Positive Stochastic Volatility Simulation

Simon J.A. Malham & Anke Wiese

Heriot–Watt University, Edinburgh

Bachelier Finance Society 6th World Congress June 22–26, 2010, Toronto

Introduction: The Heston Model

$$
dS_t = \mu S_t dt + \sqrt{V_t} S_t (\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2),
$$

\n
$$
dV_t = \kappa(\theta - V_t) dt + \varepsilon \sqrt{V_t} dW_t^1,
$$

where

- \blacktriangleright W_t^1 and W_t^2 independent scalar Wiener processes
- \blacktriangleright μ , κ , θ and ε are positive constants
- \triangleright $\rho \in (-1, 1)$
- \triangleright S price process of underlying variable (e.g. stock index, exchange rate)
- \blacktriangleright V variance process.

Heston (1993), Cox, Ingersoll & Ross (1985), Feller (1951)

Properties of V

 $V_t > 0$ (assuming $V_0 > 0$).

 \blacktriangleright Let

$$
\nu := 4\kappa\theta/\varepsilon^2,
$$

Then

- If $\nu \geq 2$, then V is strictly positive.
- If $\nu < 2$, then the zero boundary is attainable and instantaneously reflecting.
- \triangleright Attainability of zero boundary and reflection property are major obstacle in computational treatment.
- \blacktriangleright ν < 2 is relevant for foreign exchange and long-dated interest-rate markets (Andersen 2008).

Here: focus on attainable zero boundary case, in particular $\nu < 1$.

Modifications of Euler-Maruyama Scheme

Extend vector fields to negative domain. e.g.

▶ Partial truncation (Delbaen and Deelstra 1998)

$$
\hat{V}_{t_{n+1}} = \hat{V}_{t_n} + h\kappa(\theta - \hat{V}_{t_n}) + \varepsilon \Delta W_{t_n}^1 \sqrt{\hat{V}_{t_n}^+}.
$$

 \triangleright Reflection (Bossy and Diop 2007)

$$
\hat{V}_{t_{n+1}} = |\hat{V}_{t_n}| + h\kappa(\theta - |\hat{V}_{t_n}|) + \varepsilon \Delta W_{t_n}^1 \sqrt{|\hat{V}_{t_n}|}.
$$

▶ Full truncation (Lord, Koekoek & Van Dijk 2006)

$$
\hat{V}_{t_{n+1}} = \hat{V}_{t_n} + h\kappa(\theta - \hat{V}_{t_n}^+) + \varepsilon \Delta W_{t_n}^1 \sqrt{\hat{V}_{t_n}^+} \,.
$$

Full truncation works well, but properties (e.g. error) are difficult to derive.

Transition Probability for V

$$
\mathbb{P}(V_t < x \mid V_0) = F_{\chi^2_{\nu}(\lambda)}(x \cdot \eta(t) / \exp(-\kappa t)),
$$

where

 \blacktriangleright $F_{\chi^2_\nu(\lambda)}$ non-central chi-squared distribution function with ν degrees of freedom and non-centrality parameter λ

$$
F_{\chi^2_{\nu}(\lambda)}(z) = \frac{e^{-\lambda/2}}{2^{\nu/2}} \sum_{j=0}^{\infty} \frac{(\lambda/2)^j}{j!2^j \Gamma(\nu/2+j)} \int_0^z \xi^{\nu/2+j-1} e^{-\xi/2} d\xi,
$$

$$
\nu := 4\kappa\theta/\varepsilon^2,
$$

\n
$$
\nu := \frac{4\kappa \exp(-\kappa t)}{\varepsilon^2 (1 - \exp(-\kappa t))},
$$

\n
$$
\nu \lambda = V_0 \eta(t).
$$

Properties of Chi-Square Distribution

 \triangleright Dealing with Non-Centrality

$$
\chi^2_\nu(\lambda)=\chi^2_{\nu+2N},
$$

where N is Poisson distributed with parameter $\lambda/2$. (Johnson 1959, Glasserman 2003)

 \triangleright Divisibility of Chi-Squared Distribution: Assume

- Y_1, Y_2, \ldots, Y_{2N} , Z independent,
- Y_i standard Normally distributed, $i = 1, ..., 2N$,
- \blacktriangleright *Z* χ^2_{ν} -distributed.

Then

$$
\sum_{i=1}^{2N} Y_i^2 + Z \sim \chi^2_{\nu+2N}.
$$

Questions:

- \blacktriangleright How to simulate a χ^2_ν random variable for non-integer $\nu < 1?$
- \blacktriangleright Is there a representation for a χ^2_ν variable with non-integer
	- $\nu < 1$ similar to the integer degrees of freedom case?

Generalized Gaussian Distribution

Definition: A generalized $N(0, 1, q)$ random variable, for $q \ge 1$, has density

$$
f_{\mathsf{N}(0,1,q)}(x) := \frac{q}{2^{1/q+1}\Gamma(1/q)} \cdot \exp\left(-\frac{1}{2}|x|^q\right),
$$

where $x \in \mathbb{R}$ and $\Gamma(\cdot)$ is the standard gamma function.

Note that for $q = 2$, we recover the Normal distribution.

(Gupta & Song 1997, Song & Gupta 1997, Sinz, Gerwinn & Bethge 2009, Sinz & Bethge 2008)

Representation of Chi-Square by Generalized Gaussian

Theorem:

Suppose $X_i \sim N(0, 1, 2q)$ are independent identically distributed random variables for $i = 1, \ldots, p$, where $q > 1$ and $p \in \mathbb{N}$. Then we have

$$
\sum_{i=1}^p |X_i|^{2q} \sim \chi^2_{p/q}.
$$

Proof: Calculate density.

Generalized Marsaglia Polar Method

Theorem:

Suppose for some $q \in \mathbb{N}$ that U_1, \ldots, U_q are independent identically distributed uniform random variables over $[-1, 1]$. Condition this sample set to satisfy the requirement $||U||_{q} < 1$, where $||U||_q$ is the q-norm of $U = (U_1, \ldots, U_q)$. Then the q random variables generated by $U \cdot (-2 \log ||U||_q^q)^{1/q} / ||U||_q$ are independent $N(0, 1, q)$ distributed random variables.

Proof: Calculate density.

Remark: $q = 2$: Marsaglia's Polar Method for Normal distribution.

Summary: Algorithm

Assume $\nu = \frac{p}{q}$ $\frac{p}{q}$ with p and q natural numbers (no loss of generality). To produce an exact $\chi^2_{\rho/q}(\lambda)$ sample:

- 1. Generate 2q independent uniform random variables over $[-1, 1]$: $U = (U_1, \ldots, U_{2a})$.
- 2. If $||U||_{2q} < 1$ continue, otherwise repeat Step 1.
- 3. Compute $Z = U \cdot (-2 \log ||U||_{2a}^{2q}$ $\frac{2q}{2q}$) $^{1/2q}/\|U\|_{2q}.$ This gives $2q$ independent N(0, 1, 2q) random variables $Z = (Z_1, \ldots, Z_{2q})$.

4. Compute
$$
Z_1^{2q} + \cdots + Z_p^{2q} \sim \chi^2_{p/q}(\lambda)
$$
.

Probability of Acceptance

Probability of acceptance in each attempt:

$$
p_M = \left(\frac{\Gamma(1/2q)}{2q}\right)^{2q}
$$

- \bullet $q = 1$: probability of acceptance is 0.7854 (sample from Gaussian distribution)
- ► As $q \to \infty$, we have $p_M \to \text{e}^{-\gamma} \approx 0.5615$, where γ is the Euler-Mascheroni constant.
- In each accepted attempt, $2q$ independent generalized Gaussian variables are generated, of which $p < q$ are used to generate one $\chi^2_{\rho/q}$ variable.
- Expected number of attempts to generate $2q/p$ independent $\chi^2_{\boldsymbol{\rho}/\boldsymbol{q}}$ variables is

$$
1/p_M\in [1.2732,\,1.7809].
$$

Comparison with Acceptance-Rejection Method

Ahrens & Dieter: acceptance-rejection method with mixture of prior densities

- ► $(p/2q)x^{p/2q-1}$ on [0, 1] with weight $e/(e+p/2q)$,
- \triangleright exp(1 − x) on [1, ∞) with weight $(p/2q)(e + p/2q)$.
- ► Expected number of steps to generate $2q/p$ independent $\chi^2_{p/q}$ variables is

$$
(2q/p)\cdot\frac{p/2q+e}{p/2q\Gamma(p/2q)e}.
$$

This is

- \blacktriangleright larger than expected number of steps in generalized Marsaglia method for all $p/q < 1$.
- ^I unbounded.
- \triangleright Computational effort (CPU time): generalized Marsaglia method compares very favourably with acceptance-rejection method (see overleaf).

CPU Time vs Degrees of Freedom – 1 Digit

CPU Time vs Degrees of Freedom – 3 Significant Digits

Andersen's Distribution Approximation

If \hat{V}_{t_n} is large:

$$
\hat{V}_{t_{n+1}}=(a+bZ)^2\,,
$$

where $Z \sim N(0, 1)$.

 \blacktriangleright If \hat{V}_{t_n} is small: replace true density with mixture of Dirac delta function and exponential density

$$
p\delta(0)+(1-p)\beta\exp(-\beta x),
$$

where $\delta(0)$ is the Dirac delta function and p and β are constants.

Parameters are chosen to match expected value and variance. (Andersen 2008)

Simulating S

Recall

$$
dS_t = \mu S_t dt + \rho \sqrt{V_t} S_t dW_t^1 + \sqrt{1 - \rho^2} \sqrt{V_t} S_t dW_t^2,
$$

$$
dV_t = \kappa(\theta - V_t) dt + \varepsilon \sqrt{V_t} dW_t^1.
$$

Given $V_{t_{n+1}}-V_{t_n}$ and $\int_{t_n}^{t_{n+1}}V_s\,\mathrm{d}s$, the log return $\log(S_{t_{n+1}}/S_{t_n})$ is Normal with mean

$$
\big(\mu-\frac{\rho\kappa\theta}{\varepsilon}\big)\big(t_{n+1}-t_n\big)+\frac{\rho}{\varepsilon}\big(V_{t_{n+1}}-V_{t_n}\big)+\big(\frac{\rho\kappa}{\varepsilon}-\frac{1}{2}\big)\int_{t_n}^{t_{n+1}}V_s\,\mathrm{d}s,
$$

and variance

$$
\left(1-\rho^2\right)\int_{t_n}^{t_{n+1}}V_s\,\mathrm{d}s.
$$

(Broadie & Kaya 2006)

Trapezoidal Rule

Task: Simulate $(V_{t_{n+1}}-V_{t_n},\int_{t_n}^{t_{n+1}})$ $\int_{t_n}^{\tau_{n+1}} V_s \, \mathrm{d} s$ ¢

- ► Laplace transform of $\int_{t_n}^{t_{n+1}} V_s ds$ given $V_{t_{n+1}}$ and V_{t_n} (Pitman & Yor 1982, Broadie & Kaya 2006)
- \triangleright Representation as infinite sums and mixtures of independent Gamma-distributed random variables (Glasserman & Kim 2009)
- \triangleright Trapezoidal rule (Andersen 2007): approximation of time integral by

$$
\frac{1}{2}\big(V_{t_{n+1}}+V_{t_n}\big)\big(t_{n+1}-t_n\big).
$$

Require martingale: e^{-µ(t_{n+1}-t_n)E} $\mathcal{S}_{t_{n+1}}$ $|(V_{t_n}, S_{t_n})$ l
E $= S_{t_n}$ \rightarrow adjustment by multiplicative factor

$$
\exp\bigl(K_0(t_{n+1}-t_n)+K_1V_{t_n}\bigr).
$$

Test Cases

Table: Test cases from Andersen. In all cases $S(0) = 100$.

Test cases are "challenging and practically relevant"

- \triangleright Case I representative of long-dated FX option market,
- \triangleright Case II representative of long-dated interest-rate option market.

```
(Andersen 2008, p. 26.)
```
Numerical Results Case I: Error and Sdev

Numerical Results

- \triangleright Generalized Marsaglia method compares very favourably with Andersen's method in terms of efficiency (average CPU time over all steps): it is two times faster than Andersen's method in case 1 and uses 20% less CPU time in case 2.
- \triangleright Convergence rate in Andersen's method unknown.
- \triangleright Generalized Marsaglia method has advantage of simulating the chi-square distribution exactly.

Conclusion

- \triangleright Derive representation of a chi-square random variable as sum of powers of independent generalized Gaussian random variables.
- \triangleright Prove a new method the generalized Marsaglia method for sampling generalized Gaussian random variables.
- \triangleright Establish a new method to sample a chi-square distributed random variable, and thus to simulate the Cox–Ingersoll–Ross model exactly and efficiently.
- \triangleright Establish a new method to simulate the Heston volatility model in cases that are "challenging and practically relevant" (Andersen 2008 p. 26).
- \triangleright Method is efficient, robust and and easy to implement.