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Introduction Problem Formulation

Problem Formulation

Consider a liquid market consisting of an underlying price process
(St)t≥0 and prices of European Call options of all strikes K and
maturities T : (

{Ct(T ,K )}T ,K>0

)
t≥0

Want to describe a large class of market models: arbitrage-free
stochastic models (say, given by SDE’s) for time-evolution of the
market, S and {C (T ,K )}T ,K>0, such that

1 one can start the model from ”almost” any initial condition, which is
the set of currently observed market prices;

2 one can prescribe ”almost” any dynamics for the model provided it
doesn’t contradict the no-arbitrage property.
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Introduction Problem Formulation

Motivation

Many Call Options have become liquid ⇒ need for financial models
consistent with the observed option prices.

Common stochastic volatility models (BS, Hull-White, Heston, etc.)
are unable to reproduce the observed call prices of all strikes and
maturities (fit the implied volatility surface).
Local volatility models can fit option prices better.

However, the above models have to be recalibrated to fit option
prices at different times ⇒ they cannot be used to describe time
evolution of call price surface.
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Introduction Literature Review

Preceding Results

E. Derman, I. Kani (1997): idea of ”dynamic local volatility” for
continuum of options.

P. Schönbucher, M. Schweizer, J. Wissel (1998-2008): consider fixed
maturity and all strikes, fixed strike and all maturities, finitely many
strikes and maturities (using mixture of Implied and Local Volatilities).

J. Jacod, P. Protter, R. Cont, J. da Fonseca, V. Durrleman
(2002-2009): study dynamics of Implied Volatility or option prices
directly.

Sergey Nadtochiy (University of Oxford) Tangent Lévy Models Bachelier Congress 4 / 22



General methodology

Direct approach

First, need a reasonable notion of ”price” in the model:
let’s agree that pricing is linear, that is, prices of all contingent
claims are given by discounted conditional expectations of their
payoffs under some measure (assume discount rate is one).

It seems natural to model ”observables” directly under pricing
measure: choose a driving Brownian motion B and a Poisson random
measure N (which represent the background stochastic factors) and
prescribe dynamics of (infinite-dimensional) process of option prices
through its semimartingale characteristics

dCt = αtdt + βt · dBt +

∫
γt(x) [N(dx , dt)− ν(dx , dt)]
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General methodology

Consistency conditions

Need to make sure these dynamics, indeed, produce option prices:
each resulting Ct(T ,K ) should coincide with corresponding
conditional expectation.

⇓

Consistency conditions on {α, β, γ}
These conditions should be explicit! A perfect example is

F (αt , βt , γt) = 0,

where F is known explicitly, and the above equation can be solved for
some of the arguments.
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General methodology

Direct approach: difficulties

Turns out, the above direct approach (prescribing dCt directly) results in
way too complicated consistency conditions...
Why does it happen?

Recall that the definition of call prices as expectations implies certain
”static no-arbitrage properties”: Ct(T ,K ) has to be nonnegative,
convex in K , converge to payoff, etc. These properties have to be
preserved by the dynamics, which is reflected in the consistency
conditions - hence the complexity.

Static no-arbitrage conditions define a manifold in space of functions
of two variables. Therefore, the ”consistent” set of parameters can
only be of the form

α(Ct , t, ω), β(Ct , t, ω), γ(Ct , t, ω)

Need to analyze resulting SDE in an ”infinite-dimensional manifold”...
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General methodology

Code-books

Let’s linearize this manifold: find a one-to-one mapping of the set of
feasible Call price surfaces (or its large enough subset) into some
open set in a linear space. And consider dynamics in this linear space
instead.

In general, code-book for a given set of derivatives is a one-to-one
mapping defined on a family of their feasible price sets.

Examples of code-books include:

Yield curve for Treasury Bonds market.
Implied correlation for CDO tranches.
Implied volatility for Call options

Recall that we require certain properties from the code-book. In
particular, implied vol will not work.
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General methodology

Local Volatility as a code-book

B.Dupire (1994) deduced that, if

dS̃T = S̃Ta(T , S̃T )dWT , S̃0 = St , (1)

then

a2(T ,K ) :=
2 ∂
∂T C (T ,K )

K 2 ∂2

∂K2 C (T ,K )
(2)

We can use (2) to recover Local Volatility ”a” from market prices of
Call options, and

we can use (1) to generate a (feasible!) Call price surface from a
given Local Vol (and current level of underlying St).

Only some regularity and nonnegativity is required from surface a(., .)!
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Tangent models

Other code-books

When can we use Local Vol as a (static) code-book for Call prices?

I. Gyongy: it is possible if underlying follows regular enough Ito
process.

Can we develop a general approach to construction of code-books?

Local Volatility code-book can be interpreted as follows: we choose a
model from the class of diffusion models, such that it produces the
correct (market-given) call prices, and the corresponding Local Vol
gives the code-book value.
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Tangent models

Other code-books

When can we use Local Vol as a (static) code-book for Call prices?

I. Gyongy: it is possible if underlying follows regular enough Ito
process.

Can we develop a general approach to construction of code-books?

Local Volatility code-book can be interpreted as follows: we choose a
model from the class of diffusion models, such that it produces the
correct (market-given) call prices, and the corresponding Local Vol
gives the code-book value.

Sergey Nadtochiy (University of Oxford) Tangent Lévy Models Bachelier Congress 10 / 22



Tangent models

Constructing convenient code-books

Consider a class of ”simple” financial models for the underlying,
parameterized by θ ∈ Θ

M = {M(θ)}θ∈Θ

For example, M can be a class of diffusion models parameterized by

Local Vol and initial value: θ =
(

a(., .), S̃0

)
Each model M(θ) produces Call prices C θ(T ,K ). If the mapping
θ 7→ C θ is invertible, we obtain a code-book associated with M.

Of course, Θ needs to be an open set in a linear space - but usually
this can be achieved.

We have rediscovered calibration, but with a proper meaning now!
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Tangent models

Tangent models

Construct market model by prescribing time-evolution of θt , and
obtain Ct as an inverse of the code-book transform.

Recall that ”feasibility” of call prices means there is a ”true” (but
unknown) martingale model for underlying process S in the
background.

If at time t there exists θt ∈ Θ, such that C θt coincides with ”true”
Call price surface Ct , we say that the ”true” model admits a
tangent model from class M at time t.

In the above notation, process (θt)t≥0 is consistent with a ”true”
model for S if M(θt) is tangent to this ”true” model at any time t.

Note the analogy with tangent vector field in differential geometry.
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Tangent Lévy Models

Lévy-based code-book

Consider a model M(κ, s), given by

Exponential of a pure jump additive (time-inhomogeneous Lévy) process

S̃T = s +

∫ T

t

∫
R

S̃u−(ex − 1) [N(dx , du)− ν(dx , du)] ,

where N(dx , du) is a Poisson random measure associated with jumps of
log(S̃), given by its compensator

ν(dx , du) = κ(u, x)dxdu

equipped with its natural filtration.

Thus, we obtain the set of ”simple” models M = {M(κ, s)}, with κ
changing in a space of (time-dependent) Lévy densities.
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Tangent Lévy Models

Lévy density as a code-book

Notice that Cκ,s(T , ex) satisfies a PIDE analogous to the Dupire’s
equation.

Introduce ∆κ,s(T , x) = −∂xCκ,s(T , ex), and deduce an initial-value
problem for ∆κ,s from the PIDE for call prices.

Take Fourier transform in ”x” to obtain ∆̂κ,s(T , ξ). The initial-value
problem in Fourier domain can be solved in closed form, which gives
us an explicit expression for ∆̂κ,s in terms of κ and s. This expression
can be inverted to obtain κ from ∆̂κ,s and s.

Thus, given s (= St), we have a bijection: Cκ,s ↔ ∆κ,s ↔ ∆̂κ,s ↔ κ.
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Tangent Lévy Models

Tangent Lévy Models

We say that (St)t∈[0,T̄ ] and (κt)t∈[0,T̄ ] form a tangent Lévy model if the
following holds under the pricing measure:

1 Cκt ,St = Ct at each t.

2 Process S is a martingale, and κt ≥ 0.

3 S and κ evolve according to
St = S0 +

∫ t
0

∫
R Su−(exp (γ(ω, u, x))− 1)(N(dx , du)− ρ(x)dxdu),

κt = κ0 +
∫ t

0 αudu +
∑m

n=1

∫ t
0 β

n
udBn

u ,

where

B =
(
B1, . . . ,Bm

)
is a m-dimensional Brownian motion,

N is a Poisson random measure with compensator ρ(x)dxdu,

γ(ω, t, x) is a predictable random function,

processes α and {βn}mn=1 take values in a corresponding function space.
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Tangent Lévy Models

Consistency conditions

Given that 2 and 3 hold, 1 is equivalent to the following pair of conditions:

1 Drift restriction:

αt(T , x) = Q(βt ; T , x) :=

−e−x
m∑

n=1

∫
R

∫ T

t
∂2
y2ψ

βn
t (u; y) du

[
ψβ

n
t (T ; x − y)

− (1− y∂x)ψβ
n
t (T ; x)

]
−
∫ T

t
ψβ

n
t (u; y) du ψβ

n
t (T ; x − y) dy

2 Compensator specification: κt(t, x)dxdt = (ρ (x) dxdt) ◦ γ−1(t, .)

where ψβ
n
t (T , x) = −ex

∫ sign(x)∞
x βnt (T , y)dy
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Existence of Tangent Lévy Models

Specifications

Choose ρ(x) := e−λ|x |
(
|x |−1−2δ ∨ 1

)
, with some fixed λ > 1 and

δ ∈ (0, 1).

Consider κ of the form: κ(T , x) = ρ(x)κ̃(T , x), where κ̃ is an
element of the space of continuous functions, equipped with usual
”sup” norm.

Then α̃t = αt/ρ and β̃t = βt/ρ, and we have

d κ̃t = α̃tdt + β̃t · dBt ,

stopped at τ0 = inf
{

t ≥ 0 : infT∈[t,T̄ ],x∈R κ̃t(T , x) ≤ 0
}

.

Then, κt := ρκ̃t∧τ0 is nonnegative and changes on an open set in a
linear space!

There exists a (tractable) specification γ(t, x) := Γ(κ̃t ; x) which
fulfills the ”compensator specification” automatically.
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Existence of Tangent Lévy Models

Local existence


St = S0 +

∫ t
0

∫
R Su−(exp (Γ(κ̃u; x))− 1)(N(dx , du)− ρ(x)dxdu)

κ̃t = κ̃0 +
∫ t∧τ0

0 Q(ρβ̃u)du +
∑m

n=1

∫ t∧τ0

0 β̃nudBn
u

(3)

For any given Poisson random measure N, with compensator ρ(x)dxdt,
any Brownian motion B =

(
B1, . . . ,Bm

)
independent of N, and any

progressively measurable square integrable stochastic processes
{
β̃n
}m

n=1
(with values in corresponding function space) independent of N, there
exists a unique pair (St , κ̃t)t∈[0,T̄ ] of processes satisfying (3). The pair
(St , ρκ̃t∧τ0)t∈[0,T̄ ] forms a tangent Lévy model.
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Existence of Tangent Lévy Models

Example of a tangent Lévy model

Choose m = 1, and β̃t(T , x) = ξtC (x), where C (x) is some fixed
function (satisfying some technical conditions), and

ξt = ξ(κ̃t) =
σ

ε

(
inf

T∈[t,T̄ ],x∈R
κ̃t(T , x) ∧ ε

)
Then ”drift restriction” simplifies to

Q(ρβ̃t ; T , x) = − e−x

ρ(x)

∫
R

∫ T

t

∂yψ
ρβ̃t (u, y) du ∂xψ

ρβ̃t (T , x − y)

−
∫ T

t

ψρβ̃t (u, y) du ψρβ̃t (T , x − y) dy = ξ2(κ̃t) (T − t ∧ T ) A(x)

and

κ̃t(T , x) = κ̃0(T , x) + (T − t ∧ T ) A(x)

∫ t

0

ξ2(κ̃u)du + C (x)

∫ t

0

ξ2(κ̃u)dBu
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Existence of Tangent Lévy Models

Conclusions

We have described a general approach to constructing market
models for Call options: find the right code-book by choosing a
space of tangent models, prescribe time-evolution of the code-book
value via its semimartingale characteristics and analyze consistency
of resulting dynamics.

This approach was illustrated by ”Tangent Lévy Models” - a large
class of market models, explicitly constructed and parameterized by β̃!

Proposed market models allow one to start with observed call price
surface and model explicitly its future values under the risk-neutral
measure. For example, they provide a flexible framework for
simulating the (arbitrage-free) evolution of implied volatility surface.
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Existence of Tangent Lévy Models

Further extensions

One needs to consider β̃t = β̃(κ̃t) and solve the resulting SDE for κ̃t ,
as shown in the example, in order to ensure that κ̃ stays positive.

There exists an extension of the Lévy-based code-book, the pair
(”Lévy density”, ”instantaneous volatility”), which allows the
”true” underlying to have a non-trivial continuous martingale
component.
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Estimation of TL Model

Estimated coefficients C 1 and C 2, as functions of x = log(K/S).
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