Pathwise convergence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Cubature on Wiener space: Pathwise convergence

Christian Bayer¹ Peter K. Friz¹, ²

¹Institute of Mathematics TU Berlin

²Weierstrass Institute for Applied Analysis and Stochastics Berlin

> June 24, 2010 Toronto

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Outline

Introduction

- Donsker, Trees and Convergence
- Cubature on Wiener space
- 2 A Donsker theorem for cubature on Wiener space
 - Random walks in $G^2(\mathbb{R}^d)$
 - Donsker's theorem for random walks
 - Donsker's theorem for cubature formulas

3 Pathwise convergence

- Pathwise weak convergence of the cubature method
- A numerical example

ション 小田 マイビット ビー シックション

Donsker's theorem

- Given an i.i.d. sequence of *d*-dimensional random variables ξ_1, \ldots, ξ_n with $E[\xi_1] = 0$ and $cov[\xi_1] = I_n$.
- Grid: $\Delta t := T/n, \lfloor t \rfloor := \sup \{k \Delta t \mid k \Delta t \le t\},$ $\lceil t \rceil := \inf \{k \Delta t \mid k \Delta t > t\}.$
- $\blacktriangleright W_t^{(n)} \coloneqq \begin{cases} \sum_{i=1}^k \sqrt{\Delta t} \xi_i, & t = k \Delta t, \\ \frac{t \lfloor t \rfloor}{\Delta t} W_{\lceil t \rceil}^{(n)} + \frac{\lceil t \rceil t}{\Delta t} W_{\lfloor t \rfloor}^{(n)}, & \text{else.} \end{cases}$
- ► Then $W^{(n)}$ converges weakly to the Brownian motion *B*. in $C([0, T]; \mathbb{R}^d)$.

A Donsker theorem for cubature on Wiener space

Pathwise convergence

References

Approximation of SDEs

Consider two SDEs

•
$$dX_t = V_0(X_t)dt + \sum_{i=1}^d V_i(X_t) \circ dB_t^i$$

• $dX_t^{(n)} = V_0(X_t^{(n)})dt + \sum_{i=1}^d V_i(X_t^{(n)}) \circ dW_t^{(n)}$

Problem

Is it true that $X_{\cdot}^{(n)}$ converges weakly to X_{\cdot} on the pathspace if $W^{(n)}$ is a cubature formula on Wiener space, i.e., is it true that for (bounded, continuous) functionals f on the path-space:

$$E[f(X^{(n)})] \xrightarrow{n \to \infty} E[f(X)]?$$

A Donsker theorem for cubature on Wiener space

Pathwise convergence

References

Approximation of SDEs

Consider two SDEs

•
$$dX_t = V_0(X_t)dt + \sum_{i=1}^d V_i(X_t) \circ dB_t^i$$

• $dX_t^{(n)} = V_0(X_t^{(n)})dt + \sum_{i=1}^d V_i(X_t^{(n)}) \circ dW_t^{(n)}$

Problem

Is it true that $X^{(n)}$ converges weakly to X on the pathspace if $W^{(n)}$ is a cubature formula on Wiener space, i.e., is it true that for (bounded, continuous) functionals f on the path-space:

$$E\left[f(X^{(n)})\right] \xrightarrow{n \to \infty} E[f(X)]?$$

Pathwise convergence

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Approximation of SDEs - 2

Program

- Show weak convergence of the truncated signature of the cubature formula to the signature of the Brownian motion. (*Donsker's theorem*)
- Continuity of the solution map of the SDE in the driving signal in rough path sense implies weak convergence on the SDE level.
- Immediate extension to convergence of the flows (more complicated when using martingale problem approach).

Pathwise convergence

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Approximation of SDEs - 2

Program

- Show weak convergence of the truncated signature of the cubature formula to the signature of the Brownian motion. (*Donsker's theorem*)
- Continuity of the solution map of the SDE in the driving signal in rough path sense implies weak convergence on the SDE level.
- Immediate extension to convergence of the flows (more complicated when using martingale problem approach).

Pathwise convergence

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Approximation of SDEs – 2

Program

- Show weak convergence of the truncated signature of the cubature formula to the signature of the Brownian motion. (*Donsker's theorem*)
- Continuity of the solution map of the SDE in the driving signal in rough path sense implies weak convergence on the SDE level.
- Immediate extension to convergence of the flows (more complicated when using martingale problem approach).

Introduction	A Donsker theorem for cubature on Wiener space	Pathwise convergence	References
00000000			

Trees

- Assume that ξ_i is discrete, taking values in $\{\omega_1, \ldots, \omega_m\}$.
- $X_{k\Delta t}^{(n)} = X_{k\Delta t}^{(n)}(\omega_{i_1},\ldots,\omega_{i_k}) \text{ with } i_1,\ldots,i_k \in \{1,\ldots,m\}$
- Obtain a tree for $X^{(n)}$.
- In general, the tree is non-recombining.

Question

Can we get the price of a path-dependent option E[f(X)] as a limit for $n \to \infty$ of approximations $E[\bar{f}(X_{\Delta t}^{(n)}, X_{2\Delta t}^{(n)}, \dots, X_{T}^{(n)})]$?

ション 小田 マイビット ビー シックション

Introduction	A Donsker theorem for cubature on Wiener space	Pathwise convergence	Reference
00000000			

Trees

- Assume that ξ_i is discrete, taking values in $\{\omega_1, \ldots, \omega_m\}$.
- $X_{k\Delta t}^{(n)} = X_{k\Delta t}^{(n)}(\omega_{i_1},\ldots,\omega_{i_k}) \text{ with } i_1,\ldots,i_k \in \{1,\ldots,m\}$
- Obtain a tree for $X^{(n)}$.
- In general, the tree is non-recombining.

Question

Can we get the price of a path-dependent option $E[f(X_{.})]$ as a limit for $n \to \infty$ of approximations $E[\overline{f}(X_{\Delta t}^{(n)}, X_{2\Delta t}^{(n)}, \dots, X_{T}^{(n)})]$?

ション 小田 マイビット ビー シックション

A Donsker theorem for cubature on Wiener space

Pathwise convergence

ション 小田 マイビット ビー シックション

References

Idea of cubature on Wiener space

Consider a stochastic process $W^{\mathcal{D}}$ with paths of bounded variation and approximate

 $E[f(X_T)] \approx E[f(X_T^{\mathcal{D}})],$

where

$$X_{t} = X_{0} + \int_{0}^{t} V_{0}(X_{s}) ds + \sum_{i=1}^{d} \int_{0}^{t} V_{i}(X_{s}) \circ dB_{s}^{i}, \qquad (1)$$
$$X_{t}^{\mathcal{D}} = X_{0} + \int_{0}^{t} V_{0}(X_{s}^{\mathcal{D}}) dh(s) + \sum_{i=1}^{d} \int_{0}^{t} V_{i}(X_{s}^{\mathcal{D}}) dW_{s}^{\mathcal{D},i}. \qquad (2)$$

- ➤ X^D is the solution of a random ODE that can be solved using classical ODE schemes.
- For ease of notation, we ignore the drift part from now on.

A Donsker theorem for cubature on Wiener space

Pathwise convergence

ション 小田 マイビット ビー シックション

References

Idea of cubature on Wiener space

Consider a stochastic process $W^{\mathcal{D}}$ with paths of bounded variation and approximate

 $E[f(X_T)] \approx E[f(X_T^{\mathcal{D}})],$

where

$$X_t = X_0 + \int_0^t V_0(X_s) ds + \sum_{i=1}^d \int_0^t V_i(X_s) \circ dB_s^i,$$
 (1)

$$X_t^{\mathcal{D}} = X_0 + \int_0^t V_0(X_s^{\mathcal{D}}) dh(s) + \sum_{i=1}^d \int_0^t V_i(X_s^{\mathcal{D}}) dW_s^{\mathcal{D},i}.$$
 (2)

- ➤ X^D is the solution of a random ODE that can be solved using classical ODE schemes.
- ► For ease of notation, we ignore the drift part from now on.

A Donsker theorem for cubature on Wiener space

Pathwise convergence

Signature of a path

Definition

Let $x : [0, T] \to \mathbb{R}^d$ be a continuous path. The truncated signature $S_m(x)$ is the collection of the iterated integrals

$$S_m(x)_{0,t} = \left(\int_{0 \le t_1 \le \dots \le t_k \le t} dx_{t_1}^{i_1} \cdots dx_{t_k}^{i_k} \mid k \le m, (i_1, \dots, i_k) \in \{1, \dots, d\}^k \right)$$

Remark

- If x has bounded variation, the integral is the Stieltjes integral, if x is a Brownian motion, it is the Stratonovich integral.
- ► $S_m(x)$ has values in the free step-m nilpot. Lie group $G_m(\mathbb{R}^d)$.

► Scaling:
$$S_m(B)_{0,t} \sim \delta_{\sqrt{t}} (S_m(B)_{0,1}) :=$$

 $\left(\sqrt{t^k} \int_{0 \le t_1 \le \dots \le t_k \le 1} \circ dB_{t_1}^{i_1} \cdots \circ dB_{t_k}^{i_k}\right).$

A Donsker theorem for cubature on Wiener space

Pathwise convergence

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

References

Cubature formulas on Wiener space

Definition

A cubature formula on Wiener space of degree *m* is a continuous process *W* with paths of bounded variation such that $E[S_m(W)_{0,1}] = E[S_m(B)_{0,1}].$

Example

- Classical cubature in the sense of Lyons and Victoir: *W* takes finitely many values ω_i with probability λ_i , i = 1, ..., k.
- ► $W_t := tB_1, 0 \le t \le 1$. (Order m = 3, Wong-Zakai)

A Donsker theorem for cubature on Wiener space

Pathwise convergence

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

References

Cubature formulas on Wiener space

Definition

A cubature formula on Wiener space of degree *m* is a continuous process *W* with paths of bounded variation such that $E[S_m(W)_{0,1}] = E[S_m(B)_{0,1}].$

Example

- Classical cubature in the sense of Lyons and Victoir: *W* takes finitely many values ω_i with probability λ_i , i = 1, ..., k.
- $W_t := tB_1, 0 \le t \le 1$. (Order m = 3, Wong-Zakai)

A Donsker theorem for cubature on Wiener space

Pathwise convergence

References

The Ninomiya-Victoir scheme

- Z_k^j independent $\mathcal{N}(0,1)$
- $\mathsf{X}_{t_k}^{\mathcal{D}} = \exp\left(\frac{\Delta t_k}{2}\mathsf{V}_0\right)\exp\left(\sqrt{\Delta t_k}Z_k^{\mathsf{1}}\mathsf{V}_1\right)\cdots \\ \cdots \exp\left(\sqrt{\Delta t_k}Z_k^{\mathsf{d}}\mathsf{V}_d\right)\exp\left(\frac{\Delta t_k}{2}\mathsf{V}_0\right)\mathsf{X}_{t_{k-1}}^{\mathcal{D}}$
- Reversed order with probability 1/2
- Idea: Cubature path always moves parallel to the axes

$$\blacktriangleright \dot{W}_{s}^{i} = \begin{cases} 1/\epsilon, & s \in [0, \epsilon/2], i = 0, \\ Z^{i}/\epsilon, & s \in]\epsilon/2 + (i-1)\epsilon, \epsilon/2 + i\epsilon], i > 0, \\ 1/\epsilon, & s \in]1 - \epsilon/2, 1], i = 0, \\ 0, & \text{else.} \end{cases}$$

- Cubature method of degree m = 5
- Reversed order with probability 1/2, $\epsilon \coloneqq 1/(1+d)$
- Individual ODEs can often be computed explicitly

A Donsker theorem for cubature on Wiener space

Pathwise convergence

References

The Ninomiya-Victoir scheme

• Z_k^j independent $\mathcal{N}(0,1)$

$$X_{t_k}^{\mathcal{D}} = \exp\left(\frac{\Delta t_k}{2} V_0\right) \exp\left(\sqrt{\Delta t_k} Z_k^{\dagger} V_1\right) \cdots \\ \cdots \exp\left(\sqrt{\Delta t_k} Z_k^{d} V_d\right) \exp\left(\frac{\Delta t_k}{2} V_0\right) X_{t_{k-1}}^{\mathcal{D}}$$

- Reversed order with probability 1/2
- Idea: Cubature path always moves parallel to the axes

$$\blacktriangleright \dot{W}_{s}^{i} = \begin{cases} 1/\epsilon, & s \in [0, \epsilon/2], i = 0, \\ Z^{i}/\epsilon, & s \in]\epsilon/2 + (i-1)\epsilon, \epsilon/2 + i\epsilon], i > 0, \\ 1/\epsilon, & s \in]1 - \epsilon/2, 1], i = 0, \\ 0, & \text{else.} \end{cases}$$

- Cubature method of degree m = 5
- Reversed order with probability 1/2, $\epsilon \coloneqq 1/(1+d)$
- Individual ODEs can often be computed explicitly

Introduction

Pathwise convergence

ション 小田 マイビット ビー シックション

Weak approximation with cubature on Wiener space

- Given a grid $\mathcal{D} = \{0 = t_0 < t_1 < \cdots < t_n = T\}$ with mesh size $|\mathcal{D}|, \Delta t_k \coloneqq t_k t_{k-1}$.
- W₍₁₎,..., W_(n) independent copies of W, scaled to form cubature formulas on [0, Δt_k], and concatenated gives a process W^D_t, 0 ≤ t ≤ T.
- ▶ Solve the random ODE $dX_t^{\mathcal{D}} = \sum_{i=1}^d V_i(X_t^{\mathcal{D}}) dW_t^{\mathcal{D},i}$.

Theorem (Lyons and Victoir, Kusuoka 2004)

 $E[f(X_T)] = E[f(X_T^{\mathcal{D}})] + O(|\mathcal{D}|^{(m-1)/2})$ provided that the Vector fields are smooth and one of the following conditions is satisfied:

- f is smooth,
- ► f is Lipschitz, the vector fields satisfy the uniform Hörmander condition and D is of a certain non-uniform form.

Weak approximation with cubature on Wiener space

- Given a grid $\mathcal{D} = \{0 = t_0 < t_1 < \cdots < t_n = T\}$ with mesh size $|\mathcal{D}|, \Delta t_k \coloneqq t_k t_{k-1}$.
- W₍₁₎,..., W_(n) independent copies of W, scaled to form cubature formulas on [0, Δt_k], and concatenated gives a process W^D_t, 0 ≤ t ≤ T.
- Solve the random ODE $dX_t^{\mathcal{D}} = \sum_{i=1}^d V_i(X_t^{\mathcal{D}}) dW_t^{\mathcal{D},i}$.

Theorem (Lyons and Victoir, Kusuoka 2004)

 $E[f(X_T)] = E[f(X_T^{\mathcal{D}})] + O(|\mathcal{D}|^{(m-1)/2})$ provided that the Vector fields are smooth and one of the following conditions is satisfied:

- f is smooth,
- ► f is Lipschitz, the vector fields satisfy the uniform Hörmander condition and D is of a certain non-uniform form.

A Donsker theorem for cubature on Wiener space

Pathwise convergence

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

-

References

Donsker theorem for cubature formulas

Given a cubature formula on Wiener space W of degree m.

Definition

Donsker's theorem in rough path topology holds for W if for any sequence \mathcal{D}_n of grids on [0, T] with $|\mathcal{D}_n| \to 0$, any $1/3 < \alpha \le 1/2$ and any continuous functional $f : C^{0,\alpha-H\"{o}l}([0, T]; G_2(\mathbb{R}^d)) \to \mathbb{R}$ we have:

$$E\left[f\left(S_2(W^{\mathcal{D}_n})_{0,\cdot}\right)\right]\xrightarrow[n\to\infty]{} E\left[f(S_2(B)_{0,\cdot})\right].$$

Remark

- Non-uniform grids required by Kusuoka's results.
- $S_N(W^{\mathcal{D}})$ is usually not piecewise geodesic.
- Continuity of the Lyons lift S₂(B) → S_N(B) (and similarly for W^D) implies result for S_N, N ≥ 2.

A Donsker theorem for cubature on Wiener space

Pathwise convergence

References

Donsker theorem for cubature formulas

Given a cubature formula on Wiener space W of degree m.

Definition

Donsker's theorem in rough path topology holds for W if for any sequence \mathcal{D}_n of grids on [0, T] with $|\mathcal{D}_n| \to 0$, any $1/3 < \alpha \le 1/2$ and any continuous functional $f : C^{0,\alpha-\text{H\"ol}}([0, T]; G_2(\mathbb{R}^d)) \to \mathbb{R}$ we have:

$$E\left[f\left(S_2(W^{\mathcal{D}_n})_{0,\cdot}\right)\right]\xrightarrow[n\to\infty]{} E\left[f(S_2(B)_{0,\cdot})\right].$$

Remark

- Non-uniform grids required by Kusuoka's results.
- $S_N(W^{\mathcal{D}})$ is usually not piecewise geodesic.
- Continuity of the Lyons lift S₂(B) → S_N(B) (and similarly for W^D) implies result for S_N, N ≥ 2.

A Donsker theorem for cubature on Wiener space

Pathwise convergence

Random walks in $G^2(\mathbb{R}^d)$

- Grid $\mathcal{D}_n = \{0 = t_0 < \cdots < t_n = T\}$, cubature formula *W*.
- ► $G^2(\mathbb{R}^d) \subset \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2}, \xi = \exp\left(\sum_{i=1}^d X^i e_i + \sum_{i < j} A^{i,j}[e_i, e_j]\right)$ a random variable in $G^2(\mathbb{R}^d)$
- X^i , $A^{i,j}$ have finite moments of all orders, $E[X^i] = 0$.
- ► $\xi_{(k)}$ independent copies of ξ , $\xi_k^n \coloneqq \delta_{\sqrt{\Delta t_k}}(\xi_{(k)}), \Xi_0^n \coloneqq 1,$ $\Xi_{k+1}^n \coloneqq \Xi_k^n \otimes \xi_{k+1}^n.$
- Connection to cubature: choose $\xi = S_2(W)_{0,1}$

Remark

Donsker's theorem on Lie groups in uniform topology is a classical result of Stroock and Varadhan, 1973.

A Donsker theorem for cubature on Wiener space

Pathwise convergence

Random walks in $G^2(\mathbb{R}^d)$

- Grid $\mathcal{D}_n = \{0 = t_0 < \cdots < t_n = T\}$, cubature formula *W*.
- ► $G^2(\mathbb{R}^d) \subset \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2}, \xi = \exp\left(\sum_{i=1}^d X^i e_i + \sum_{i < j} A^{i,j}[e_i, e_j]\right)$ a random variable in $G^2(\mathbb{R}^d)$
- X^i , $A^{i,j}$ have finite moments of all orders, $E[X^i] = 0$.
- ► $\xi_{(k)}$ independent copies of ξ , $\xi_k^n \coloneqq \delta_{\sqrt{\Delta t_k}}(\xi_{(k)}), \Xi_0^n \coloneqq 1$, $\Xi_{k+1}^n \coloneqq \Xi_k^n \otimes \xi_{k+1}^n$.
- Connection to cubature: choose $\xi = S_2(W)_{0,1}$

Remark

Donsker's theorem on Lie groups in uniform topology is a classical result of Stroock and Varadhan, 1973.

A Donsker theorem for cubature on Wiener space $\circ \circ \circ \circ \circ \circ \circ$

Pathwise convergence

References

Random walks in $G^2(\mathbb{R}^d)$

- Grid $\mathcal{D}_n = \{0 = t_0 < \cdots < t_n = T\}$, cubature formula *W*.
- ► $G^2(\mathbb{R}^d) \subset \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2}, \xi = \exp\left(\sum_{i=1}^d X^i e_i + \sum_{i < j} A^{i,j}[e_i, e_j]\right)$ a random variable in $G^2(\mathbb{R}^d)$
- X^i , $A^{i,j}$ have finite moments of all orders, $E[X^i] = 0$.
- ► $\xi_{(k)}$ independent copies of ξ , $\xi_k^n \coloneqq \delta_{\sqrt{\Delta t_k}}(\xi_{(k)}), \Xi_0^n \coloneqq 1, \Xi_{k+1}^n \coloneqq \Xi_k^n \otimes \xi_{k+1}^n.$
- Connection to cubature: choose $\xi = S_2(W)_{0,1}$

Theorem (Breuillard, Friz, Huessman)

Assume that the grids \mathcal{D}_n are uniform. Construct stochastic processes Ξ_t^n with values in $G^2(\mathbb{R}^d)$ by $\Xi_{t_k}^n = \Xi_k^n$ and by geodesic interpolation between the grid points. Then Donsker's theorem in rough path topology holds for $\Xi_{t_k}^n$.

A Donsker theorem for cubature on Wiener space $\circ \circ \circ \circ \circ \circ \circ$

Pathwise convergence

References

Random walks in $G^2(\mathbb{R}^d)$

- Grid $\mathcal{D}_n = \{0 = t_0 < \cdots < t_n = T\}$, cubature formula *W*.
- ► $G^2(\mathbb{R}^d) \subset \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2}, \xi = \exp\left(\sum_{i=1}^d X^i e_i + \sum_{i < j} A^{i,j}[e_i, e_j]\right)$ a random variable in $G^2(\mathbb{R}^d)$
- X^i , $A^{i,j}$ have finite moments of all orders, $E[X^i] = 0$.
- ► $\xi_{(k)}$ independent copies of ξ , $\xi_k^n \coloneqq \delta_{\sqrt{\Delta t_k}}(\xi_{(k)}), \Xi_0^n \coloneqq 1, \Xi_{k+1}^n \coloneqq \Xi_k^n \otimes \xi_{k+1}^n.$
- Connection to cubature: choose $\xi = S_2(W)_{0,1}$

Theorem (Breuillard, Friz, Huessman)

Assume that the grids \mathcal{D}_n are uniform. Construct stochastic processes Ξ_t^n with values in $G^2(\mathbb{R}^d)$ by $\Xi_{t_k}^n = \Xi_k^n$ and by geodesic interpolation between the grid points. Then Donsker's theorem in rough path topology holds for $\Xi_{t_k}^n$.

A Donsker theorem for cubature on Wiener space $\circ \circ \circ \circ \circ \circ \circ$

Pathwise convergence

ション 小田 マイビット ビー シックション

References

Donsker's theorem for random walks

Lemma (Pap 1993)

The sequence Ξ_n^n , k = 0, ..., n, $n \in \mathbb{N}$, satisfies the central limit theorem, i.e., Ξ_n^n converges weakly to the Gaussian measure on $G^2(\mathbb{R}^d)$ with infinitesimal generator

$$\sum_{i < j} E[A^{i,j}] \frac{\partial}{\partial x^{i,j}} + \frac{1}{2} \sum_{i \le j} \operatorname{cov}(X^i, X^j) \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j}.$$

- ► Tightness in Hölder norm for the geodesically interpolated random walk Ξ.
- ▶ Norm on $G^2(\mathbb{R}^d)$ is the Carnot-Caratheodory norm $\|\cdot\|$.
- Use Kolmogorov's criterion, i.e., need moment bound.

A Donsker theorem for cubature on Wiener space $\circ \circ \circ \circ \circ \circ \circ$

Pathwise convergence

ション 小田 マイビット ビー シックション

References

Donsker's theorem for random walks

Lemma (Pap 1993)

The sequence Ξ_n^k , $k = 0, ..., n, n \in \mathbb{N}$, satisfies the central limit theorem, i.e., Ξ_n^n converges weakly to the Gaussian measure on $G^2(\mathbb{R}^d)$ with infinitesimal generator

$$\sum_{i < j} E[A^{i,j}] \frac{\partial}{\partial x^{i,j}} + \frac{1}{2} \sum_{i \leq j} \operatorname{cov}(X^i, X^j) \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j}.$$

- ► Tightness in Hölder norm for the geodesically interpolated random walk Ξ.
- ▶ Norm on $G^2(\mathbb{R}^d)$ is the Carnot-Caratheodory norm $\|\cdot\|$.
- Use Kolmogorov's criterion, i.e., need moment bound.

A Donsker theorem for cubature on Wiener space $\circ \circ \circ \circ \circ \circ \circ \circ$

Pathwise convergence

Donsker's theorem for random walks - 2

Lemma

For every $p \in \mathbb{N}$ there is a constant *C* independent of *k* and *n* such that $E\left[\left\|\Xi_{k}^{n}\right\|^{4p}\right] = E\left[\left\|\xi_{1}^{n}\otimes\cdots\otimes\xi_{k}^{n}\right\|^{4p}\right] \leq Ct_{k}^{2p}$.

Proof.

•
$$||x|| \le C\left(\left|\pi_1(\log(x))\right| + \sqrt{\left|\pi_2(\log(x))\right|}\right)$$

- $E\left[\left|\pi_1(\log(\Xi_k^n))\right|^{4\rho}\right] \le Ct_k^{2\rho}$ by Rosenthal's inequality (on \mathbb{R}^d)
- $E\left[\left|\pi_2(\log(\Xi_k^n))\right|^{2p}\right] \le Ct_k^{2p}$ uses the fact that $\left|\pi_2(\log(\Xi_k^n))\right|^{2p}$ is a homogeneous polynomial and iterates through the random walk using the Markov property

- * ロ * * 個 * * 目 * * 目 * ・ 目 ・ の < @

A Donsker theorem for cubature on Wiener space $\circ \circ \circ \circ \circ \circ \circ \circ$

Pathwise convergence

Donsker's theorem for random walks - 2

Lemma

For every $p \in \mathbb{N}$ there is a constant *C* independent of *k* and *n* such that $E\left[\left\|\Xi_{k}^{n}\right\|^{4p}\right] = E\left[\left\|\xi_{1}^{n}\otimes\cdots\otimes\xi_{k}^{n}\right\|^{4p}\right] \leq Ct_{k}^{2p}$.

Proof.

$$||x|| \leq C\left(\left|\pi_1(\log(x))\right| + \sqrt{\left|\pi_2(\log(x))\right|}\right)$$

- $E\left[\left|\pi_1(\log(\Xi_k^n))\right|^{4p}\right] \le Ct_k^{2p}$ by Rosenthal's inequality (on \mathbb{R}^d)
- $E\left[\left|\pi_2(\log(\Xi_k^n))\right|^{2p}\right] \le Ct_k^{2p}$ uses the fact that $\left|\pi_2(\log(\Xi_k^n))\right|^{2p}$ is a homogeneous polynomial and iterates through the random walk using the Markov property

|▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへで

Pathwise convergence

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

References

Donsker's theorem for random walks - 3

Theorem

Define Ξ_t^n , $0 \le t \le T$, by geodesical interpolation of Ξ_k^n , k = 0, ..., n. Then Ξ^n converges weakly in α -Hölder topology (for every $1/3 < \alpha \le 1/2$) to $S_2(B)$ provided that $|\mathcal{D}_n| \to 0$.

Remark

This removes the requirement of uniform grids.

An assumption

Assumption

The cubature measure is supported on finite element paths, i.e., W takes values in the Cameron-Martin space \mathcal{H} and the Cameron-Martin norm has finite moments of all orders, i.e., $\forall k \in \mathbb{N}$

$$E\left[\left\|W\right\|_{\mathcal{H}}^{k}\right] = E\left[\left(\int_{0}^{1}\left|\dot{W}(s)\right|^{2}ds\right)^{k/2}\right] < \infty.$$

Remark

This assumption is (up to reparametrization) satisfied for all classical cubature formulas in the sense of Lyons and Victoir and holds for all reasonable variations, like the Ninomiya-Victoir scheme.

Donsker's theorem for cubature formulas

Theorem

The signature $S_2(W^{\mathcal{D}_n})_{0,\cdot}$ converges weakly in α -Hölder topology to $S_2(B)_{0,\cdot}$ for any $1/3 < \alpha \le 1/2$ provided that $|\mathcal{D}_n| \to 0$ and W satisfies the Assumption.

Corollary

Let ^hW denote an \mathbb{R}^{d+1} -valued process given by ^hW_t = (h(t), W_t), where $h : [0, 1] \to \mathbb{R}$ denotes a deterministic Lipschitz function with h(0) = 0 and h(1) = 1. Again, let ^hW^{D_n} (a process defined on [0, T] with values in \mathbb{R}^{d+1}) be defined by proper re-scaling and concatenating independent copies of ^hW. Then $S_2 ({}^{h}W^{D_n})_{0, - \xrightarrow{n \to \infty}} S_2(\widetilde{B})_{0, -}$ weakly in rough path topology, where $\widetilde{B}_t := (t, B_t)$.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Pathwise weak convergence of the cubature method

Theorem

Given grids \mathcal{D}_n and a cubature formula ${}^hW^{\mathcal{D}_n}$ as above, define $h^{\mathcal{D}_n}(t) := {}^hW^{\mathcal{D}_n,0}$ and let $X^{\mathcal{D}_n}$ denote the solution to the random ODE

$$dX_t^{\mathcal{D}_n} = V_0ig(X_t^{\mathcal{D}_n}ig) dh^{\mathcal{D}_n}(t) + \sum_{i=1}^d V_iig(X_t^{\mathcal{D}_n}ig) dW_t^{\mathcal{D}_n,i}$$

Moreover, let $f : C^{0,\alpha-H\"ol}([0, T]; \mathbb{R}^d) \to \mathbb{R}$ be bounded and continuous. Then

$$E\left[f\left(X_{\cdot}^{\mathcal{D}_{n}}\right)\right]\xrightarrow[n\to\infty]{} E[f(X_{\cdot})].$$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Pathwise weak convergence of the cubature method - 2

Remark

- In particular, the theorem holds for all bounded functionals, which are continuous with respect to the uniform topology.
- Convergence for unbounded continuous functionals can be obtained by uniform integrability properties (or put-call parities).
- In the case of barrier option, convergence holds if the payoff function is continuous except for a set with measure zero on path space.

Introduction 000000000

Pathwise convergence

References

An Asian option in the Heston model

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Introduction 000000000

Pathwise convergence

A barrier option in the Heston model

・ロト・日本・日本・日本・日本・日本

ション 小田 マイビット ビー シックション

Remarks

- For the Asian option, we recover the rate. This is not surprising, since we integrate the path by the *trapezoidal rule*, instead of using a local third order approximation of the corresponding ODE.
- For the barrier option we fall back to the convergence of the Euler method.
- Note that we do not use the full path (X^D_t)_{0≤t≤T} but only the points (X^D_t)_{t∈D}.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

References

- Breuillard, E., Friz, P., Huesmann, M. *From random walks to rough paths*, Proc. Am. Math. Soc., 137(10), 2009.
- Kusuoka, S. Approximation of expectations of diffusion processes based on Lie algebra and Malliavin calculus, Adv. Math. Econ., 6, 2004.
- Lyons, T., Victoir, N. *Cubature on Wiener space*, Proc. R. Soc. Lond. Ser. A, 460(2041), 2004.
- Ninomiya, S., Victoir, N. Weak approximation of SDEs and appl. to derivative pricing, Appl. Math. Fin., 15(1-2), 2008.
- Pap, G. Central limit theorems on nilpotent Lie groups, Probab. Math. Statist., 14(2), 1993.
- Stroock, D., Varadhan, S. *Limit theorems for random walks on Lie groups*, Sankhya Ser. A, 35(3), 1973.