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Overview

We price knock-out options with one or two barriers in a regime switching

Lévy model modulated by a continuous-time finite-state Markov chain.

The class of Lévy processes we allow is rather general, and includes

hyper-exponential jump-diffusions (of which Kou’s model is a special

case), the V.G. model, NIG processes, KoBoL/CGMY, and the β-class.

We allow an arbitrary number of states in the modulating Markov chain,

so we can approximate models with stochastic volatility and interest rates.

We use a combination of techniques, which we collectively refer to as the

“BBL method” (the term “BoyarLeven methodology” appeared in some

other works, but we prefer the former one since it is shorter).
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Ingredients in the BBL method

The dates refer to the first time each method was applied in option pricing:

1. Analytic method of lines (P. Carr & D. Faguet 1996), or, in a

probabilistic interpretation, Carr’s randomization (P. Carr 1998)

2. Operator form of the Wiener-Hopf factorization (S. Boyarchenko and

S. Levendorskĭi, 1998) and its interpretation in terms of expected

present value operators (S. Boyarchenko and S. Levendorskĭi, 2002)

3. Finite element method (A. Eydeland, 1994)

4. Refined fast Fourier transforms techniques (M. Boyarchenko and

S. Levendorskĭi, 2008) – required for processes whose characteristic

exponent is not rational, for example, V.G., NIG, KoBoL/CGMY

Boyarchenko-Boyarchenko-Levendorskĭi () The BBL method for pricing barrier options Toronto, June 24, 2010 3 / 33



Advantages from the viewpoint of speed

Option prices are calculated for a (rather fine) uniformly spaced grid

of initial log-spot prices (as opposed to one initial spot price).

This allows us to calculate the deltas and gammas of the option at

the points of the same grid using numerical differentiation.

The prices and sensitivities corresponding to log-spot prices that do

not lie on the grid are found using interpolation (the additional

computational cost of interpolation is negligible).

Even for a single spot price, the BBL method performs faster

(sometimes, 5–10 times faster) than the competing algorithms.
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Example

Table: Prices of double barrier foreign exchange options in a regime-switching

HEJD model with two states and 4 double exponential summands in each state

Initial state 1 2 1 2

Transition rates 1.85/1.1 1.85/1.1 10/10 10/10

Vanilla call 4.40036 4.00855 4.40383 4.33705

Vanilla put 2.84040 2.52717 2.81875 2.76598

Digital call 0.45971 0.43212 0.45313 0.44872

Digital put 0.38852 0.36614 0.38332 0.37970

Option parameters (same for both states): S0 = 220, rdom = 0.046,

rfor = 0.051, L = 195, U = 250, T = 0.9, K = 218. Rebate:

RL = RU = 0.25, paid at maturity if either barrier is crossed.

The parameters are taken from Ambrose, Carr and Crosby (2009).

The calculation of each option price took ≈ 1 second.
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Table: Prices obtained by Ambrose, Carr and Crosby in the same setup

Initial state 1 2 1 2

Transition rates 1.85/1.1 1.85/1.1 10/10 10/10

Vanilla call 4.39899 4.00910 4.40469 4.33799

Vanilla put 2.83956 2.52770 2.81620 2.76183

Digital call 0.46099 0.43320 0.45554 0.45108

Digital put 0.38718 0.36507 0.38284 0.37919

Table: Relative differences between our prices and A-C-C prices

Initial state 1 2 1 2

Transition rates 1.85/1.1 1.85/1.1 10/10 10/10

Vanilla call 0.00031 -0.00014 -0.00020 -0.00022

Vanilla put 0.00030 -0.00021 0.00091 0.00150

Digital call -0.00278 -0.00249 -0.00529 -0.00523

Digital put 0.00346 0.00293 0.00125 0.00135

Boyarchenko-Boyarchenko-Levendorskĭi () The BBL method for pricing barrier options Toronto, June 24, 2010 6 / 33



Advantages from the viewpoint of accuracy

The BBL method is numerically stable (no high precision arithmetic).

When the underlying process has infinite jump activity, the competing

methods replace it with a finite jump activity process. This leads to

significant errors in the approximation near the barrier(s).

By contrast, Carr’s randomization approximation (where the

underlying process remains unchanged) exhibits the correct

asymptotic behavior near the boundary (Levendorskĭi, 2009).
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6 Application of the finite element method

7 Application of refined FFT techniques

8 References

9 Appendix
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Double barrier options in regime-switching models

For simplicity we consider a constant riskless rate r > 0.

X = (Yt ,Xt)t≥0 temporally homogeneous Markov process with state

space {1, 2, . . . ,m} × R, constructed using pairwise independent Lévy

processes X (j) = (X
(j)
t )t≥0 (1 ≤ j ≤ m) and a continuous time

Markov chain Y = (Yt)t≥0 defined by transition rates (λjk)1≤j 6=k≤m.

Price of the underlying: St = exp(cYt Xt + dYt ) (cj > 0, dj ∈ R).

In each state 1 ≤ j ≤ m, have log-barriers −∞ < hj
− < hj

+ <∞ and

terminal payoff function g j(x) defined for hj
− < x < hj

+.

The option expires worthless if for some t ≤ T = maturity we have

Xt 6∈ (hj
−, h

j
+), where j = Yt . Otherwise at t = T the owner of the

option receives payoff g j(eXt ), where j = YT .
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Carr’s randomization

Carr’s randomization (a.k.a. “Canadization”) was originally

discovered (P. Carr, 1998) as a probabilistic interpretation of the

“analytic method of lines” (used by P. Carr and D. Faguet, 1996).

Carr proposed to approximate a finite-lived option pricing problem by

replacing a deterministic maturity date T with a suitably chosen

random maturity date whose mean is equal to T .

When this random maturity is a sum of independent exponentially

distributed maturity dates, the new pricing problem often reduces to a

sequence of perpetual pricing problems, which are easier to solve.

We believe that this idea has a very wide scope of applications. For

the time being, the efficiency of Carr’s randomization for American

and barrier options has been well documented in the literature.
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Carr’s randomization for barrier options: setup

We will write ~h± = (hj
±)mj=1 and ~g = (g j)mj=1.

Vj(x ,T ;~h±;~g) = value function of the option in state j (the

no-arbitrage price of the option above assuming X starts at (j , x)).

vj(x ; q;~h±;~g) = value function of the knock-out continuous cash flow

{e−qtgYt (Xt)}t≥0 in state j , where q > 0 is the killing rate.

Important remark: suppose q = r + ∆−1 for some ∆ > 0. Then

∆−1 · vj(x ; q;~h±;~g) can be interpreted as the value function of a

finite lived option with random maturity date T ∼ Exp ∆−1.

We will write ~V = (Vj)
m
j=1, ~v = (vj)

m
j=1 (vector-valued functions).
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Carr’s randomization via backward induction

Step I. Choose a partition, P, of the interval [0,T ]. Thus P is a finite

collection of points 0 = t0 < t1 < · · · < tN−1 < tN = T , where

N is a positive integer. (Typically, ts = sT/N for all s.)

Step II. For every 0 ≤ s ≤ N − 1, set ∆s = ts+1 − ts and qs = r + ∆−1
s .

Step III. Put V N
j (x) = g j(x) for all 1 ≤ j ≤ m.

Step IV. In a cycle with respect to s = N − 1,N − 2, . . . , 1, 0, calculate

~V s(x) = ∆−1
s · ~v(x ; qs ;~h±; ~V s+1).

Step V. Put ~VP(x ,T ;~h±;~g) = ~V 0(x), where ~V 0(x) is obtained at the

end of the cycle in Step IV. Then ~VP is Carr’s randomization

approximation to ~V (x ,T ;~h±;~g), defined by the partition P.
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Perpetual pricing problem: iterative procedure

Problem: calculate vj(x) := vj(x ; q;~h±;~g) for 1 ≤ j ≤ m.

The functions vj(x) solve the following system of PIDE:(q − Lj)vj(x)−
∑m

k=1 λjkvk(x) = g j(x), hj
− < x < hj

+;

vj(x) = 0, x ≤ hj
− or x ≥ hj

+,

where Lj is the infinitesimal generator of the Lévy process X (j).

We construct a sequence of approximations ~v 0, ~v 1, ~v 2, . . . to ~v .

Put Λj = −
∑

k 6=j λjk . Set ~v 0 = 0 and for n = 1, 2, . . . solve(q + Λj − Lj)vn
j (x) = g j(x) +

∑
k 6=j λjkvn−1

k (x), hj
− < x < hj

+;

vn
j (x) = 0, otherwise.

This is a perpetual pricing problem in a Lévy model with one state.
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Normalized EPV operators of a Lévy process

Next goal: explain how to price knock-out continuous cash flows with

one or two barriers in a 1-dimensional Lévy model.

The supremum and infimum processes of X = {Xt}t≥0 are

X t = sup
0≤s≤t

Xs and X t = inf
0≤s≤t

Xs .

The normalized expected present value (EPV) operators are

(Eqf )(x) = E
[∫ ∞

0
qe−qt f (x + Xt) dt

]
,

(E+
q f )(x) = E

[∫ ∞
0

qe−qt f (x + X t) dt

]
,

(E−q f )(x) = E
[∫ ∞

0
qe−qt f (x + X t) dt

]
.
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Wiener-Hopf factorization (WHF)

Let Tq ∼ Exp q be an exponentially distributed random variable with

mean q−1, which is independent of the Lévy process X = {Xt}t≥0.

Probability form of the WHF formula:

E
[
e iξXTq

]
= E

[
e iξXTq

]
· E
[
e
iξXTq

]
∀ ξ ∈ R.

The last identity follows from the following facts:

(1) we have XTq = XTq + (XTq − XTq );

(2) the random variables XTq and XTq − XTq are independent (deep!);

(3) the random variables XTq
and XTq − XTq are identical in law;

(4) the characteristic function of the sum of two independent random

variables is equal to the product of their characteristic functions.
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Two other WHF formulas

Define the Wiener-Hopf factors φ±q (ξ) (for ξ ∈ R) by the formulas

φ+
q (ξ) = E

[
e iξXTq

]
, φ−q (ξ) = E

[
e
iξXTq

]
.

φ±q (ξ) admit analytic continuation without zeroes into the upper/lower half plane.

They are related to the normalized EPV operators E±q via

E±q
(
e iξx

)
= φ±q (ξ) · e iξx ∀ ξ ∈ R.

Writing ψ(ξ) for the characteristic exponent of X , one has

Eq
(
e iξx

)
= q · (q + ψ(ξ))−1 · e iξx ∀ ξ ∈ R.

Analytic form of the WHF formula: q · (q + ψ(ξ))−1 = φ+
q (ξ)φ−q (ξ).

Operator form of the WHF formula: Eq = E+
q E−q = E−q E+

q .
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The Wiener-Hopf method for one barrier

Now we return to pricing a continuous cash flow {e−qtg(ln St)}t≥0.

Consider the down-and-out case; let 0 < L <∞ be the barrier.

Write x = ln S0 and h− = ln L. The flow is terminated as soon as the

price of the underlying St = ex+Xt reaches or falls below L = eh− .

The price of this down-and-out continuous cash flow equals

vdown−and−out(x ; q; h−; g) = q−1 · E−q
(
1(h−,+∞)(x) · (E+

q g)(x)
)
.

Similar formula in the up-and-out case (U = eh+ is the upper barrier):

vup−and−out(x ; q; h+; g) = q−1 · E+
q

(
1(−∞,h+)(x) · (E−q g)(x)

)
.
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The Wiener-Hopf method for two barriers

Consider two barriers, 0 < L < U < +∞. Put h− = ln L, h+ = ln U.

Value of a knock-out cash flow {e−qtg(ln St)}t≥0 with barriers (L,U):

v(x ; q; h±; g) = G 0(x)− G 1
+(x)− G 1

−(x) + G 2
+(x) + G 2

−(x)

− G 3
+(x)− G 3

−(x) + G 4
+(x) + G 4

−(x)− · · ·

To find the terms on the RHS, first calculate G 0(x) = q−1 · (Eqg)(x).

Next, use the formulas

G 0
+(x) = G 0(x)

∣∣
[h+,+∞)

, G 0
−(x) = G 0(x)

∣∣
(−∞,h−]

,

Gn
+(x) = E−q

(
1(−∞,h−](x) ·

(
(E−q )−1Gn−1

−
)
(x)
)

∀ n ≥ 1,

Gn
−(x) = E+

q

(
1[h+,+∞)(x) ·

(
(E+

q )−1Gn−1
+

)
(x)
)

∀ n ≥ 1.
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Using the BBL method in practice

Suppose we can efficiently calculate the action of the normalized EPV

operators E±q for a 1-dimensional Lévy process (no regime switching).

Using that as a building block, we obtain a fast and accurate pricing

algorithm for barrier options based on the Carr-Wiener-Hopf method.

The numerical realization of E±q uses the finite element method.

For processes with rational characteristic exponent (e.g., HEJD), ∃ very

explicit formulas for E±q , and no FFT is required.

For other processes, one uses refined FFT (discussed below).
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Normalized EPV operators in the Black-Scholes model

Introduce two types of integral operators:

(I +
β f )(x) =

∫ ∞
0

βe−βy f (x + y) dy (β > 0),

(I−β f )(x) =

∫ 0

−∞
(−β)e−βy f (x + y) dy (β < 0).

Assume that X = {Xt}t≥0 is a BM with volatility σ and drift µ.

Denote by β− < 0 < β+ the roots of the characteristic equation

σ2

2
β2 + µβ − q = 0.

Then φ±q (ξ) = β± · (β± − iξ)−1 and E±q = I±
β± .

∃ similar formulas for HEJD involving linear combinations of finitely

many integral operators of the form I±β .
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Normalized EPV Operators and Fourier Transforms

X = {Xt}t≥0 is a Lévy process with characteristic exponent ψ(ξ)

fix q > 0 and let φ±q (ξ) be the Wiener-Hopf factors of q · (q +ψ(ξ))−1

PDO realization of the normalized EPV operators of X :

(E±q f )(x) = F−1
ξ→x

(
φ±q (ξ) · f̂ (ξ)

)
convolution realization of the normalized EPV operators:

(E+
q f )(x) =

∫ +∞

0

f (x + y) p+
q (dy), (E−q f )(x) =

∫ 0

−∞
f (x + y) p−q (dy),

where p±q (dy) are Borel probability measures on R supported on the

positive and the negative half axis, respectively

the Fourier transforms of p±q are given by p̂±q (ξ) = φ±q (ξ)
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Integral Formulas for the Wiener-Hopf Factors

Under certain regularity conditions on the characteristic exponent ψ(ξ),

φ±q (ξ) = exp

[
± 1

2πi

∫
Im η=ω∓

ξ · ln(1 + q−1ψ(η))

η(ξ − η)
dη

]
,

where ω− < 0 < ω+ are suitably chosen. Main requirements:

ψ(ξ) admits analytic continuation into an open horizontal strip in C
that contains the closed strip

{
ξ ∈ C

∣∣ Im ξ ∈ [ω−, ω+]
}

, and

Re(q + ψ(ξ)) > 0 for all ξ in this closed strip.

Practical applications of the above formula

One calculates the values of φ±q (ξ) on a suitable grid ~ξ = (ξk)Mk=1 by

applying the trapezoid rule to discretize the integral above and using FFT.
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Fourier Transforms and FFT

Fourier transforms on the real line

f̂ (ξ) = (F f )(ξ) = (Fx→ξf )(ξ) =

∫ ∞
−∞

e−iξx f (x) dx

(F−1g)(ξ) = (F−1
ξ→xg)(x) =

1

2π

∫ ∞
−∞

e iξxg(ξ) dξ

Fast Fourier transforms

Consider uniformly spaced grids ~x = (xj)
M
j=1 and ~ξ = (ξk)Mk=1 with mesh ∆

and ζ, respectively. Replace (Fx→ξf )(ξ) and (F−1
ξ→xg)(x) with

(Ffast f )(ξ) = ∆ ·
M∑
j=1

f (xj)e−iξxj , (F−1
fastg)(x) =

ζ

2π
·

M∑
k=1

g(ξk)e iξkx .
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Standard FFT techniques

Let ~f = (fj)
M
j=1 be an array of complex numbers. Set

dft(~f )k =
M∑
j=1

fj · e−2πi(j−1)(k−1)/M , 1 ≤ k ≤ M.

Standard FFT algorithms are designed for fast calculation of the

vector dft(~f ) (“fast” means O(M · ln M) arithmetic operations).

F±1
fast can be expressed in terms of dft provided the identity

M ·∆ · ζ = 2π holds (“Nyquist relation” or “uncertainty principle”).

dft can also be used for very fast calculation of sums of the form

hk =
∑M

j=1 fjgk−j (1 ≤ k ≤ M), where ~f = (fj)
M
j=1 and

~g = (g`)
M−1
`=1−M are arrays of complex numbers.
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Finite element method via piecewise linear interpolation

Consider a grid ~x = (xj)
M
j=1, where xj = x1 + (j − 1)∆ for all 1 ≤ j ≤ M,

and ∆ > 0 is fixed. Approximating f with a piecewise linear function yields

(E+
q f )(xk) ≈ −d+

k · fM +
M∑
j=k

c+
k−j · fj (1 ≤ k ≤ M),

where fj = f (xj) for 1 ≤ j ≤ M,

d+
k =

∆

2π

∫ ∞
−∞

e i(k−M)∆ξ ·
(
φ+
q (ξ)− φ+

q (∞)
)
· e
−iξ∆ + iξ∆− 1

(iξ∆)2
dξ

for 1 ≤ k ≤ M,

c+
` =

∆

2π

∫ ∞
−∞

e i`∆ξ ·
(
φ+
q (ξ)− φ+

q (∞)
)
· e

iξ∆ + e−iξ∆ − 2

(iξ∆)2
dξ

for 1−M ≤ ` ≤ −1, and c+
0 = 1−

∑
1−M≤`≤−1 c

+
` .

There are also similar formulas for calculating the action of E−q .
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Comments on the practical implementation

General scheme of numerical realization of E±q
1. Numerically calculate φ±q (ξ) on a suitable ξ-grid using fast convolution.

2. Compute the coefficients d±k , c
±
` using inverse FFT.

3. The action of E±q on any function is calculated using fast convolution.

Important issue (resolved via the use of refined FFT)

For the calculation of d±k , c
±
` to be accurate enough, the ξ-grid must

be sufficiently long and sufficiently fine.

Not only does this violate the Nyquist relation M ·∆ · ζ = 2π, but it

also forces us to use more points in the ξ-grid than in the x-grid.
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Explanation of refined FFT via a simple example

Suppose we are given uniformly spaced grids ~x = (xj)
M
j=1 and

~ξ = (ξk)Mk=1 of mesh ∆ and ζ; and the relation M∆ζ = 2π holds.

Given functions f (x) and g(ξ), we can (quickly) calculate

(Ffast f )(ξk) and (F−1
fastg)(xj) using standard FFT techniques.

Now suppose we wish to halve the mesh of the ξ-grid and double the

number of points in it, while leaving the x-grid intact.

Call the new grid ~ξ′ = (ξ′k)2M
k=1. It has mesh equal to ζ/2.

The points {ξ′1, ξ′3, ξ′5, . . . , ξ′2M−1} and {ξ′2, ξ′4, ξ′6, . . . , ξ′2M} form two

uniformly spaced grids with mesh ζ.

Apply the standard FFT technique twice, and we are in good shape.

Similarly we can stretch and refine the ξ-grid by arbitrary factors.

(The details are provided in the appendix to this set of slides.)

Boyarchenko-Boyarchenko-Levendorskĭi () The BBL method for pricing barrier options Toronto, June 24, 2010 27 / 33



References

M. Boyarchenko and S. Boyarchenko (2008), User’s guide to double

barrier options. Part I: Kou’s model and generalizations

M. Boyarchenko and S. Boyarchenko (2009), Double barrier options

in regime switching hyper-exponential jump-diffusion models

M. Boyarchenko, M. de Innocentis and S.Z. Levendorskĭi (2009),
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M. Boyarchenko and S.Z. Levendorskĭi (2008a), Prices & sensitivities

of barrier and first-touch digital options in Lévy-driven models
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An Improved Setup for FFT and Inverse FFT

We assume that a uniformly spaced grid ~x = (xj)
M
j=1 of points in R is

given, where xj = x1 + (j − 1)∆, and both M and ∆ > 0 are fixed. One

should choose two positive integers, M2 and M3, that will be responsible,

respectively, for refining and stretching the ξ-grid. One should also choose

ξ1 ∈ C, the desired initial point of the ξ-grid.

The total number of points in the ξ-grid equals M1 = MM2M3. Let us

define ζ = 2π/(M∆). The mesh of the ξ-grid equals ζ1 = ζ/M2. Hence

the ξ-grid has length M3 · (2π/∆). Explicitly, the ξ-grid is given by

~ξ = (ξk)M1
k=1, ξk = ξ1 + (k − 1)ζ1 = ξ1 + (k − 1) · ζ

M2
.
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Implementing FFT in the New Setup

We would like to calculate the values of Ffast f at all the points of the grid
~ξ. The best one can hope for is to reduce the calculation to M2 ·M3

applications of FFT for arrays of length M (since the input array has

length M and the output array has length M ·M2 ·M3). To this end, we

represent the grid ~ξ = (ξk)M1
k=1 as a disjoint union of M2 ·M3 grids, each of

which has M points and mesh ζ, and apply ordinary FFT to each of them:(
ξM2·(k−1)+1

)M
k=1

,
(
ξM2·(k−1)+2

)M
k=1

, . . . ,
(
ξM2·k

)M
k=1

,(
ξM2·(k−1+M)+1

)M
k=1

,
(
ξM2·(k−1+M)+2

)M
k=1

, . . . ,
(
ξM2·(k+M)

)M
k=1

,

. . . ,(
ξM2·(k−1+(M3−1)M)+1

)M
k=1

, . . . ,
(
ξM2·(k+(M3−1)M)

)M
k=1

.
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Implementing Inverse FFT in the New Setup

Let g(ξ) be a function whose domain contains the grid ~ξ. We would like to

calculate the values of the function F−1
fastg on the grid ~x . To this end, for

each 1 ≤ j ≤ M3 and each 1 ≤ ` ≤ M2, let gj ,` be the restriction of g to

the sub-grid ~ξ(j , `) =
(
ξM2·(k−1+(j−1)M)+`

)M
k=1

. The values of F−1
fastgj ,` on

the grid ~x can be calculated using the standard FFT techniques. Note that

for each pair (j , `), we only need to calculate a single FFT for a vector of

length M. Finally, it follows immediately from the definitions that

F−1
fastg =

1

M2

M3∑
j=1

M2∑
`=1

F−1
fast(gj ,`).

This method of calculating F−1
fastg requires only O(M1 · ln M) arithmetic

operations, which, again, is the best one can hope for.
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Fast Discrete Convolution via FFT

Goal: compute hk =
∑M

j=1 fjgk−j , where ~f = (fj)
M
j=1 and

~g = (g`)
M−1
`=1−M are complex arrays of lengths M and 2M − 1.

Let f̃ be the array of length 2M with entries

f̃j =

fj , 1 ≤ j ≤ M;

0, M + 1 ≤ j ≤ 2M.

Let g̃ be the array of length 2M with entries

g0, g1, . . . , gM−1, 0, g1−M , g2−M , . . . , g−1

Calculate the array h̃ = (h̃`)
2M
`=1 with entries

h̃` = dft(f̃ )` · dft(g̃)`.

For all 1 ≤ k ≤ M, we have hk = idft(h̃)k (where idft = dft−1).

Boyarchenko-Boyarchenko-Levendorskĭi () The BBL method for pricing barrier options Toronto, June 24, 2010 32 / 33



Convergence of Carr’s randomization

Theorem. Suppose that each Lévy process X (j) has either nonzero

diffusion component or infinite jump activity (or both). Assume also that

each g j(x) is a bounded continuous function on (hj
−, h

j
+). Then for fixed j

and x , we have VP,j(x ,T ;~h±;~g)→ Vj(x ,T ;~h±;~g) as mesh(P)→ 0,

where mesh(P) = max0≤s≤N−1 ∆s .

Important ingredient in the proof

Theorem. Under the same assumptions, for fixed j and x , Vj(x ,T ;~h±;~g)

is continuous as a function of T .

The assumption on X (j) is used in the following way: it is equivalent to

requiring that P[X
(j)
t = a] = 0 for any t > 0, 1 ≤ j ≤ m and a ∈ R.
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