, TOPIX)

Motivation 00000	Copulae and Value-at-Risk 0000	Copula estimation	Empirical Analysis 000000●0	VaR Applications	Results 00
Time-v	arving estimation	on			

- Static case: estimate the dependence parameter at once based on the whole series of observations.
- Time-varying case:
 - Estimate the dependence parameter by using subsets of size n of log-returns, that is a moving window of size n, $\{\widehat{X}_t\}_{t=s-n+1}^s$ scrolling in time for s = n, ..., T
 - It generates a time-series for the dependence parameter $\{\widehat{\theta}_t\}_{t=n}^T$ and time-series of VaR: $\{\widehat{VaR}_t\}_{t=n}^T$.

 Motivation
 Copulae and Value-at-Risk
 Copula estimation
 Empirical Analysis
 VaR Applications
 Results

 00000
 000
 000
 000
 000
 000
 000

Student-t dependence parameter time-varying

Dependence parameter for (S&P 500, DJ ES 50, FTSE 100, TOPIX) using Student-t copula, Student-t marginals

Figure: Copula dependence parameter $\hat{\theta}$ estimated for a 3-constituent portfolio (S&P 500, Dow Jones EURO STOXX 50, FTSE 100) (upper panel) and 4-constituent portfolio constructed of (S&P 500, Dow Jones EURO STOXX 50, FTSE 100, TOPIX) (lower panel) using Student-t copula with Student-t marginals.

Motivation 00000	Copulae and Value-at-Risk	Copula estimation	Empirical Analysis	VaR Applications ●00	Results 00
VaR for	r portfolio				

 The one-day VaR at time t and significance level α is given by the α-quantile of the distribution of the P&L:

$$VaR_t(\alpha) = F_{L_{t+1}}^{-1}(\alpha),$$

• The expected shortfall (ES) at time t is:

$$ES_t(\alpha) = \frac{1}{N_{t+1}} \sum_{i=1}^{N_{t+1}} L_{t+1,i} \mathbf{1}_{\{L_{t+1,i} \le VaR_t(\alpha)\}},$$

• N_{t+1} is the number of simulated portfolio returns with value less or equal than $VaR_t(\alpha)$ and $L_{t+1,i}$ is the *i*th outcome of the N_{t+1} samples.

Motivation 00000	Copulae and Value-at-Risk	Copula estimation	Empirical Analysis	VaR Applications	Results 00
Backte	sting				

Compare the estimated values for the VaR with the true realizations $\{L_t\}$ of the P&L function the *exceedances ratio* is given by

$$\hat{\alpha} = \frac{1}{T - w} \sum_{t=w}^{T} \mathbf{1} \{ L_t < \widehat{VaR}_t(\alpha) \}$$

Table: Exceedances ratios

		(S&P 5	00, Dow Jone	s EURO STO	XX 50, FTSE	100)
Copula	0.1	0.05	0.01	0.005	0.001	$\sum_{\alpha} ((\alpha - \hat{\alpha})/\alpha)$
Student-t	0.094180	0.043981	0.004442	0.001111	0.000444	1.242913
Gumbel & surv. Gumbel	0.125499	0.077521	0.021990	0.011106	0.002221	4.788473
Riskmetrics	0.106525	0.063471	0.024190	0.016866	0.009099	73.31631
		(S&P 500, I	Dow Jones EL	JRO STOXX	50, FTSE 100	, TOPIX)
Copula	0.1	0.05	0.01	0.005	0.001	$\sum_{\alpha} ((\alpha - \hat{\alpha})/\alpha)^{\alpha}$
Student-t	0.096179	0.041315	0.003110	0.000888	0.000444	1.491430
Clayton & Gumbel	0.127277	0.062639	0.007552	0.024621	0.000222	1.064764
Riskmetrics	0.102308	0.058145	0.017310	0.010874	0.004882	17.01467

00000		00	00000000	00
Catima a	$+ ad \sqrt{aD}$			

Estimated VaR

P&L and VaR for portfolio (S&P 500, DJ ES 50, FTSE 100) using Mix. Gumbel & surv. Gumbel, Student-t marginals

Figure: P&L, VaR estimated at different confidence levels using Student-t copula (upper panel) and mixture model Gumbel & survival Gumbel with (lower panel) for a 3-constituent portfolio of (S&P 500, Dow Jones EURO STOXX 50 FTSE 100); Student-t marginals; exceedances at level $\alpha = 0.01$.

Motivation 00000	Copulae and Value-at-Risk 0000	Copula estimation	Empirical Analysis 00000000	VaR Applications	Results ●0
Summa	arize Results				

Summarize Results:

- Student-t assumption allows to better capture the dependent extreme values which can be observed in index log-returns
- Log-returns of the indices follow the Student-t distribution with about four degrees of freedom
- Dependence structure:
 - Student-t is preferred over mixture Gumbel & surv. Gumbel for (S&P 500, Dow Jones EURO STOXX 50, FTSE 100)
 - Mixture Clayton & Gumbel is preferred over Studnet-t for (S&P 500, Dow Jones EURO STOXX 50, FTSE 100, TOPIX) providing the best backtesting results.

Thank	you very much				
Motivation 00000	Copulae and Value-at-Risk 0000	Copula estimation	Empirical Analysis 00000000	VaR Applications	Results ○●

Thank you very much for your attention!