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Introduction: The Heston Model

dSt = µSt dt +
√

Vt St

(
ρdW 1

t +
√

1− ρ2 dW 2
t

)
,

dVt = κ(θ − Vt) dt + ε
√

Vt dW 1
t ,

where

I W 1
t and W 2

t independent scalar Wiener processes

I µ, κ, θ and ε are positive constants

I ρ ∈ (−1, 1)

I S price process of underlying variable (e.g. stock index,
exchange rate)

I V variance process.

Heston (1993), Cox, Ingersoll & Ross (1985), Feller (1951)
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Properties of V

I Vt ≥ 0 (assuming V0 ≥ 0).

I Let
ν := 4κθ/ε2,

Then
I If ν ≥ 2, then V is strictly positive.
I If ν < 2, then the zero boundary is attainable and

instantaneously reflecting.

I Attainability of zero boundary and reflection property are
major obstacle in computational treatment.

I ν < 2 is relevant for foreign exchange and long-dated
interest-rate markets (Andersen 2008).

Here: focus on attainable zero boundary case, in particular ν < 1.
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Modifications of Euler-Maruyama Scheme

Extend vector fields to negative domain. e.g.

I Partial truncation (Delbaen and Deelstra 1998)

V̂tn+1 = V̂tn + hκ(θ − V̂tn) + ε∆W 1
tn

√
V̂ +

tn .

I Reflection (Bossy and Diop 2007)

V̂tn+1 = |V̂tn |+ hκ(θ − |V̂tn |) + ε∆W 1
tn

√
|V̂tn | .

I Full truncation (Lord, Koekoek & Van Dijk 2006)

V̂tn+1 = V̂tn + hκ(θ − V̂ +
tn ) + ε∆W 1

tn

√
V̂ +

tn .

Full truncation works well, but properties (e.g. error) are difficult
to derive.
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Transition Probability for V

P
(
Vt < x

∣∣ V0

)
= Fχ2

ν(λ)

(
x · η(t)/ exp(−κt)

)
,

where

I Fχ2
ν(λ) non-central chi-squared distribution function with ν

degrees of freedom and non-centrality parameter λ

Fχ2
ν(λ)(z) =

e−λ/2

2ν/2

∞∑

j=0

(λ/2)j

j!2jΓ(ν/2 + j)

∫ z

0
ξν/2+j−1e−ξ/2 dξ,

I ν := 4κθ/ε2,

I η(t) := 4κ exp(−κt)

ε2
(
1−exp(−κt)

) ,

I λ = V0η(t).
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Properties of Chi-Square Distribution

I Dealing with Non-Centrality

χ2
ν(λ) = χ2

ν+2N ,

where N is Poisson distributed with parameter λ/2. (Johnson
1959, Glasserman 2003)

I Divisibility of Chi-Squared Distribution: Assume
I Y1, Y2, . . . , , Y2N , Z independent,
I Yi standard Normally distributed, i = 1, . . . , 2N,
I Z χ2

ν-distributed.

Then
2N∑

i=1

Y 2
i + Z ∼ χ2

ν+2N .

Questions:

I How to simulate a χ2
ν random variable for non-integer ν < 1?

I Is there a representation for a χ2
ν variable with non-integer

ν < 1 similar to the integer degrees of freedom case?
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Generalized Gaussian Distribution

Definition: A generalized N(0, 1, q) random variable, for q ≥ 1,
has density

fN(0,1,q)(x) :=
q

21/q+1Γ(1/q)
· exp(−1

2 |x |q
)
,

where x ∈ R and Γ(·) is the standard gamma function.

Note that for q = 2, we recover the Normal distribution.

(Gupta & Song 1997, Song & Gupta 1997, Sinz, Gerwinn &
Bethge 2009, Sinz & Bethge 2008)

Positive Stochastic Volatility Simulation, Toronto, June 2010



Representation of Chi-Square by Generalized Gaussian

Theorem:
Suppose Xi ∼ N(0, 1, 2q) are independent identically distributed
random variables for i = 1, . . . , p, where q ≥ 1 and p ∈ N. Then
we have

p∑

i=1

∣∣Xi

∣∣2q ∼ χ2
p/q.

Proof: Calculate density.
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Generalized Marsaglia Polar Method

Theorem:
Suppose for some q ∈ N that U1, . . . ,Uq are independent
identically distributed uniform random variables over [−1, 1].
Condition this sample set to satisfy the requirement ‖U‖q < 1,
where ‖U‖q is the q-norm of U = (U1, . . . ,Uq). Then the q
random variables generated by U · (−2 log ‖U‖q

q)1/q/‖U‖q are
independent N(0, 1, q) distributed random variables.

Proof: Calculate density.

Remark: q = 2: Marsaglia’s Polar Method for Normal distribution.
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Summary: Algorithm

Assume ν = p
q with p and q natural numbers (no loss of

generality). To produce an exact χ2
p/q(λ) sample:

1. Generate 2q independent uniform random variables over
[−1, 1]: U = (U1, . . . ,U2q).

2. If ‖U‖2q < 1 continue, otherwise repeat Step 1.

3. Compute Z = U · (−2 log ‖U‖2q
2q)

1/2q/‖U‖2q. This gives 2q
independent N(0, 1, 2q) random variables Z = (Z1, . . . , Z2q).

4. Compute Z 2q
1 + · · ·+ Z 2q

p ∼ χ2
p/q(λ).
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Probability of Acceptance
Probability of acceptance in each attempt:

pM =

(
Γ
(
1/2q

)

2q

)2q

I q = 1: probability of acceptance is 0.7854 (sample from
Gaussian distribution)

I As q →∞, we have pM → e−γ ≈ 0.5615, where γ is the
Euler-Mascheroni constant.

I In each accepted attempt, 2q independent generalized
Gaussian variables are generated, of which p < q are used to
generate one χ2

p/q variable.

I Expected number of attempts to generate 2q/p independent
χ2

p/q variables is

1/pM ∈ [1.2732, 1.7809].
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Comparison with Acceptance-Rejection Method

Ahrens & Dieter: acceptance-rejection method with mixture of
prior densities

I (p/2q)xp/2q−1 on [0, 1] with weight e/(e + p/2q),

I exp(1− x) on [1,∞) with weight (p/2q)(e + p/2q).

I Expected number of steps to generate 2q/p independent χ2
p/q

variables is

(2q/p) · p/2q + e
p/2qΓ(p/2q)e

.

This is
I larger than expected number of steps in generalized Marsaglia

method for all p/q < 1.
I unbounded.

I Computational effort (CPU time): generalized Marsaglia
method compares very favourably with acceptance-rejection
method (see overleaf).
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CPU Time vs Degrees of Freedom – 1 Digit
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CPU Time vs Degrees of Freedom – 3 Significant Digits
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Andersen’s Distribution Approximation

I If V̂tn is large:
V̂tn+1 = (a + bZ )2 ,

where Z ∼ N(0, 1).

I If V̂tn is small: replace true density with mixture of Dirac delta
function and exponential density

pδ(0) + (1− p)β exp(−βx),

where δ(0) is the Dirac delta function and p and β are
constants.

Parameters are chosen to match expected value and variance.
(Andersen 2008)
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Simulating S

Recall

dSt = µSt dt + ρ
√

Vt St dW 1
t +

√
1− ρ2

√
Vt St dW 2

t ,

dVt = κ(θ − Vt) dt + ε
√

Vt dW 1
t .

Given Vtn+1 − Vtn and
∫ tn+1

tn
Vs ds, the log return log(Stn+1/Stn) is

Normal with mean

(
µ− ρκθ

ε

)
(tn+1 − tn) +

ρ

ε

(
Vtn+1 − Vtn

)
+

(ρκ

ε
− 1

2

) ∫ tn+1

tn

Vs ds,

and variance (
1− ρ2

) ∫ tn+1

tn

Vs ds.

(Broadie & Kaya 2006)
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Trapezoidal Rule

Task: Simulate
(
Vtn+1 − Vtn ,

∫ tn+1

tn
Vs ds

)

I Laplace transform of
∫ tn+1

tn
Vs ds given Vtn+1 and Vtn (Pitman

& Yor 1982, Broadie & Kaya 2006)

I Representation as infinite sums and mixtures of independent
Gamma-distributed random variables (Glasserman & Kim
2009)

I Trapezoidal rule (Andersen 2007): approximation of time
integral by

1

2

(
Vtn+1 + Vtn

)(
tn+1 − tn

)
.

Require martingale: e−µ(tn+1−tn)E
[
Stn+1

∣∣(Vtn , Stn)
]

= Stn

Ã adjustment by multiplicative factor

exp
(
K0(tn+1 − tn) + K1Vtn

)
.
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Test Cases

Case I Case II

ε 1 0.9
κ 0.5 0.3
ρ -0.9 -0.5
T 10 15

V (0), θ 0.04 0.04
4κθ/ε2 8/100 48/810

Table: Test cases from Andersen. In all cases S(0) = 100.

Test cases are “challenging and practically relevant”

I Case I representative of long-dated FX option market,

I Case II representative of long-dated interest-rate option
market.

(Andersen 2008, p. 26.)
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Numerical Results Case I: Error and Sdev

h Andersen Marsaglia

Strike 100

1 0.2211 (0.012) -0.2374 (0.013)
1/2 0.1164 (0.013) -0.0707 (0.013)
1/4 0.0143* (0.013) -0.0440 (0.013)
1/8 -0.0277* (0.013) -0.0050* (0.013)
1/16 0.0162* (0.013) 0.0019* (0.013)

Strike 140
1 -0.0883 (0.002) -0.0283 (0.002)
1/2 -0.0274 (0.003) -0.0121 (0.002)
1/4 -0.0013 (0.003) -0.0048 (0.003)
1/8 0.0047 (0.003) -0.0011 (0.003)
1/16 0.0018 (0.003) 0.0015 (0.003)

Strike 60
1 0.0317* (0.025) -0.1234 (0.025)
1/2 0.0345* (0.025) -0.0556* (0.025)
1/4 0.0111* (0.025) -0.0388* (0.025)
1/8 0.0407* (0.025) 0.0120* (0.025)
1/16 0.0284* (0.025) 0.0003* (0.025)
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Numerical Results Case II: Error and Sdev

h Andersen Marsaglia

Strike 100

1 -0.4833 (0.042) -0.1404 (0.042)
1/2 -0.0400* (0.046) -0.0264* (0.044)
1/4 -0.0231* (0.044) 0.0217* (0.048)
1/8 0.0807* (0.045) -0.0553* (0.052)
1/16 -0.0026* (0.042) 0.0521* (0.046)

Strike 140
1 -0.3082 (0.036) -0.0926* (0.036)
1/2 0.0515* (0.040) 0.0029* (0.037)
1/4 -0.0016* (0.038) 0.0207* (0.043)
1/8 0.0740* (0.039) -0.0327* (0.047)
1/16 0.0069* (0.035) 0.0509* (0.040)

Strike 60
1 0.1180 (0.048) -0.0379* (0.049)
1/2 0.1349 (0.052) -0.0036* (0.050)
1/4 -0.0066* (0.050) 0.0290* (0.054)
1/8 0.0809* (0.052) -0.0650* (0.058)
1/16 -0.0170* (0.049) 0.0492* (0.052)

Positive Stochastic Volatility Simulation, Toronto, June 2010



Numerical Results

I Generalized Marsaglia method compares very favourably with
Andersen’s method in terms of efficiency (average CPU time
over all steps): it is two times faster than Andersen’s method
in case 1 and uses 20% less CPU time in case 2.

I Convergence rate in Andersen’s method unknown.

I Generalized Marsaglia method has advantage of simulating
the chi-square distribution exactly.
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Conclusion

I Derive representation of a chi-square random variable as sum
of powers of independent generalized Gaussian random
variables.

I Prove a new method – the generalized Marsaglia method – for
sampling generalized Gaussian random variables.

I Establish a new method to sample a chi-square distributed
random variable, and thus to simulate the Cox–Ingersoll–Ross
model exactly and efficiently.

I Establish a new method to simulate the Heston volatility
model in cases that are “challenging and practically relevant”
(Andersen 2008 p. 26).

I Method is efficient, robust and and easy to implement.
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