Positive Stochastic Volatility Simulation

Simon J.A. Malham & Anke Wiese

Heriot-Watt University, Edinburgh

Bachelier Finance Society 6th World Congress June 22–26, 2010, Toronto

Introduction: The Heston Model

$$\begin{split} \mathrm{d}S_t &= \mu S_t \,\mathrm{d}t + \sqrt{V_t} \,S_t \left(\rho \mathrm{d}W_t^1 + \sqrt{1-\rho^2} \,\mathrm{d}W_t^2\right), \\ \mathrm{d}V_t &= \kappa (\theta - V_t) \,\mathrm{d}t + \varepsilon \sqrt{V_t} \,\mathrm{d}W_t^1, \end{split}$$

where

- W_t^1 and W_t^2 independent scalar Wiener processes
- μ , κ , θ and ε are positive constants
- ▶ ρ ∈ (−1, 1)
- S price process of underlying variable (e.g. stock index, exchange rate)
- V variance process.

Heston (1993), Cox, Ingersoll & Ross (1985), Feller (1951)

Properties of V

• $V_t \ge 0$ (assuming $V_0 \ge 0$).

Let

$$\nu := 4\kappa\theta/\varepsilon^2,$$

Then

- If $\nu \geq 2$, then V is strictly positive.
- ► If *ν* < 2, then the zero boundary is attainable and instantaneously reflecting.</p>
- Attainability of zero boundary and reflection property are major obstacle in computational treatment.
- ν < 2 is relevant for foreign exchange and long-dated interest-rate markets (Andersen 2008).

Here: focus on attainable zero boundary case, in particular $\nu < 1.$

Modifications of Euler-Maruyama Scheme

Extend vector fields to negative domain. e.g.

Partial truncation (Delbaen and Deelstra 1998)

$$\hat{V}_{t_{n+1}} = \hat{V}_{t_n} + h\kappa(heta - \hat{V}_{t_n}) + arepsilon\Delta W^1_{t_n} \sqrt{\hat{V}^+_{t_n}}$$
 .

Reflection (Bossy and Diop 2007)

$$\hat{V}_{t_{n+1}} = |\hat{V}_{t_n}| + h\kappa(heta - |\hat{V}_{t_n}|) + \varepsilon \Delta W^1_{t_n} \sqrt{|\hat{V}_{t_n}|}$$

Full truncation (Lord, Koekoek & Van Dijk 2006)

$$\hat{V}_{t_{n+1}} = \hat{V}_{t_n} + h\kappa(heta - \hat{V}^+_{t_n}) + arepsilon \Delta W^1_{t_n} \sqrt{\hat{V}^+_{t_n}}$$
 .

Full truncation works well, but properties (e.g. error) are difficult to derive.

Transition Probability for V

$$\mathbb{P}(V_t < x \mid V_0) = F_{\chi^2_{\nu}(\lambda)}(x \cdot \eta(t) / \exp(-\kappa t)),$$

where

*F*_{χ²_ν(λ)} non-central chi-squared distribution function with ν degrees of freedom and non-centrality parameter λ

$$F_{\chi^2_{\nu}(\lambda)}(z) = \frac{\mathrm{e}^{-\lambda/2}}{2^{\nu/2}} \sum_{j=0}^{\infty} \frac{(\lambda/2)^j}{j! 2^j \Gamma(\nu/2+j)} \int_0^z \xi^{\nu/2+j-1} \mathrm{e}^{-\xi/2} \,\mathrm{d}\xi,$$

$$\begin{split} \nu &:= 4\kappa\theta/\varepsilon^2, \\ \nu &:= \frac{4\kappa\exp(-\kappa t)}{\varepsilon^2\left(1-\exp(-\kappa t)\right)}, \\ \lambda &= V_0\eta(t). \end{split}$$

Properties of Chi-Square Distribution

Dealing with Non-Centrality

$$\chi^2_{\nu}(\lambda) = \chi^2_{\nu+2N},$$

where N is Poisson distributed with parameter $\lambda/2$. (Johnson 1959, Glasserman 2003)

Divisibility of Chi-Squared Distribution: Assume

- $Y_1, Y_2, \ldots, Y_{2N}, Z$ independent,
- Y_i standard Normally distributed, i = 1, ..., 2N,
- $Z \chi^2_{\nu}$ -distributed.

Then

$$\sum_{i=1}^{2N} Y_i^2 + Z \sim \chi_{\nu+2N}^2.$$

Questions:

- How to simulate a χ^2_{ν} random variable for non-integer $\nu < 1$?
- ▶ Is there a representation for a χ^2_{ν} variable with non-integer
 - $\nu < 1$ similar to the integer degrees of freedom case?

Generalized Gaussian Distribution

Definition: A generalized N(0, 1, q) random variable, for $q \ge 1$, has density

$$f_{\mathsf{N}(0,1,q)}(x) := rac{q}{2^{1/q+1}\Gamma(1/q)} \cdot \expig(-rac{1}{2}|x|^qig),$$

where $x \in \mathbb{R}$ and $\Gamma(\cdot)$ is the standard gamma function.

Note that for q = 2, we recover the Normal distribution.

(Gupta & Song 1997, Song & Gupta 1997, Sinz, Gerwinn & Bethge 2009, Sinz & Bethge 2008)

Representation of Chi-Square by Generalized Gaussian

Theorem:

Suppose $X_i \sim N(0, 1, 2q)$ are independent identically distributed random variables for i = 1, ..., p, where $q \ge 1$ and $p \in \mathbb{N}$. Then we have

$$\sum_{i=1}^{p} |X_i|^{2q} \sim \chi^2_{p/q}.$$

Proof: Calculate density.

Generalized Marsaglia Polar Method

Theorem:

Suppose for some $q \in \mathbb{N}$ that U_1, \ldots, U_q are independent identically distributed uniform random variables over [-1, 1]. Condition this sample set to satisfy the requirement $||U||_q < 1$, where $||U||_q$ is the q-norm of $U = (U_1, \ldots, U_q)$. Then the q random variables generated by $U \cdot (-2\log ||U||_q^q)^{1/q} / ||U||_q$ are independent N(0, 1, q) distributed random variables.

Proof: Calculate density.

Remark: q = 2: Marsaglia's Polar Method for Normal distribution.

Summary: Algorithm

Assume $\nu = \frac{p}{q}$ with p and q natural numbers (no loss of generality). To produce an exact $\chi^2_{p/q}(\lambda)$ sample:

- 1. Generate 2q independent uniform random variables over [-1,1]: $U = (U_1, \ldots, U_{2q})$.
- 2. If $||U||_{2q} < 1$ continue, otherwise repeat Step 1.
- 3. Compute $Z = U \cdot (-2 \log ||U||_{2q}^{2q})^{1/2q} / ||U||_{2q}$. This gives 2q independent N(0, 1, 2q) random variables $Z = (Z_1, \ldots, Z_{2q})$.

4. Compute
$$Z_1^{2q} + \cdots + Z_p^{2q} \sim \chi^2_{p/q}(\lambda)$$
.

Probability of Acceptance

Probability of acceptance in each attempt:

$$p_M = \left(\frac{\Gamma(1/2q)}{2q}\right)^{2q}$$

- ▶ q = 1: probability of acceptance is 0.7854 (sample from Gaussian distribution)
- ▶ As $q \to \infty$, we have $p_M \to e^{-\gamma} \approx 0.5615$, where γ is the Euler-Mascheroni constant.
- In each accepted attempt, 2q independent generalized Gaussian variables are generated, of which p < q are used to generate one χ²_{p/q} variable.
- \blacktriangleright Expected number of attempts to generate 2q/p independent $\chi^2_{p/q}$ variables is

$$1/p_M \in [1.2732, 1.7809].$$

Comparison with Acceptance-Rejection Method

Ahrens & Dieter: acceptance-rejection method with mixture of prior densities

- $(p/2q)x^{p/2q-1}$ on [0,1] with weight e/(e+p/2q),
- $\exp(1-x)$ on $[1,\infty)$ with weight (p/2q)(e+p/2q).
- ► Expected number of steps to generate 2q/p independent \u03c8²_{p/q} variables is

$$(2q/p)\cdot rac{p/2q+\mathrm{e}}{p/2q\Gamma(p/2q)\mathrm{e}}.$$

This is

- larger than expected number of steps in generalized Marsaglia method for all p/q < 1.
- unbounded.
- Computational effort (CPU time): generalized Marsaglia method compares very favourably with acceptance-rejection method (see overleaf).

CPU Time vs Degrees of Freedom - 1 Digit

CPU Time vs Degrees of Freedom – 3 Significant Digits

Andersen's Distribution Approximation

▶ If \hat{V}_{t_n} is large:

$$\hat{V}_{t_{n+1}} = (a + bZ)^2$$
,

where $Z \sim N(0, 1)$.

 If V
_{tn} is small: replace true density with mixture of Dirac delta function and exponential density

$$p\delta(0) + (1-p)\beta \exp(-\beta x),$$

where $\delta(0)$ is the Dirac delta function and p and β are constants.

Parameters are chosen to match expected value and variance. (Andersen 2008)

Simulating S

Recall

$$\begin{split} \mathrm{d}S_t &= \mu S_t \,\mathrm{d}t + \rho \sqrt{V_t} \,S_t \,\mathrm{d}W_t^1 + \sqrt{1 - \rho^2} \sqrt{V_t} \,S_t \,\mathrm{d}W_t^2, \\ \mathrm{d}V_t &= \kappa (\theta - V_t) \,\mathrm{d}t + \varepsilon \sqrt{V_t} \,\mathrm{d}W_t^1. \end{split}$$

Given $V_{t_{n+1}} - V_{t_n}$ and $\int_{t_n}^{t_{n+1}} V_s \, ds$, the log return $\log(S_{t_{n+1}}/S_{t_n})$ is Normal with mean

$$(\mu - \frac{\rho \kappa \theta}{\varepsilon})(t_{n+1} - t_n) + \frac{\rho}{\varepsilon} (V_{t_{n+1}} - V_{t_n}) + (\frac{\rho \kappa}{\varepsilon} - \frac{1}{2}) \int_{t_n}^{t_{n+1}} V_s \, \mathrm{d}s,$$

and variance

$$\left(1-\rho^2\right)\int_{t_n}^{t_{n+1}}V_s\,\mathrm{d}s.$$

(Broadie & Kaya 2006)

Trapezoidal Rule

Task: Simulate $\left(V_{t_{n+1}} - V_{t_n}, \int_{t_n}^{t_{n+1}} V_s \, \mathrm{d}s\right)$

- ▶ Laplace transform of ∫_{t_n}<sup>t_{n+1} V_s ds given V_{t_{n+1}} and V_{t_n} (Pitman & Yor 1982, Broadie & Kaya 2006)
 </sup>
- Representation as infinite sums and mixtures of independent Gamma-distributed random variables (Glasserman & Kim 2009)
- Trapezoidal rule (Andersen 2007): approximation of time integral by

$$\frac{1}{2}(V_{t_{n+1}}+V_{t_n})(t_{n+1}-t_n).$$

Require martingale: $e^{-\mu(t_{n+1}-t_n)}E[S_{t_{n+1}}|(V_{t_n}, S_{t_n})] = S_{t_n}$ \rightarrow adjustment by multiplicative factor

$$\exp\bigl(K_0(t_{n+1}-t_n)+K_1V_{t_n}\bigr).$$

Test Cases

	Case I	Case II
ϵ	1	0.9
κ	0.5	0.3
ho	-0.9	-0.5
Т	10	15
$V(0), \theta$	0.04	0.04
$4\kappa\theta/\varepsilon^2$	8/100	48/810

Table: Test cases from Andersen. In all cases S(0) = 100.

Test cases are "challenging and practically relevant"

- Case I representative of long-dated FX option market,
- Case II representative of long-dated interest-rate option market.

```
(Andersen 2008, p. 26.)
```

Numerical Results Case I: Error and Sdev

h	Andersen	Marsaglia
		Strike 100
1	0.2211 (0.012)	-0.2374 (0.013)
1/2	0.1164 (0.013)	-0.0707 (0.013)
1/4	0.0143* (0.013)	-0.0440 (0.013)
1/8	-0.0277* (0.013)	-0.0050* (0.013)
1/16	0.0162* (0.013)	0.0019* (0.013)
		Strike 140
1	-0.0883 (0.002)	-0.0283 (0.002)
1/2	-0.0274 (0.003)	-0.0121 (0.002)
1/4	-0.0013 (0.003)	-0.0048 (0.003)
1/8	0.0047 (0.003)	-0.0011 (0.003)
1/16	0.0018 (0.003)	0.0015 (0.003)
		Strike 60
1	0.0317* (0.025)	-0.1234 (0.025)
1/2	0.0345* (0.025)	-0.0556* (0.025)
1/4	0.0111* (0.025)	-0.0388* (0.025)
1/8	0.0407* (0.025)	0.0120* (0.025)
1/16	0.0284* (0.025)	0.0003* (0.025)

Numerical Results Case II: Error and Sdev

h	Andersen	Marsaglia
	S	trike 100
1	-0.4833 (0.042)	-0.1404 (0.042)
1/2	-0.0400* (0.046)	-0.0264* (0.044)
1/4	-0.0231* (0.044)	0.0217* (0.048)
1/8	0.0807* (0.045)	-0.0553* (0.052)
1/16	-0.0026* (0.042)	0.0521* (0.046)
	S	itrike 140
1	-0.3082 (0.036)	-0.0926* (0.036)
1/2	0.0515* (0.040)	0.0029* (0.037)
1/4	-0.0016* (0.038)	0.0207* (0.043)
1/8	0.0740* (0.039)	-0.0327* (0.047)
1/16	0.0069* (0.035)	0.0509* (0.040)
	S	Strike 60
1	0.1180 (0.048)	-0.0379* (0.049)
1/2	0.1349 (0.052)	-0.0036* (0.050)
1/4	-0.0066* (0.050)	0.0290* (0.054)
1/8	0.0809* (0.052)	-0.0650* (0.058)
1/16	-0.0170* (0.049)	0.0492* (0.052)

Numerical Results

- Generalized Marsaglia method compares very favourably with Andersen's method in terms of efficiency (average CPU time over all steps): it is two times faster than Andersen's method in case 1 and uses 20% less CPU time in case 2.
- Convergence rate in Andersen's method unknown.
- Generalized Marsaglia method has advantage of simulating the chi-square distribution *exactly*.

Conclusion

- Derive representation of a chi-square random variable as sum of powers of independent generalized Gaussian random variables.
- Prove a new method the generalized Marsaglia method for sampling generalized Gaussian random variables.
- Establish a new method to sample a chi-square distributed random variable, and thus to simulate the Cox–Ingersoll–Ross model exactly and efficiently.
- Establish a new method to simulate the Heston volatility model in cases that are "challenging and practically relevant" (Andersen 2008 p. 26).
- Method is efficient, robust and and easy to implement.