K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q @

Cubature on Wiener space: Pathwise convergence

Christian Bayer¹ Peter K. Friz¹, ²

1 Institute of Mathematics TU Berlin

²Weierstrass Institute for Applied Analysis and Stochastics Berlin

> June 24, 2010 **Toronto**

KORK ERKER ADAM ADAM KOR

Outline

[Introduction](#page-2-0)

- [Donsker, Trees and Convergence](#page-2-0)
- [Cubature on Wiener space](#page-10-0)
- 2 [A Donsker theorem for cubature on Wiener space](#page-19-0)
	- [Random walks in](#page-19-0) $G^2(\mathbb{R}^d)$
	- [Donsker's theorem for random walks](#page-25-0)
	- **[Donsker's theorem for cubature formulas](#page-30-0)**

3 [Pathwise convergence](#page-32-0)

- [Pathwise weak convergence of the cubature method](#page-32-0)
- [A numerical example](#page-34-0)

KORKA EXTER LONG

Donsker's theorem

- \triangleright Given an i.i.d. sequence of d-dimensional random variables ξ_1,\ldots,ξ_n with $E[\xi_1]=0$ and cov $[\xi_1]=I_n$.
- \triangleright Grid: $\Delta t := T/n$, $|t| := \sup \{k \Delta t | k \Delta t \leq t\},\$ $\lceil t \rceil := \inf \{ k \Delta t \mid k \Delta t > t \}.$ √
- $\blacktriangleright W_t^{(n)} \coloneqq$ $\left\{ \right.$ $\overline{\mathcal{L}}$ $\sum_{i=1}^k$ $\frac{\sum_{i=1}^{\kappa} \sqrt{\Delta} t \xi_i,}{\Delta t}$ $t = k \Delta t,$
 $\frac{t-\lfloor t \rfloor}{\Delta t} W_{\lceil t \rceil}^{(n)} + \frac{\lceil t \rceil - t}{\Delta t} W_{\lfloor t \rfloor}^{(n)},$ else. $\begin{bmatrix} h^{(1)} \\ h^{(2)} \end{bmatrix}$, else.
- Fifthen $W^{(n)}$ converges weakly to the Brownian motion B. in $C([0, T]; \mathbb{R}^d)$.

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) [Pathwise convergence](#page-32-0) [References](#page-37-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q @

Approximation of SDEs

Consider two SDEs

$$
\begin{aligned}\n&\bullet \, dX_t = V_0(X_t)dt + \sum_{i=1}^d V_i(X_t) \circ dB_t^i \\
&\bullet \, dX_t^{(n)} = V_0(X_t^{(n)})dt + \sum_{i=1}^d V_i(X_t^{(n)}) \circ dW_t^{(n)}\n\end{aligned}
$$

Is it true that $X^{(n)}$ converges weakly to X. on the pathspace if $W^{(n)}$ is a cubature formula on Wiener space, i.e., is it true that for (bounded, continuous) functionals f on the path-space:

$$
E\left[f(X^{(n)})\right] \xrightarrow{n \to \infty} E[f(X)]?
$$

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

Approximation of SDEs

Consider two SDEs

$$
\begin{aligned}\n&\bullet \, dX_t = V_0(X_t)dt + \sum_{i=1}^d V_i(X_t) \circ dB_t^i \\
&\bullet \, dX_t^{(n)} = V_0(X_t^{(n)})dt + \sum_{i=1}^d V_i(X_t^{(n)}) \circ dW_t^{(n)}\n\end{aligned}
$$

Problem

Is it true that $X^{(n)}$ converges weakly to X on the pathspace if $W^{(n)}$ is a cubature formula on Wiener space, i.e., is it true that for (bounded, continuous) functionals f on the path-space:

$$
E\left[f(X^{(n)})\right] \xrightarrow{n \to \infty} E[f(X)]?
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q @

Approximation of SDEs – 2

Program

- \triangleright Show weak convergence of the truncated signature of the cubature formula to the signature of the Brownian motion. (Donsker's theorem)
- \triangleright Continuity of the solution map of the SDE in the driving signal in rough path sense implies weak convergence on the SDE
- Immediate extension to convergence of the flows (more complicated when using martingale problem approach).

KORK ERKER ADAM ADAM KOR

Approximation of SDEs – 2

Program

- \triangleright Show weak convergence of the truncated signature of the cubature formula to the signature of the Brownian motion. (Donsker's theorem)
- \triangleright Continuity of the solution map of the SDE in the driving signal in rough path sense implies weak convergence on the SDE level.
- Immediate extension to convergence of the flows (more complicated when using martingale problem approach).

[Introduction](#page-2-0) **A** Donsker theorem for cubature on Wiener space [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

KORK ERKER ADAM ADAM KOR

Approximation of SDEs – 2

Program

- \triangleright Show weak convergence of the truncated signature of the cubature formula to the signature of the Brownian motion. (Donsker's theorem)
- \triangleright Continuity of the solution map of the SDE in the driving signal in rough path sense implies weak convergence on the SDE level.
- Immediate extension to convergence of the flows (more complicated when using martingale problem approach).

KELK KØLK VELKER I EL I ONO

Trees

 000

- **Assume that** ξ_i **is discrete, taking values in {** $\omega_1, \ldots, \omega_m$ **}.**
 $\chi^{(n)}$
- $\blacktriangleright X_{k\Delta t}^{(n)} = X_{k\Delta t}^{(n)}$ $\sum_{k\Delta t}$ (ω_{i1}, ..., ω_{i_k}) with i₁, ..., i_k ∈ {1, ..., m}
- \blacktriangleright Obtain a tree for $X^{(n)}$.
- In general, the tree is non-recombining.

Can we get the price of a path-dependent option $E[f(X)]$ as a limit for $n \to \infty$ of approximations $E[\bar{f}(X_{\lambda}^{(n)}),$ $\chi_{\Delta t}^{(n)}, X_{2\Delta}^{(n)}$ $\frac{2\Delta t}{\Delta t}, \ldots, X_T^{(n)}$ $T^{(1)}$]?

KORKA EXTER LONG

Trees

 0000000

- **Assume that** ξ_i **is discrete, taking values in {** $\omega_1, \ldots, \omega_m$ **}.**
 $\chi^{(n)}$
- $\blacktriangleright X_{k\Delta t}^{(n)} = X_{k\Delta t}^{(n)}$ $\sum_{k\Delta t}$ (ω_{i1}, ..., ω_{i_k}) with i₁, ..., i_k ∈ {1, ..., m}
- \blacktriangleright Obtain a tree for $X^{(n)}$.
- In general, the tree is non-recombining.

Question

Can we get the price of a path-dependent option $E[f(X)]$ as a limit for $n \to \infty$ of approximations $E[\bar{f}(X_{\Delta t}^{(n)})]$ $\frac{\Delta(t)}{\Delta t}, X_{2\Delta}^{(n)}$ $x_2(\lambda_1,\ldots,x_{\overline{I}}^{(n)})$ $\binom{(11)}{T}$]?

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

KORKA EXTER LONG

Idea of cubature on Wiener space

Consider a stochastic process $W^{\mathcal{D}}$ with paths of bounded variation and approximate

 $E[f(X_T)] \approx E[f(X_T^{\mathcal{D}})]$ $\left[\begin{smallmatrix} \mathcal{D}\ \mathcal{T} \end{smallmatrix} \right]\hspace{-1.5pt}\left]$

where

$$
X_t = X_0 + \int_0^t V_0(X_s) ds + \sum_{i=1}^d \int_0^t V_i(X_s) \circ dB_s^i, \tag{1}
$$

$$
X_t^{\mathcal{D}} = X_0 + \int_0^t V_0(X_s^{\mathcal{D}}) dh(s) + \sum_{i=1}^d \int_0^t V_i(X_s^{\mathcal{D}}) dW_s^{\mathcal{D},i}.
$$
 (2)

- \blacktriangleright $X^{\mathcal{D}}$ is the solution of a random ODE that can be solved using classical ODE schemes.
- \triangleright For ease of notation, we ignore the drift part from now on.

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

KORKA EXTER LONG

Idea of cubature on Wiener space

Consider a stochastic process $W^{\mathcal{D}}$ with paths of bounded variation and approximate

 $E[f(X_T)] \approx E[f(X_T^{\mathcal{D}})]$ $\left[\begin{smallmatrix} \mathcal{D}\ \mathcal{T} \end{smallmatrix} \right]\hspace{-1.5pt}\left]$

where

$$
X_t = X_0 + \int_0^t V_0(X_s) ds + \sum_{i=1}^d \int_0^t V_i(X_s) \circ dB_s^i, \tag{1}
$$

$$
X_t^{\mathcal{D}} = X_0 + \int_0^t V_0(X_s^{\mathcal{D}}) dh(s) + \sum_{i=1}^d \int_0^t V_i(X_s^{\mathcal{D}}) dW_s^{\mathcal{D},i}.
$$
 (2)

- \blacktriangleright $X^{\mathcal{D}}$ is the solution of a random ODE that can be solved using classical ODE schemes.
- \triangleright For ease of notation, we ignore the drift part from now on.

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

Signature of a path

Definition

Let $x : [0, T] \to \mathbb{R}^d$ be a continuous path. The truncated signature $S_n(x)$ is the collection of the iterated integrals $S_m(x)$ is the collection of the iterated integrals

$$
S_m(x)_{0,t}=\left(\int_{0\leq t_1\leq \cdots\leq t_k\leq t}dx_{t_1}^{i_1}\cdots dx_{t_k}^{i_k}\middle|\ k\leq m, (i_1,\ldots,i_k)\in\{1,\ldots,d\}^k\right)
$$

Remark

- If x has bounded variation, the integral is the Stielties integral, if x is a Brownian motion, it is the Stratonovich integral.
- \blacktriangleright $S_m(x)$ has values in the free step-m nilpot. Lie group $G_m(\mathbb{R}^d)$.

▶ Scaling:
$$
S_m(B)_{0,t} \sim \delta_{\sqrt{t}}(S_m(B)_{0,1}) :=
$$

$$
(\sqrt{t}^k \int_{0 \le t_1 \le \dots \le t_k \le 1} \circ dB_{t_1}^{i_1} \dots \circ dB_{t_k}^{i_k}).
$$

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

KOD KOD KED KED E YOUR

Cubature formulas on Wiener space

Definition

A cubature formula on Wiener space of degree m is a continuous process W with paths of bounded variation such that $E[S_m(W)_{0,1}] = E[S_m(B)_{0,1}].$

- \triangleright Classical cubature in the sense of Lyons and Victoir: W takes finitely many values ω_i with probability λ_i , $i = 1, \ldots, k$.
- $W_t := tB_1$, $0 \le t \le 1$. (Order $m = 3$, Wong-Zakai)

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

KORK ERKER ADAM ADAM KOR

Cubature formulas on Wiener space

Definition

A cubature formula on Wiener space of degree m is a continuous process W with paths of bounded variation such that $E[S_m(W)_{0,1}] = E[S_m(B)_{0,1}].$

Example

- \triangleright Classical cubature in the sense of Lyons and Victoir: W takes finitely many values ω_i with probability λ_i , $i = 1, \ldots, k$.
- $W_t := tB_1$, $0 \le t \le 1$. (Order $m = 3$, Wong-Zakai)

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

The Ninomiya-Victoir scheme

- \triangleright Z_i $\frac{d}{dx}$ independent $\mathcal{N}(0,1)$
- \triangleright $X_{t_k}^{\mathcal{D}}$ $\int_{t_k}^{\mathcal{D}} \exp \left(\frac{\Delta t_k}{2} V_0 \right) \exp \left(\sqrt{\Delta t_k} Z_k^1 V_1 \right) \cdots$ \cdots exp $\left(\sqrt{\Delta t_k}Z_k^dV_d\right)$ exp $\left(\frac{\Delta t_k}{2}V_0\right)X_{t_k}^{\mathcal{D}}$ t_{k-1}
- Reversed order with probability $1/2$
- \blacktriangleright Idea: Cubature path always moves parallel to the axes

$$
\mathbf{W}_{\mathbf{s}}^{i} = \begin{cases} 1/\epsilon, & \mathbf{s} \in [0, \epsilon/2], i = 0, \\ Z^{i}/\epsilon, & \mathbf{s} \in]\epsilon/2 + (i - 1)\epsilon, \epsilon/2 + i\epsilon], i > 0, \\ 1/\epsilon, & \mathbf{s} \in]1 - \epsilon/2, 1], i = 0, \\ 0, & \text{else.} \end{cases}
$$

- **■** $\begin{bmatrix} 0, & \text{else.} \end{bmatrix}$ Cubature method of degree *m* = 5
- Reversed order with probability $1/2$, $\epsilon = 1/(1 + d)$
- \triangleright Individual ODEs can often be computed explicitly

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

The Ninomiya-Victoir scheme

 \triangleright Z_i $\frac{d}{dx}$ independent $\mathcal{N}(0,1)$

$$
\sum_{t_k}^{R} \sum_{k=1}^{R} \exp\left(\frac{\Delta t_k}{2} V_0\right) \exp\left(\sqrt{\Delta t_k} Z_k^1 V_1\right) \cdots
$$

$$
\cdots \exp\left(\sqrt{\Delta t_k} Z_k^d V_d\right) \exp\left(\frac{\Delta t_k}{2} V_0\right) X_{t_{k-1}}^{\mathcal{D}}
$$

- Reversed order with probability $1/2$
- \blacktriangleright Idea: Cubature path always moves parallel to the axes

$$
\mathbf{W}_{\mathbf{s}}^{i} = \begin{cases} 1/\epsilon, & s \in [0, \epsilon/2], i = 0, \\ Z^{i}/\epsilon, & s \in]\epsilon/2 + (i - 1)\epsilon, \epsilon/2 + i\epsilon], i > 0, \\ 1/\epsilon, & s \in]1 - \epsilon/2, 1], i = 0, \\ 0, & \text{else.} \end{cases}
$$

- **Exercice 1** (0, else.
■ Cubature method of degree $m = 5$
- Reversed order with probability $1/2$, $\epsilon = 1/(1 + d)$
- \triangleright Individual ODEs can often be computed explicitly

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) **[Pathwise convergence](#page-32-0)** [References](#page-37-0) 0000000

 00000

KORKA EXTER LONG

Weak approximation with cubature on Wiener space

- Given a grid $\mathcal{D} = \{0 = t_0 < t_1 < \cdots < t_n = T\}$ with mesh size $|\mathcal{D}|$, $\Delta t_k := t_k - t_{k-1}$.
- $W_{(1)}, \ldots, W_{(n)}$ independent copies of W, scaled to form
cubature formulas on [0, A t, and concatenated gives a cubature formulas on [0, Δt_k], and concatenated gives a process $W_t^{\mathcal{D}}, 0 \leq t \leq T$.
- ► Solve the random ODE $dX_t^{\mathcal{D}} = \sum_{i=1}^d V_i(X_t^{\mathcal{D}})$ $\binom{\mathcal{D}}{t}$ d $W_t^{\mathcal{D},i}$.

 $E[f(X_T)] = E[f(X_T^{\mathcal{D}})]$ $\left\{ \frac{\mathcal{D}}{T} \right\} \hspace{-1mm} + O \hspace{-1mm} \left(|\mathcal{D}|^{(m-1)/2} \right)$ provided that the Vector fields are smooth and one of the following conditions is satisfied:

- \blacktriangleright f is smooth.
- \blacktriangleright f is Lipschitz, the vector fields satisfy the uniform Hörmander condition and D is of a certain non-uniform form.

Weak approximation with cubature on Wiener space

- Given a grid $\mathcal{D} = \{0 = t_0 < t_1 < \cdots < t_n = T\}$ with mesh size $|\mathcal{D}|$, $\Delta t_k := t_k - t_{k-1}$.
- $W_{(1)}, \ldots, W_{(n)}$ independent copies of W, scaled to form
cubature formulas on [0, A t, and concatenated gives a cubature formulas on $[0, \Delta t_k]$, and concatenated gives a process $W_t^{\mathcal{D}}, 0 \leq t \leq T$.
- Solve the random ODE $dX_t^{\mathcal{D}} = \sum_{i=1}^d V_i(X_t^{\mathcal{D}})$ $t^{(\mathcal{D})}_{t}$ d $W_{t}^{\mathcal{D},i}$.

Theorem (Lyons and Victoir, Kusuoka 2004)

 $E[f(X_T)] = E[f(X_T^{\mathcal{D}})]$ $\left\{ \frac{\mathcal{D}}{T} \right\} \hspace{-0.05cm} + O \hspace{-0.05cm} \left(|\mathcal{D}|^{(m-1)/2} \right)$ provided that the Vector fields are smooth and one of the following conditions is satisfied:

- \blacktriangleright f is smooth.
- \blacktriangleright f is Lipschitz, the vector fields satisfy the uniform Hörmander condition and D is of a certain non-uniform form.

[Introduction](#page-2-0) **[A Donsker theorem for cubature on Wiener space](#page-19-0)** [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

4 0 X 4 @ X 4 B X 4 B X 1 B

 $2Q$

Donsker theorem for cubature formulas

Given a cubature formula on Wiener space W of degree m.

Definition

Donsker's theorem in rough path topology holds for W if for any sequence \mathcal{D}_n of grids on [0, T] with $|\mathcal{D}_n| \to 0$, any $1/3 < \alpha \leq 1/2$ and any continuous functional $f: C^{0,\alpha-\mathsf{H\"ol}}\left([0,T];\, \mathrm{G}_2(\mathbb{R}^d)\right) \to \mathbb{R}$ we
have: have:

$$
E\left[f\left(S_2(W^{\mathcal{D}_n})_{0,\cdot}\right)\right]\xrightarrow[n\to\infty]{} E\left[f\left(S_2(B)_{0,\cdot}\right)\right].
$$

- \triangleright Non-uniform grids required by Kusuoka's results.
- $S_N(W^{\mathcal{D}})$ is usually not piecewise geodesic.
- \triangleright Continuity of the Lyons lift $S_2(B) \mapsto S_N(B)$ (and similarly for $W^{\mathcal{D}}$) implies result for S_N , $N \geq 2$.

[Introduction](#page-2-0) **[A Donsker theorem for cubature on Wiener space](#page-19-0)** [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

Donsker theorem for cubature formulas

Given a cubature formula on Wiener space W of degree m.

Definition

Donsker's theorem in rough path topology holds for W if for any sequence \mathcal{D}_n of grids on [0, T] with $|\mathcal{D}_n| \to 0$, any 1/3 < $\alpha \le 1/2$
and any continuous functional $f: C^{0,\alpha-\text{H\"ol}}\left([0,T]; G_2(\mathbb{R}^d)\right) \to \mathbb{R}$ we
have: have:

$$
E\left[f\left(S_2(W^{\mathcal{D}_n})_{0,\cdot}\right)\right]\xrightarrow[n\to\infty]{} E\left[f\left(S_2(B)_{0,\cdot}\right)\right].
$$

Remark

- \triangleright Non-uniform grids required by Kusuoka's results.
- $S_N(W^{\mathcal{D}})$ is usually not piecewise geodesic.
- \triangleright Continuity of the Lyons lift $S_2(B) \mapsto S_N(B)$ (and similarly for $W^{\mathcal{D}}$) implies result for S_N , $N \geq 2$.

[Introduction](#page-2-0) **[A Donsker theorem for cubature on Wiener space](#page-19-0)** [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

KORKARYKERKE POLO

Random walks in $G^2(\mathbb{R}^d)$

- Grid $\mathcal{D}_n = \{0 = t_0 < \cdots < t_n = T\}$, cubature formula W.
- ► $G^2(\mathbb{R}^d) \subset \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2}, \xi = \exp\left(\sum_{i=1}^d X^i e_i + \sum_{i < j} A^{i,j} [e_i, e_j] \right)$ a random variable in $G^2(\mathbb{R}^d)$
- \blacktriangleright X^i , $A^{i,j}$ have finite moments of all orders, $E[X^i]=0$.
- Fig. independent copies of ξ , $\xi_k^n := \delta_{\sqrt{\Delta t_k}}(\xi(k))$, $\Xi_0^n := 1$,
 $\Xi_n^n := \Xi_n \otimes \xi_n^n$ $\xi(k)$ independent co
 $\Xi_{k+1}^n := \Xi_k^n \otimes \xi_{k+1}^n$.
- **Connection to cubature: choose** $\xi = S_2(W)_{0,1}$

Remark

Donsker's theorem on Lie groups in uniform topology is a classical result of Stroock and Varadhan, 1973.

00000

KORKARYKERKE POLO

Random walks in $G^2(\mathbb{R}^d)$

- Grid $\mathcal{D}_n = \{0 = t_0 < \cdots < t_n = T\}$, cubature formula W.
- ► $G^2(\mathbb{R}^d) \subset \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2}, \xi = \exp\left(\sum_{i=1}^d X^i e_i + \sum_{i < j} A^{i,j} [e_i, e_j] \right)$ a random variable in $G^2(\mathbb{R}^d)$
- \blacktriangleright X^i , $A^{i,j}$ have finite moments of all orders, $E[X^i]=0$.
- ► $\xi(k)$ independent copies of ξ , $\xi_k^n := \delta_{\sqrt{\Delta t_k}}(\xi(k))$, $\Xi_0^n := 1$,
 $\Xi_n^n := \Xi_n \otimes \xi_n^n$ $\Xi_{k+1}^n := \Xi_k^n \otimes \xi_{k+1}^n.$
- **Connection to cubature: choose** $\xi = S_2(W)_{0,1}$

Remark

Donsker's theorem on Lie groups in uniform topology is a classical result of Stroock and Varadhan, 1973.

00000

Random walks in $G^2(\mathbb{R}^d)$

- Grid $\mathcal{D}_n = \{0 = t_0 < \cdots < t_n = T\}$, cubature formula W.
- ► $G^2(\mathbb{R}^d) \subset \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2}, \xi = \exp\left(\sum_{i=1}^d X^i e_i + \sum_{i < j} A^{i,j} [e_i, e_j] \right)$ a random variable in $G^2(\mathbb{R}^d)$
- \blacktriangleright X^i , $A^{i,j}$ have finite moments of all orders, $E[X^i]=0$.
- ► $\xi(k)$ independent copies of ξ , $\xi_k^n := \delta_{\sqrt{\Delta t_k}}(\xi(k))$, $\Xi_0^n := 1$,
 $\Xi_n^n := \Xi_n \otimes \xi_n^n$ $\Xi_{k+1}^n := \Xi_k^n \otimes \xi_{k+1}^n.$
- **Connection to cubature: choose** $\xi = S_2(W)_{0,1}$

Theorem (Breuillard, Friz, Huessman)

Assume that the grids \mathcal{D}_n are uniform. Construct stochastic processes Ξ^{n}_t with values in $\mathsf{G}^2(\mathbb{R}^d)$ by $\Xi^n_{t_k}=\Xi^n_k$ and by geodesic interpolation between the grid points. Then Donsker's theorem in rough path topology holds for Ξ^n .

00000

Random walks in $G^2(\mathbb{R}^d)$

- Grid $\mathcal{D}_n = \{0 = t_0 < \cdots < t_n = T\}$, cubature formula W.
- ► $G^2(\mathbb{R}^d) \subset \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2}, \xi = \exp\left(\sum_{i=1}^d X^i e_i + \sum_{i < j} A^{i,j} [e_i, e_j] \right)$ a random variable in $G^2(\mathbb{R}^d)$
- \blacktriangleright X^i , $A^{i,j}$ have finite moments of all orders, $E[X^i]=0$.
- ► $\xi(k)$ independent copies of ξ , $\xi_k^n := \delta_{\sqrt{\Delta t_k}}(\xi(k))$, $\Xi_0^n := 1$,
 $\Xi_n^n := \Xi_n \otimes \xi_n^n$ $\Xi_{k+1}^n := \Xi_k^n \otimes \xi_{k+1}^n.$
- **Connection to cubature: choose** $\xi = S_2(W)_{0,1}$

Theorem (Breuillard, Friz, Huessman)

Assume that the grids \mathcal{D}_n are uniform. Construct stochastic processes Ξ^{n}_t with values in $\mathsf{G}^2(\mathbb{R}^d)$ by $\Xi^n_{t_{\!k}}=\Xi^n_k$ and by geodesic interpolation between the grid points. Then Donsker's theorem in rough path topology holds for Ξ^n .

00000

KORKA EXTER LONG

Donsker's theorem for random walks

Lemma (Pap 1993)

The sequence Ξ_k^n , $k = 0, \ldots, n$, $n \in \mathbb{N}$, satisfies the central limit theorem i.e. Ξ^n converges weakly to the Gaussian measure of theorem, i.e., Ξ_{n}^{n} converges weakly to the Gaussian measure on $G^2(\mathbb{R}^d)$ with infinitesimal generator

$$
\sum_{i
$$

- \triangleright Tightness in Hölder norm for the geodesically interpolated random walk Ξ.
- Norm on $G^2(\mathbb{R}^d)$ is the Carnot-Caratheodory norm $\|\cdot\|$.
- ▶ Use Kolmogorov's criterion, i.e., need moment bound.

00000

KORKAPRA ER EL POLO

Donsker's theorem for random walks

Lemma (Pap 1993)

The sequence Ξ_k^n , $k = 0, \ldots, n$, $n \in \mathbb{N}$, satisfies the central limit theorem i.e. Ξ^n converges weakly to the Gaussian measure of theorem, i.e., Ξ_{n}^{n} converges weakly to the Gaussian measure on $G^2(\mathbb{R}^d)$ with infinitesimal generator

$$
\sum_{i
$$

- \triangleright Tightness in Hölder norm for the geodesically interpolated random walk Ξ.
- Norm on $G^2(\mathbb{R}^d)$ is the Carnot-Caratheodory norm $\|\cdot\|$.
- \triangleright Use Kolmogorov's criterion, i.e., need moment bound.

[Introduction](#page-2-0) **[A Donsker theorem for cubature on Wiener space](#page-19-0)** [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

Donsker's theorem for random walks – 2

Lemma

For every $p \in \mathbb{N}$ there is a constant C independent of k and n such that $E\left[\left\Vert \Xi_{k}^{n}\right\Vert \right]$ \mathcal{L}^{4p} = $E\left[\left\|\xi_1^n\otimes\cdots\otimes\xi_k^n\right\|\right]$ $\left[4p\right] \leq Ct_k^{2p}$.

$$
\blacktriangleright \Vert x \Vert \leq C \Big(\big| \pi_1(\log(x)) \big| + \sqrt{\pi_2(\log(x))} \Big| \Big)
$$

- $\blacktriangleright E\left[|\pi_1(\text{log}(\Xi_k^n))|\right]$ $\left\{ \mathcal{L}^{(2,p)}\neq \mathcal{L}^{(2,p)}\left[\mathcal{L}^p\right]\right\}$ by Rosenthal's inequality (on \mathbb{R}^d)
- \blacktriangleright $E\left[\pi_2(\log(\Xi_k^n))\right]$ $\left[2^{\rho}\right] \leq C t_k^{2\rho}$ uses the fact that $\left|\pi_2(\log(\Xi_k^n))\right|$ a homogeneous polynomial and iterates through the random walk using the Markov property

 4 ロ) 4 \overline{B}) 4 \overline{B}) 4 \overline{B}) Ω

[Introduction](#page-2-0) **[A Donsker theorem for cubature on Wiener space](#page-19-0)** [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

 00000

Donsker's theorem for random walks – 2

Lemma

For every $p \in \mathbb{N}$ there is a constant C independent of k and n such that $E\left[\left\Vert \Xi_{k}^{n}\right\Vert \right]$ \mathcal{L}^{4p} = $E\left[\left\|\xi_1^n\otimes\cdots\otimes\xi_k^n\right\|\right]$ $\left[4p\right] \leq Ct_k^{2p}$.

Proof.

$$
\blacktriangleright ||x|| \leq C \Big(\big| \pi_1(\log(x)) \big| + \sqrt{\pi_2(\log(x))} \Big| \Big)
$$

- $\blacktriangleright E\left[|\pi_1(\text{log}(\Xi_k^n))|\right]$ $\left\{ \mathcal{L}^{(2,p)}\neq \mathcal{L}^{(2,p)}\left[\mathcal{L}^{(2,p)}\right], \mathcal{L}^{(2,p)}\right\}$ space that is inequality (on \mathbb{R}^{d})
- \blacktriangleright $E\left[\left| \pi_2(\log(\Xi^n_R)) \right| \right]$ $\left[2^{\rho}\right] \leq C t_k^{2\rho}$ uses the fact that $\left|\pi_2(\log(\Xi_k^n))\right|$ ^{2p} is a homogeneous polynomial and iterates through the random walk using the Markov property

◆ロト→伊ト→ミト→ミト Ω

ò

[Introduction](#page-2-0) **[A Donsker theorem for cubature on Wiener space](#page-19-0)** [Pathwise convergence](#page-32-0) [References](#page-37-0) 0000000

00000

KORK ERKER ADAM ADAM KOR

Donsker's theorem for random walks – 3

Theorem

Define Ξ^n_t , $0 \le t \le T$, by geodesical interpolation of Ξ^n_k , $k = 0, \ldots, n$. Then Ξ^n converges weakly in α -Hölder topology (for every 1./3 $\lt \alpha \leq 1/2$) to $S_2(R)$ provided that $|D_1| \to 0$. every $1/3 < \alpha \leq 1/2$) to $S_2(B)$ provided that $|\mathcal{D}_n| \to 0$.

Remark

This removes the requirement of uniform grids.

An assumption

Assumption

The cubature measure is supported on finite element paths, i.e., W takes values in the Cameron-Martin space H and the Cameron-Martin norm has finite moments of all orders, i.e., $\forall k \in \mathbb{N}$

$$
E\left[\|W\|_{\mathcal{H}}^{k}\right] = E\left[\left(\int_{0}^{1} \left|\dot{W}(s)\right|^{2} ds\right)^{k/2}\right] < \infty.
$$

Remark

This assumption is (up to reparametrization) satisfied for all classical cubature formulas in the sense of Lyons and Victoir and holds for all reasonable variations, like the Ninomiya-Victoir scheme.

[Introduction](#page-2-0) **[A Donsker theorem for cubature on Wiener space](#page-19-0)** [Pathwise convergence](#page-32-0) [References](#page-37-0)
000000000 000000**0**

00000

Donsker's theorem for cubature formulas

Theorem

The signature $S_2(W^{\mathcal{D}_n})_0$, converges weakly in α -Hölder topology to $S_2(B)_{0}$, for any 1/3 < $\alpha \le 1/2$ provided that $|\mathcal{D}_n| \to 0$ and W
satisfies the Assumption satisfies the Assumption.

Corollary

Let ^hW denote an \mathbb{R}^{d+1} -valued process given by ${}^hW_t = (h(t), W_t)$,
where h \cdot [0, 1] $\rightarrow \mathbb{R}$ denotes a deterministic Linschitz function with where $h : [0, 1] \rightarrow \mathbb{R}$ denotes a deterministic Lipschitz function with $h(0) = 0$ and $h(1) = 1$. Again, let ${}^h {W^{\mathcal{D}_n}}$ (a process defined on [0, T] with values in \mathbb{R}^{d+1}) be defined by proper re-scaling and concatenating independent copies of h M. Then concatenating independent copies of h W. Then $S_2(^hW^{\mathcal{D}_n})$ $_{0,\cdot} \xrightarrow[n \to \infty]{} S_2(\widetilde{B})$ $_{0,\cdot}$ weakly in rough path topology, where $\widetilde{B}_t := (t, B_t).$

 \bullet 0000

KOD KOD KED KED E YOUR

Pathwise weak convergence of the cubature method

Theorem

Given grids \mathcal{D}_n and a cubature formula $h_{\mathcal{W}}^{\mathcal{D}_n}$ as above, define $h^{\mathcal{D}_n}(t) \coloneqq {}^h {W}^{\mathcal{D}_n,0}$ and let $X^{\mathcal{D}_n}$ denote the solution to the random ODE

$$
dX_t^{\mathcal{D}_n} = V_0(X_t^{\mathcal{D}_n}) dh^{\mathcal{D}_n}(t) + \sum_{i=1}^d V_i(X_t^{\mathcal{D}_n}) dW_t^{\mathcal{D}_n,t}
$$

Moreover, let f : $C^{0,\alpha-H\ddot{o}l}([0,T];\mathbb{R}^d) \to \mathbb{R}$ be bounded and continuous. Then continuous. Then

$$
E\left[f\left(X_{\cdot}^{\mathcal{D}_n}\right)\right]\xrightarrow[n\to\infty]{} E[f(X_{\cdot})].
$$

KORK ERKER ADAM ADAM KOR

Pathwise weak convergence of the cubature method -2

Remark

- In particular, the theorem holds for all bounded functionals, which are continuous with respect to the uniform topology.
- \triangleright Convergence for unbounded continuous functionals can be obtained by uniform integrability properties (or put-call parities).
- In the case of barrier option, convergence holds if the payoff function is continuous except for a set with measure zero on path space.

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) **[Pathwise convergence](#page-32-0)** [References](#page-37-0)

0000000000 00000000 0000000

An Asian option in the Heston model

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

[Introduction](#page-2-0) [A Donsker theorem for cubature on Wiener space](#page-19-0) **[Pathwise convergence](#page-32-0)** [References](#page-37-0)

000000000 00000000 0000000

A barrier option in the Heston model

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

KORKA EXTER LONG

Remarks

- \triangleright For the Asian option, we recover the rate. This is not surprising, since we integrate the path by the *trapezoidal rule*, instead of using a local third order approximation of the corresponding ODE.
- \triangleright For the barrier option we fall back to the convergence of the Euler method.
- \blacktriangleright Note that we do not use the full path $(X_t^{\mathcal{D}})$ $\binom{\mathcal{D}}{t}_{0\leq t\leq \mathcal{T}}$ but only the points $\left(X_{t}^{\mathcal{D}}\right)$ $t^{(\mathcal{D})}_{t\in\mathcal{D}}$.

KORK ERKER ADAM ADAM KOR

References

- 畐 Breuillard, E., Friz, P., Huesmann, M. From random walks to rough paths, Proc. Am. Math. Soc., 137(10), 2009.
- Kusuoka, S. Approximation of expectations of diffusion 螶 processes based on Lie algebra and Malliavin calculus, Adv. Math. Econ., 6, 2004.
- **Lyons, T., Victoir, N. Cubature on Wiener space,** Proc. R. Soc. Lond. Ser. A, 460(2041), 2004.
- S. Ninomiya, S., Victoir, N. Weak approximation of SDEs and appl. to derivative pricing, Appl. Math. Fin., 15(1-2), 2008.
- 晶 Pap, G. Central limit theorems on nilpotent Lie groups, Probab. Math. Statist., 14(2), 1993.
- 晶 Stroock, D., Varadhan, S. Limit theorems for random walks on Lie groups, Sankhya Ser. A, 35(3), 1973.