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Motivation p 3/25

• A number of investment banks are reputed to have lost significant amounts of money on their

variance derivatives books in Autumn 2008 as stock indices moved by seven per cent or more

in a day.

• This makes very pertinent the question of how to optimally hedge variance derivatives.

• Nearly all papers on variance swaps have focussed on the log-contract replication approach

(eg. Neuberger (1990), (1994), (1996), Dupire (1993), Demeterfi et al. (1999), Carr and Lee

(2008)).

• This approach works by noting that, under the assumption that the stock price process has

continuous sample paths, the payoff of a (continuously monitored) variance swap can be

perfectly hedged by a static position of being long 2 log-forward-contracts and by a dynamic

position of being short 2/F (t, T ) units of forward contracts on the stock, where

F (t, T ) ≡ F (t) is the forward stock price, at time t, to time T .

• We will henceforth refer to this approach as the “standard 2 + 2 log-contract replication”

approach.
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Motivation 2 p 4/25

• Main assumption: Continuous sample paths i.e. no jumps.

• But every empirical study (even before Autumn 2008) shows that stocks and stock indices

exhibit jumps in their dynamics and that jumps are necessary to fit implied vol. surfaces, etc.

• The “standard 2 + 2 log-contract replication” approach is often described as

model-independent (which is true in some ways), but actually it assumes away that which is

empirically most important (i.e. jumps).

• Can we do better? This is the subject of my talk.

• Actually, we can do much better - and our results have a considerable degree of robustness to

model (mis-)specification.
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Notation p 5/25

• We define the initial time (today) by t0 ≡ 0 and denote calendar time by t, t ≥ t0. Consider a

market, which we assume to be free of arbitrage. There is a stock whose forward price, at time

t, to time T , is F (t, T ). We assume that interest-rates and dividend yields are deterministic

and finite.

• The absence of arbitrage guarantees the existence of a risk-neutral equivalent martingale

measure. However, as we will utilise Lévy processes, the market is incomplete and, hence, the

risk-neutral equivalent martingale measure is not unique. We will assume that one such

measure Q has been fixed on a filtered probability space (Ω,F , {Ft}t≥t0,Q). We denote by

EQ
t [] the conditional expectation, under Q, at time t.

• We construct the stock price process by assuming that the log of the stock price is a

time-change of (possibly, multiple) Lévy processes.
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Notation 2 p 6/25

• We have K independent Lévy processes denoted by X
(k)
t , for k = 1, 2, . . . , K, satisfying

X
(k)
t0

= 0. We assume, for each k = 1, 2, . . . , K, that we mean-correct X
(k)
t so that exp(X

(k)
t )

is a (non-constant) martingale with respect to the natural filtration generated by X
(k)
t i.e.

that EQ
t0

[exp(X
(k)
t )] = exp(X

(k)
t0

) = 1 for all t ≥ t0.

• Lévy-Khinchin formula, for each k, implies we can write the (mean-corrected) characteristic

exponent ψ
(k)

X (z) in the form:

− ψ(k)

X (z) = −1

2
σ(k) 2(z2 + iz) +

∫ ∞
−∞

(exp(izx)− 1− iz(exp(x)− 1))ν(k)(dx).

For future reference, we define, for each k, the deterministic quantity:

m
(k)
X (iz) ≡ iψ

(k)′

X (z),

where ′ denotes differentiation i.e. ψ
(k)′

X (z) ≡ ∂ψ
(k)

X (z)/∂z, ψ
(k)′′

X (z) ≡ ∂2ψ
(k)

X (z)/∂z2, and

further, for n ≥ 3, ψ
(k),(n)

X (z) ≡ ∂nψ
(k)

X (z)/∂zn.
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Notation 3 p 7/25

• We assume that we have K (possibly, deterministic) non-decreasing, continuous time-change

processes denoted by Y
(k)
t , for each k = 1, 2, . . . , K. We normalise so that Y

(k)
t0

= t0 ≡ 0.

• In general, Y
(k)
t may be correlated with X

(`)
t , for any ` = 1, 2, . . . , K.

• Our assumption, for example, allows Y
(k)
t to be of the form Y

(k)
t =

∫ t
t0
y

(k)
s ds where the

activity rate y
(k)
t (which must be non-negative) follows, for example, a Heston (1993)

square-root process, a non-Gaussian OU process (Barndorff-Nielsen and Shephard (2001)) or

it could follow the Heston (1993) plus jumps process of Duffie et al. (2000). In the latter two

cases, y
(k)
t is discontinuous but Y

(k)
t is always continuous.

• We will sometimes refer to an important special case when the time-change processes are

“common” i.e. Y
(k)
t = Yt, say, for all k.
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Stock price process p 8/25

• For each k = 1, 2, . . . , K, we time-change the Lévy process X
(k)
t by Y

(k)
t to get a process

X
(k)

Y
(k)
t

which we henceforth denote by X
(k)
Yt

, with X
(k)
Yt0

= 0.

• The forward stock price F (t, T ), at time t, to time T , is assumed to have the following

dynamics:

F (t, T ) = F (t0, T ) exp(

K∑
k=1

X
(k)
Yt

).

Note that F (t, T ) is a martingale, under Q, in the enlarged filtration generated by

{X(1)
t ∪X

(2)
t ∪ . . . ∪X

(K)
t ∪ Y (1)

t ∪ Y
(2)
t ∪ . . . ∪ Y

(K)
t }.
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Important result p 9/25

• We have already seen that with continuous sample paths, the price of a continuously

monitored variance swap equals minus two times the price of a log-forward-contract.

• In general, i.e. with jumps, the price V S(t0, T ), at time t0, of (the floating leg of) a

continuously monitored variance swap maturing at time T equals −QX times the price

LFC(t0, T ), at time t0, of a log-forward-contract paying log(F (T, T )/F (t0, T )) at time T ,

where

−QX ≡
V S(t0, T )

LFC(t0, T )

≡
∑K

k=1 ψ
(k)′′

X (0)EQ
t0

[Y
(k)
T − Y (k)

t0
]∑K

k=1m
(k)
X (0)EQ

t0
[Y

(k)
T − Y (k)

t0
]
. Note that QX > 0, since m

(k)
X < 0, for all k.

Proof: Peter Carr’s talk in 25 minutes time, Carr and Lee (2009), Crosby et al. (2010).

• In particular, there is no up-front cost of entering into a position of being long the floating leg

of one variance swap and being long QX log-forward-contracts.

• When the time-change processes are “common” i.e. Y
(k)
t = Yt, say, for all k, then QX does not

depend on Yt in any way.
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Self-financing trading strategy p 10/25

• Basic idea: We construct a self-financing trading strategy as follows: We commence the

strategy at time t0 ≡ 0. At each time t ∈ [t0, T ], we hold a long position in one variance swap

and in ΘLFC
t log-forward-contracts. Additionally, we trade dynamically in the underlying

stock. Specifically, for all t ∈ [t0, T ], we hold a short position in ∆t ≡ φt/F (t−, T ) units of

forward contracts on the stock.

• We compute the variance, under Q, of the time T P+L of the self-financing trading strategy

i.e. the variance of the residual hedging error.

• It is a non-negative quadratic function of ΘLFC
t and φt. Minimise by differentiating w.r.t.

portfolio weight and setting the resulting equation to zero.

• Can do this analytically (does not need Monte Carlo - see paper for full details)
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Self-financing trading strategy 2 p 11/25

• For simplicity, I’ll just write the equations with deterministic time-changes.

• The P+L of the self-financing strategy, at time T , is:

ε(T ) ≡
∫ T

t0

K∑
k=1

y(k)
u

∫ ∞
−∞

x2
(
µ(k)(dx)− ν(k)(dx)

)
du

+

∫ T

t0

ΘLFC
u

K∑
k=1

y(k)
u

(
σ(k)dW (k)

u +

∫ ∞
−∞

x
(
µ(k)(dx)− ν(k)(dx)

)
du
)

−
∫ T

t0

∆uF (u−, T )

K∑
k=1

y(k)
u

(
σ(k)dW (k)

u +

∫ ∞
−∞

(exp(x)− 1)
(
µ(k)(dx)− ν(k)(dx)

)
du
)

=

∫ T

t0

K∑
k=1

y(k)
u

∫ ∞
−∞

(
x2 + ΘLFC

u x− φu(exp(x)− 1)
)(
µ(k)(dx)− ν(k)(dx)

)
du

+

∫ T

t0

(
ΘLFC
u − φu

) K∑
k=1

y(k)
u σ(k)dW (k)

u , using φt ≡ ∆tF (t−, T ).
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Variance of residual hedging error p 12/25

• From Ito’s isometry formula, the variance, under Q, of the time T P+L of the self-financing

strategy is:

V arQ
t0

[ε(T )] ≡
K∑
k=1

EQ
t0

[
(∫ T

t0

y(k)
u (ΘLFC

u − φu)2σ(k) 2du
)

+
(∫ T

t0

y(k)
u

∫ ∞
−∞

(
x2 + ΘLFC

u x− (φu(exp(x)− 1))
)2
ν(k)(dx)du

)
]

=

K∑
k=1

EQ
t0

[

∫ T

t0

y(k)
u

(
φ2
u(−ψ

(k)

X (−2i))

− 2φu

(
ΘLFC
u (m

(k)
X (1)−m(k)

X (0)) + (ψ
(k)′′

X (−i)− ψ(k)′′

X (0))
)

− ψ
(k),(4)

X (0)− 2ΘLFC
u iψ

(k),(3)

X (0) + ΘLFC 2
u ψ

(k)′′

X (0)
)
du].

This is a non-negative quadratic function of φu and ΘLFC
u . We minimise by differentiating with

respect to φu and ΘLFC
u and setting to zero.
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Hedging strategies p 13/25

• We hedge a (static) long position in one variance swap.

• We consider two types of hedging strategy labelled A and B.

• The first type of hedging strategy (labelled hedging strategy A) consists of a static position in

ΘLFC
t = QX log-forward-contracts and a dynamic short position in ∆t ≡ φt/F (t−, T ) forward

contracts on the underlying stock. The static position QX is motivated by slide “Important

result” (but is not necessarily optimal).

• The second type of hedging strategy (labelled hedging strategy B) consists of a, possibly,

dynamic position in ΘLFC
t log-forward-contracts and a dynamic short position in

∆t ≡ φt/F (t−, T ) forward contracts on the underlying stock.
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Hedging strategy A p 14/25

• For hedging strategy A, we have ΘLFC
t = QX (by design) and we find that the optimal value

∆̂t which minimises the variance is:

∆̂t ≡
φ̂t

F (t−, T )
, where

φ̂t =

∑K
k=1 y

(k)
t (ψ

(k)′′

X (−i)− ψ(k)′′

X (0)) + QX

∑K
k=1 y

(k)
t (m

(k)
X (1)−m(k)

X (0))

−
∑K

k=1 y
(k)
t ψ

(k)

X (−2i)
.

• Sanity check: For Brownian motion with volatility σ (wlog), ψ
(k)

X (z) = 1
2σ

2(z2 + iz),

m
(k)
X (0) = −1

2σ
2, ψ

(k)′′

X (0) = σ2. Implies: QX = − σ2

−1
2σ

2 = 2.

• Further, ψ
(k)

X (−2i) = −σ2, which implies: φ̂t = 2.

• This agrees with standard results i.e. the standard 2 + 2 log-contract replication approach

naturally appears as a special case of our analysis. Further, for this special case, substituting

back in, the variance V arQ
t0

[ε(T )] is identically equal to zero.

• ⇒ perfect hedge.
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Hedging strategy A: Special case of a compound Poisson process p 15/25

• For hedging strategy A, we also consider the special case of a compound Poisson process with

a fixed jump amplitude a1 (with no diffusion component). Substituting in the relevant

characteristic function, we find:

• QX = a2
1/(exp(a1)− 1− a1).

• φ̂t = a2
1/(exp(a1)− 1− a1).

• Further, for this special case, substituting back in, the variance is identically equal to zero.

• ⇒ perfect hedge.

• In the limit that a1 → 0, we find:

φ̂t = QX =
a2

1

(exp(a1)− 1− a1)
≈ 2

(1 + (a1/3))
.

We see that when a1 is small but positive, φ̂t = QX is just below two and when a1 is small but

negative, φ̂t = QX is just above two. In either case, as a1 → 0, φt → 2, which is the same as

the case of Brownian motion.
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Hedging strategy B p 16/25

• For hedging strategy B, we optimise over ΘLFC
t (the position in log-forward-contracts) and

over φt (recall ∆t ≡ φt/F (t−, T ) is the position in forward contracts on the underlying stock).

• It turns out that, in the special case that the time-changes are “common” (ie the same for all

Lévy processes in the sense that Y
(k)
t = Yt, say, for all k, - which must be true if K = 1), then

the position in log-forward-contracts is constant in time i.e. it is a static buy-and-hold position

(which is important as dynamic positions would incur significant transactions costs).

• Further, in this special case, φt and ΘLFC
t do not depend upon the time-change process in any

way ⇒ considerable degree of robustness to model (mis-)specification.

16



Numerical examples p 17/25

• We now consider some numerical examples which compare three possible hedging strategies.

• The first hedging strategy is the standard 2 + 2 log-contract replication approach (sets φt = 2,

ΘLFC
t = 2).

• The second and third are hedging strategies A and B respectively which we described earlier.

• In the examples, we always work with a “common” time-change. Hence, we have constant

values of φt, ΘLFC
t (to repeat, this has the additional benefit of robustness to transactions

costs).

• We consider the hedging of a long position in one variance swap with maturity T = 0.5.

• We consider two sets of numerical results - each with six different sets of process parameters.

The first uses combinations of a Brownian motion and upto three compound Poisson processes

with fixed jump amplitudes together with a deterministic time-change. The second uses

stochastically time-changed CGMY processes (there are more results in the paper).
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Results 1 p 18/25

• Table 1.

We consider six combinations (labelled params 1 to params 6) of a Brownian motion and upto

three compound Poisson processes, with intensity rates λ1, λ2 and λ3 and with fixed jump

amplitudes a1, a2 and a3. We assume a common, deterministic time-change (not necessarily of

the form Y
(k)
t = t).

Skewness

λ1 a1 λ2 a2 λ3 a3 Vol swap price QX

params 1 1.00000000 -0.2 0 0 0 0 0.15 -0.00400 2.0846708

params 2 1.53186275 -0.2 0.76593137 0.04 0 0 0 -0.00610 2.1320914

params 3 0.98039216 -0.2 0.49019608 0.04 0 0 0.15 -0.00391 2.0825752

params 4 1.50240385 -0.2 0.75120192 0.04 0.75120192 -0.04 0 -0.00601 2.1299626

params 5 0.96153846 -0.2 0.48076923 0.04 0.48076923 -0.04 0.15 -0.00385 2.0812748

params 6 0.54086538 -0.2 0.27043269 0.04 0.27043269 -0.04 0.2 -0.00216 2.0449185

For all parameters, the (annualised) variance swap rate expressed as a volatility is 0.25. All

values of V arQ
t0

[ε(T )] in the table below are multiplied by 1,000,000 to improve

readability.
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Table 1 cont’d p 19/25

params 1 params 2 params 3 params 4 params 5 params 6

2 + 2

φt 2 2 2 2 2 2

ΘLFC
t 2 2 2 2 2 2

V arQ
t0

[ε(T )] 3.2219755 4.9358021 3.1589133 4.8410503 3.0982722 1.7427781

Hedge strategy A

φ̂t 2.0815517 2.1316674 2.0793692 2.1293857 2.0780750 2.0420725

ΘLFC
t 2.0846708 2.1320914 2.0825752 2.1299626 2.0812748 2.0449185

V arQ
t0

[ε(T )] 0.1843912 0.0048679 0.1987352 0.0080840 0.2139058 0.5419420

Hedge strategy B

φ̂t 2.1355255 2.1066839 2.1339678 2.1236177 2.1344956 2.1350182

Θ̂LFC
t 2.1355255 2.1093850 2.1341001 2.1247118 2.1345689 2.1350425

V arQ
t0

[ε(T )] 0.0 0.0 0.0040225 0.0077286 0.0058494 0.0033147

Notice we get perfect hedges in some special cases.
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Discussion of results 1 p 20/25

• With combinations of Brownian motions and compound Poisson processes with fixed jump

amplitudes, as we increase the number of hedging instruments over which we optimise

(underlying, log-forward-contracts), we increase from 1 to 2 the number of underlying

stochastic processes that we can perfectly hedge against. This is highly intuitive.

• For example, for hedging strategy B (two instruments, i.e. underlying and

log-forward-contracts), we can perfectly hedge when there are two stochastic processes (one

Poisson + Brownian motion or two Poisson).
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Results 2 p 21/25

• Table 2.

We consider six combinations (labelled params 1 to params 6) of a generalised CGMY process

time-changed by either a Heston (1993) activity-rate process (params 1 to 5) or a

non-Gaussian OU process (the Gamma-OU process of Barndorff-Nielsen and Shephard (2001))

(params 6).

All parameters were obtained from calibrations to market prices of vanilla options on S & P

500 and are quoted from Schoutens (2003) and from Carr, Geman, Madan and Yor (2003).

Skewness

CUp CDown G M YUp YDown Vol swap price QX

params 1 0.00740000 0.00740000 0.1025 11.394 1.6765 1.6765 0 -0.06977 2.7294158

params 2 0.16350000 0.04713705 0.6965 21.97 -3.65 1.45 0 -0.01272 2.4274086

params 3 0.35870000 0.01886762 0.4231 24.64 -4.51 1.67 0 -0.01419 2.3727413

params 4 0.40410000 0.02731716 1.64 16.91 -2.9 1.54 0 -0.00385 2.1675632

params 5 2.04400000 0.17476200 3.68 52.86 -2.12 1.22 0 -0.01054 2.1349535

params 6 0.04150000 0.04150000 3.9134 30.6322 1.3664 1.3664 0 -0.00182 2.0769284
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Results 2 p 22/25

• Table 2 continued.

The activity rate for params 1 to params 5 follows a Heston (1993) process of the form:

dyt = κ(η − yt)dt + λy
1/2
t dzt, yt0 ≡ y0, with y0 > 0.

Var swap rate (as vol) λ κ η y0 ρ

params 1 0.232270 1.3612 0.3881 1.4012 1 0

params 2 0.179512 0.00022 8.51 0.1497 1 0

params 3 0.190740 0.0006 6.65 0.3469 1 0

params 4 0.165670 2.78E-05 4.85 0.4474 1 0

params 5 0.315297 1.7 15.91 1.3700 1 0

params 6 0.172255 0.8826 a = 0.5945 b = 0.8524 1 0

All values of V arQ
t0

[ε(T )] in the table below are multiplied by 100 to improve

readability.

22



Table 2 cont’d p 23/25

params 1 params 2 params 3 params 4 params 5 params 6

2 + 2

φt 2 2 2 2 2 2

ΘLFC
t 2 2 2 2 2 2

V arQ
t0

[ε(T )] 69.4789464 0.9111811 1.9158518 0.0440515 0.0252706 0.0032939

Hedge strategy A

φ̂t 2.4383574 2.3244859 2.2640247 2.1395390 2.1218021 2.0679356

ΘLFC
t 2.7294158 2.4274086 2.3727413 2.1675632 2.1349535 2.0769284

V arQ
t0

[ε(T )] 62.9708207 0.6648498 1.5885852 0.0328228 0.0156676 0.0024078

Hedge strategy B

φ̂t 10.8956531 4.4599057 5.0370276 3.0508929 2.6186136 2.4716678

Θ̂LFC
t 9.9700106 4.1910341 4.7686888 2.9968132 2.5907777 2.4615637

V arQ
t0

[ε(T )] 33.6196207 0.2811378 0.7166531 0.0125611 0.0056145 0.0010554
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Discussion of results 2 p 24/25

• When QX � 2 (which implies that the Q - distribution of stock returns is negatively skewed

which is empirically the case for equities), then φ̂t � 2 and Θ̂LFC
t � 2.

• For parameters (params 1) obtained from a calibration to market prices of options on S & P

500, the optimal hedges are five times greater than those implicit in the standard 2 + 2

log-contract replication approach.

• Hedging strategy B always outperforms hedging strategy A which, in turn, always outperforms

the standard 2 + 2 log-contract replication approach.

• Our results show that substantial reduction in residual hedging error is possible by optimal

choice of the the position in log-forward-contracts and the position in forward contracts on the

underlying stock.

• In the paper, we show further that further substantial reductions are possible through the use

of skewness swaps.
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Conclusions p 25/25

• The standard 2 + 2 log-contract replication approach is very far from optimal in the presence

of jumps.

• The good news: We can construct optimal hedges for hedging a long position in one variance

swap which are of the form long Θ̂LFC
t log-forward-contracts and short φ̂t/F (t−, T ) forward

contracts on the underlying stock.

• The bad news: Θ̂LFC
t and φ̂t are not 2 (2 is the “small jump limit”).

• For a wide class of processes (but not always), Θ̂LFC
t and φ̂t are independent of the

time-change (⇒ robust to model (mis-)specification) and constant in time (⇒ robust to

transactions costs) but they are highly dependent upon the skew of the Lévy process(es).

• The paper on which this talk is based (“Optimal hedging of variance derivatives”) can be

found on my website:

http://www.john-crosby.co.uk .
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