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1University of Michigan at Ann Arbor

2University of Leicester and RiskCare Ltd

3University of Leicester

Bachelier Congress, Toronto, June 24, 2010



Objectives

We study the asymptotics of the price of barrier and first-touch digital
options near the barrier, under several classes of Lévy processes. Reasons:

I. Interesting in its own right: the region near the boundary is where it
is most difficult to obtain a good estimate of the price with any
numerical method. In particular, the results show that, for some
processes, the price can have a large discontinuity at the barrier.

II. By comparing the (exact) asymptotic prices with with those produced
by various numerical methods, it is possible to check the accuracy of
these methods.



Results

1 Classification of the possible shapes of the barrier price near the
boundary for several classes of Lévy processes.

2 Comparison with numerical prices calculated with the FFT-based
technique of S.Boyarchenko and Levendorskĭi (2002) and Boyarchenko
and Levendorskĭi (2008) (henceforth the BBL methodology), shows
that the latter is extremely accurate near the barrier, where it
produces very different results from HEJD approximations.

3 We use a modification of the BBL algorithm to calculate directly the
option’s delta. Comparison with the delta obtained by numerical
differentiation of the BBL price shows that the latter is very accurate,
even near the barrier.



Barrier option price comparison
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The price of a down-and-out put option in the NIG and Black-Scholes models
(parameters from Jeannin and Pistorius, 2007). The strike is K = 3500, the
barrier is H = 2100, the time to maturity is T = 0.25 years, the riskless rate is
3%, and the underlying stock pays no dividends.
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Lévy processes: general definitions

Every Lévy process X = (Xt) has a characteristic exponent ψ, defined by

E
[
e iξXt

]
= e−tψ(ξ),

where ξ ∈ R. In 1D, the Lévy-Khintchine formula gives an expression for ψ

ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫
R\{0}

(1− e ixξ + ixξ1|x |<1(x))F (dx),

where F (dx), the Lévy measure, satisfies
∫
R\{0}min{|x |2, 1}F (dx) <∞.



Lévy processes: general definitions

E.g. for a KoBoL (a.k.a. CGMY) process, F (dx) takes the form

F (dx) = c+x−ν−1eλ−x
1{x>0} dx + c−|x |−ν−1eλ+|x|1{x<0} dx , ν ∈ [0, 2). (1)

Other model classes: Normal Tempered Stable, with ν ∈ (0, 2) (the ν = 1
case being Normal Inverse Gaussian), Generalized Hyperbolic, β-family,
etc.

The Lévy density has asymptotic form O(|x |−ν−1) for x → 0, where ν is
the order of the process. The process is of finite (infinite) variation if
ν < 1 (ν ≥ 1).
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The asymptotics near the boundary

1. Down-and-out barrier option: as x = ln S ↓ h = ln H,

V (T , x) = κ(T )(x − h)ν− + O((x − h)ν−+s),

where s > 0.

2. Down-and-in first-touch digital option (pays 1 as S crosses H from
above)

V (T , x) = 1− κf.t.(T )(x − h)ν− + O((x − h)ν−+s),

where s > 0.

The value of ν− depends on the type, order and drift of the process.



The main qualitatively different shapes near the boundary

1. Processes with non-trivial BM component, or infinite-activity processes
with finite variation (except VG) and drift pointing towards the boundary
have ν− = 1, and the price near the barrier looks similar to the BM case;

2. for infinite activity and infinite variation processes, ν− ∈ (0, ν). In
particular, if the Lévy measure has asymptotic form c |x |−ν−1 as x → 0,
then ν− = ν/2;

3. NIG: depending on the drift, ν− can take any value in (0, 1);

4. KoBoL processes of finite variation (incl. VG) with the drift pointing
away from the barrier: ν− = 0, so that the prices of the down-and-out
barrier options and first-touch digitals are discontinuous at the boundary.
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Numerical example: DO put price (KoBoL, 1 ≤ ν < 2)
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1 term asymptotic

2 term asymptotic

(b) Relative Error

Infinite variation KoBoL with ν = 1.25, λ− = −9, λ+ = 8, c = 0.15, µ = 0.03,
riskless rate r = 0.03, T = 0.25. The option parameters are the same as in the
previous graph.

Here and in the following examples, the “exact” price is the one obtained by the
BBL method.



Numerical example: DO put price (KoBoL, ν < 1, µ = 0)
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(b) Relative Error

Finite variation KoBoL with ν = 0.5, λ− = −8, λ+ = 9, c = 1, µ = 0, riskless
rate r ≈ 0.072309571491738, T = 0.25.



Numerical example: DO put price (KoBoL, ν < 1, µ > 0)

0.01 0.02 0.03 0.04 0.05
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ln (S/H)

V
/H

 

 
exact price

asymptotic

(a) Price
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(b) Relative Error

Finite variation KoBoL with positive drift. Example from Asmussen, Madan and
Pistorius (2008), calibrated to vanilla options on Ford: ν = 0.5, λ− = −11.0187,
λ+ = 1.9458, c = 0.6506, µ ≈ 0.4356, riskless rate r = 0.03, T = 1.5.

This situation often arises from calibration to market data. Note the large
discontinuity at the boundary. This would not be present if we approximated the
process by a jump-diffusion.



Numerical example: DO put price (KoBoL, ν < 1, µ > 0)
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(a) Price
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(b) Relative Error

Finite variation KoBoL with positive drift. Example from Asmussen, Madan and
Pistorius (2008), calibrated to vanilla options on General Motors: ν = 0.5,
λ− = −5.8031, λ+ = 1.0084, c = 0.2171, µ ≈ 0.2006, riskless rate r = 0.03,
T = 1.5. Again, we have a discontinuity at the barrier.



Numerical example: DO put price (VG, µ > 0)
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V(T,0+)/H

Finite variation KoBoL of order 0 (VG) with positive drift. Example from Jeannin
and Pistorius (2007), calibrated to market prices of vanilla options on Stoxx50E:
λ− = 11.876, λ+ = 4.667, c = 0.925, µ ≈ 0.1282, riskless rate r = 0.03,
T = 0.25.

For VG we only calculated the leading term, which corresponds to the size of the
gap at the barrier.



Numerical example: DO put price (KoBoL, ν < 1, µ < 0)
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1 term asymptotic

2 term asymptotic

(b) Relative Error

Finite variation KoBoL with negative drift. Example from Crosby, Le Saux and
Mijatović (2009): ν = 0.25, λ− = −8, λ+ = 9, c = 1, µ ≈ −0.0140, riskless rate
r = 0.03, T = 0.25. For ν < 1 and negative drift, the behaviour near the barrier
is similar to the BM case.
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Normalized EPV operators

Recall that the supremum and infimum processes are defined by

X t = sup
0≤s≤t

Xs , X t = inf
0≤s≤t

Xs .

We define the normalized expected present value (EPV) operators by

(Eqf )(x) := qE
[∫ +∞

0
e−qt f (x + Xt)dt

]
(E+q f )(x) := qE

[∫ +∞

0
e−qt f (x + X t)dt

]
,

(E−q f )(x) := qE
[∫ +∞

0
e−qt f (x + X t)dt

]
.

Eqf , E+q f and E−q f have a natural financial interpretation as q times the

expected present value of the payment streams f (x + Xt), f (x + X t) and
f (x + X t) with constant discount rate q.



Wiener-Hopf factorization formula

Three versions:

1. Let Tq ∼ Exp(q) be the exponential random variable of mean q−1,
independent of the process X . For ξ ∈ R,

E[e iξXTq ] = E[e iξXTq ]E[e
iξXTq ];

2. For ξ ∈ R,
q

q + ψ(ξ)
= φ+q (ξ)φ−q (ξ),

where φ±q (ξ) admits the analytic continuation into the corresponding
half-plane and does not vanish there

3. Eq = E−q E+q = E+q E−q .

3 is valid in appropriate function spaces, and can be either proved as 1 or
deduced from 2 because Eq = q(q + ψ(D))−1, E±q = φ±q (D).



The down-and-out European option price

The following result was proven in S.Boyarchenko and Levendorskĭi,
(2002), Boyarchenko and Levendorskĭi (2008).

Theorem

Let G be a function satisfying certain regularity conditions. Then the
Laplace transform w.r.t. T of the price of a DO European option with
maturity T , payoff G and log-barrier h is

V̂ (q, x) = (q + r)−1E−q+r1(h,+∞)E+q+rG (x), (2)

where r is the risk free rate.

A similar result holds for first-touch digital options.



The down-and-out European option price

The time 0 price of a DO option with maturity T and payoff G is given by
the following integral

V (x ,T ; G ) =
e−rT

2πi(−T )k

∫
Re q=σ

eqT∂kq
(
q−1E−q 1(h,+∞)E+q G

)
(x)dq,

for some k ∈ Z+, σ > 0.
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The form of the asymptotic coefficient

The φ±q (ξ) have the following asymptotic form as ξ →∞ in the
corresponding half-plane:

φ±q (ξ) = φ±q,∞(1∓ iξ)−ν±(1 + O(|ξ|−ρ)),

where ρ > 0, ν± ∈ [0, ν]. The ν± are determined by ν and the drift µ.

In the same way as ν−, ν+ determines the asymptotics of the price near the
boundary for up-and-out barrier options and up-and-in first-touch digitals.



The form of the asymptotic coefficient

We prove that there exists a σ > 0 such that κ(T ) for a down-and-out
barrier option with payoff function G is given by

κ(T ) =
e−rT

2πiΓ(1 + ν−)(−T )

∫
Re q=σ

eqT∂q(q−1φ−q,∞G̃ (q, h + 0))dq,

where the integral is absolutely convergent for Re q ≥ σ.

The functions q 7→ G̃ (q, h + 0) = E+q G (h + 0) and q 7→ φ±q,∞ are analytic
for Re q ≥ σ.

Explicit analytical formulas for φ±q,∞ and G̃ (q, h + 0) were derived, for
several model processes.

For some processes, expressions for the second term of asymptotics were
obtained as well.
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Calculation of Sensitivities

de Innocentis and Levendorskĭi (work in progress).

Objective: investigate the accuracy of numerical differentiation for the
results of the BBL pricing method.

We only look at the case of delta.

If the payoff G satisfies some regularity conditions, one can differentiate
step by step in the algorithm for the price, and obtain the corresponding
value of the log-delta without using numerical differentiation (by using the
regularity of G and certain properties of the EPV operators as PDOs).



Numerical example: DO put delta (KoBoL, 1 ≤ ν < 2)
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(b) Relative Error

Infinite variation KoBoL with ν = 1.25, λ− = −9, λ+ = 8, c = 0.15, µ = 0.03,
riskless rate r = 0.03, T = 0.25. The relative error of numerical vs. “exact”
log-delta is less than 0.3%, outside of a tiny region near the barrier. Even where
the price seems fairly regular, the delta is not (gamma is even worse).

(Convergence of the asymptotic coefficient for the sensitivities, in the ν > 1 case,

was proven in Levendorskĭi, 2009).



Conclusions

1 The study of the asymptotic price for barrier options and first-touch
digitals, and the comparison with the BBL price, shows that the latter
is extremely accurate, even near the barrier, where other methods -
e.g. approximation by a jump-diffusion, Monte Carlo simulation -
tend to be less reliable.

2 It also shows that, for some process parameters, we can have a large
discontinuity at the barrier (including examples obtained by fitting to
market data).

3 The delta of the option can be calculated with a modification of the
algorithm for the price.

4 Comparison with the delta obtained by numerical differentiation of the
BBL price shows that the latter is very accurate, even near the barrier.
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