

Wiener-Hopf factorization and distribution of extrema for a family of Lévy processes

Alexey Kuznetsov

Department of Mathematics and Statistics York University Toronto, Canada

June 24, 2010

Research supported by the Natural Sciences and Engineering Research Council of Canada

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

- [Wiener-Hopf factorization](#page-2-0)
- [Well-known examples](#page-4-0)

- ³ [Distribution of extrema](#page-16-0)
- ⁴ [Exit problem for an interval](#page-24-0)

走

4 A F

- 4 重 8 - 4 重 8

The characteristic exponent $\Psi(z)$ is defined as

 $\mathbb{E}\left[e^{\mathrm{i}zX_t}\right] = \exp(-t\Psi(z)),$

The Lévy-Khintchine representation for $\Psi(z)$:

$$
\Psi(z) = \frac{\sigma^2 z^2}{2} - i\mu z - \int_{\mathbb{R}} \left(e^{izx} - 1 - izx \mathbb{I}(|x| < 1) \right) \Pi(\mathrm{d}x)
$$

We define the extrema processes $\overline{X}_t = \sup\{X_s : s \leq t\}$ and $\underline{X}_t = \inf\{X_s : s \leq t\},\$ introduce an exponential random variable e(q) with parameter $q > 0$, which is independent of the process X_t , and use the following notation for the characteristic functions of $X_{e(q)}$, $\underline{X}_{e(q)}$:

$$
\phi_q^+(z) = \mathbb{E}\left[e^{iz\overline{X}_{e(q)}}\right], \quad \phi_q^-(z) = \mathbb{E}\left[e^{iz\underline{X}_{e(q)}}\right]
$$

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}

Review of the Wiener-Hopf factorization

Theorem

• Random variables $\overline{X}_{e(q)}$ and $X_{e(q)} - \overline{X}_{e(q)}$ are independent.

•
$$
X_{e(q)} - \overline{X}_{e(q)} \stackrel{d}{=} \underline{X}_{e(q)}
$$
.

Random variable $X_{e(q)}$ [$\underline{X}_{e(q)}$] is infinitely divisible, positive [negative] and has zero drift.

For $z \in \mathbb{R}$ we have

$$
\frac{q}{q+\Psi(z)} = \phi_q^+(z)\phi_q^-(z).
$$

メ御 メメモ メモド 一番

¹ [Introduction](#page-2-0)

- [Wiener-Hopf factorization](#page-2-0)
- [Well-known examples](#page-4-0)
- 2 β -family of Lévy processes
- ³ [Distribution of extrema](#page-16-0)
- ⁴ [Exit problem for an interval](#page-24-0)
- ⁵ [Numerical examples](#page-27-0)

э

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$

4 0 8

The main idea: since the random variable $X_{e(q)}$ $[\underline{X}_{e(q)}]$ is positive [negative], its characteristic function must be analytic and have no zeros in \mathbb{C}^+ [\mathbb{C}^-], where

$$
\mathbb{C}^+ = \{ z \in \mathbb{C} \; : \; \text{Im}(z) > 0 \}, \; \; \mathbb{C}^- = \{ z \in \mathbb{C} \; : \; \text{Im}(z) < 0 \}, \; \; \bar{\mathbb{C}}^{\pm} = \mathbb{C}^{\pm} \cup \mathbb{R}.
$$

Example:

Let $X_t = W_t + \mu t$. Then $\Psi(z) = \frac{z^2}{2} - i\mu z$ and the equation $q + \Psi(z) = 0$ has two solutions

$$
z_{1,2} = i(\mu \pm \sqrt{\mu^2 + 2q})
$$

造

イロト イ母ト イヨト イヨト

Function $q/(\Psi(z) + q)$ can be factorized as

$$
\frac{q}{q + \Psi(z)} = \frac{q}{\frac{z^2}{2} - i\mu z + q}
$$
\n
$$
= \frac{\mu + \sqrt{\mu^2 + 2q}}{iz + \mu + \sqrt{\mu^2 + 2q}} \times \frac{\mu - \sqrt{\mu^2 + 2q}}{iz + \mu - \sqrt{\mu^2 + 2q}}
$$

Thus

$$
\phi_q^+(z) = \frac{-i(\mu - \sqrt{\mu^2 + 2q})}{z - i(\mu - \sqrt{\mu^2 + 2q})}
$$

and $X_{e(q)}$ is an exponential random variable with parameter $\sqrt{\mu^2 + 2q} - \mu$.

K ロ ▶ K 御 ▶ K 결 ▶ K 결 ▶ │ 결

 X_t is a Lévy process with jumps defined by

$$
\pi(x) = a_1 e^{-b_1 x} \mathbf{I}_{\{x>0\}} + a_2 e^{b_2 x} \mathbf{I}_{\{x<0\}}
$$

Then the characteristic exponent is

$$
\Psi(z) = \frac{\sigma^2 z^2}{2} - i\mu z - \frac{a_1}{b_1 - iz} - \frac{a_2}{b_2 + iz} + \frac{a_1}{b_1} + \frac{a_2}{b_2}
$$

Thus equation $q + \Psi(z) = 0$ is a fourth degree polynomial equation, and we have explicit solutions and exact WH factorization.

イロト イ母ト イヨト イヨト

Definition

The distribution of the first passage time of the finite state continuous time Markov chain is called phase-type distribution.

$$
q(x) = \mathbf{p_0}e^{x\mathcal{L}}\mathbf{e_1}
$$

where b_i are eigenvalues of the Markov generator \mathcal{L} . Thus if X_t has phase-type jumps, its characteristic exponent $\Psi(z)$ is a *rational* function, and $q + \Psi(z) = 0$ is reduced to a polynomial equation, and the Wiener-Hopf factors are given in closed form (in terms of the roots of this polynomial equation).

 $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$

- [Wiener-Hopf factorization](#page-2-0)
- [Well-known examples](#page-4-0)

2 β -family of Lévy processes

- ³ [Distribution of extrema](#page-16-0)
- ⁴ [Exit problem for an interval](#page-24-0)
- ⁵ [Numerical examples](#page-27-0)

舌

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

4 D F

Definition

We define the β -family of Lévy processes by the generating triple (μ, σ, π) , where $\mu \in \mathbb{R}$, $\sigma \geq 0$ and the density of the Lévy measure is

$$
\pi(x) = c_1 \frac{e^{-\alpha_1 \beta_1 x}}{(1 - e^{-\beta_1 x})^{\lambda_1}} \mathbf{I}_{\{x > 0\}} + c_2 \frac{e^{\alpha_2 \beta_2 x}}{(1 - e^{\beta_2 x})^{\lambda_2}} \mathbf{I}_{\{x < 0\}}
$$

and parameters satisfy $\alpha_i > 0$, $\beta_i > 0$, $c_i \geq 0$ and $\lambda_i \in (0, 3)$.

 $\langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \langle \rangle \rangle$ and $\langle \rangle$

The generalized tempered stable family

$$
\pi(x)=c_+\frac{e^{-\alpha_+ x}}{x^{\lambda_+}}{\bf I}_{\{x>0\}}+c_-\frac{e^{\alpha_- x}}{|x|^{\lambda_-}}{\bf I}_{\{x<0\}}.
$$

can be obtained as the limit as $\beta \to 0^+$ if we let

 $c_1 = c_+ \beta^{\lambda_+}, \quad c_2 = c_- \beta^{\lambda_-}, \quad \alpha_1 = \alpha_+ \beta^{-1}, \quad \alpha_2 = \alpha_- \beta^{-1}, \quad \beta_1 = \beta_2 = \beta$

Particular cases:

• $\lambda_1 = \lambda_2 \longrightarrow$ tempered stable, or KoBoL processes • $c_1 = c_2$, $\lambda_1 = \lambda_2$ and $\beta_1 = \beta_2 \longrightarrow \text{CGMY processes}$

イロメ イ何メ イヨメ イヨメーヨ

Computing the characteristic exponent

Theorem

If $\lambda_i \in (0, 3) \setminus \{1, 2\}$ then

$$
\Psi(z) = \frac{\sigma^2 z^2}{2} + i\rho z + \gamma
$$

-
$$
\frac{c_1}{\beta_1} B\left(\alpha_1 - \frac{iz}{\beta_1}; 1 - \lambda_1\right) - \frac{c_2}{\beta_2} B\left(\alpha_2 + \frac{iz}{\beta_2}; 1 - \lambda_2\right).
$$

Here $B(x, y) = \Gamma(x)\Gamma(y)/\Gamma(x + y)$ is the beta function.

 \equiv

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \langle \rangle \rangle$ and $\langle \rangle$

4 m k

(i) The characteristic exponent $\Psi(z)$ is a meromorphic function which has simple poles at points $\{-i\rho_n, i\hat{\rho}_n\}_{n\geq 1}$, where

$$
\rho_n = \beta_1(\alpha_1 + n - 1), \quad \hat{\rho}_n = \beta_2(\alpha_2 + n - 1).
$$

(ii) For $q \ge 0$ function $q + \Psi(z)$ has roots at points $\{-i\zeta_n, i\hat{\zeta}_n\}_{n\ge 1}$ where ζ_n and $\hat{\zeta}_n$ are nonnegative real numbers (strictly positive if $q > 0$).

メ御き メミメ メミメ

(iii) The roots and poles of $q + \Psi(iz)$ satisfy the following interlacing condition

$$
\ldots - \rho_2 < -\zeta_2 < -\rho_1 < -\zeta_1 < 0 < \hat{\zeta}_1 < \hat{\rho}_1 < \hat{\zeta}_2 < \hat{\rho}_2 < \ldots
$$

(iv) The Wiener-Hopf factors are expressed as convergent infinite products,

$$
\begin{array}{rcl}\n\phi_q^+(\mathrm{i}z) & = & \mathbb{E}\left[e^{-z\overline{X}_{\mathrm{e}(q)}}\right] = \prod_{n\geq 1} \frac{1 + \frac{z}{\rho_n}}{1 + \frac{z}{\zeta_n}} \\
\phi_q^-(\mathrm{-i}z) & = & \mathbb{E}\left[e^{z\underline{X}_{\mathrm{e}(q)}}\right] = \prod_{n\geq 1} \frac{1 + \frac{z}{\tilde{\rho}_n}}{1 + \frac{z}{\tilde{\zeta}_n}}.\n\end{array}
$$

走

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\exists \mathbb{P}$ \rightarrow $\exists \mathbb{P}$

F A. Kuznetsov, A.E. Kyprianou and J.C. Pardo (2010) "Meromorphic Lévy processes and their fluctuation identities."

The density of the Lévy measure is defined as

$$
\pi(x) = \mathbb{I}_{\{x>0\}} \sum_{i=1}^{N} a_i e^{-\rho_i x} + \mathbb{I}_{\{x<0\}} \sum_{i=1}^{\hat{N}} \hat{a}_i e^{\hat{\rho}_i x},
$$

where all the coefficients are positive and $N \leq \infty$, $\hat{N} \leq \infty$. In the case $N = \infty \{ \hat{N} = \infty \}$ the series

$$
\sum_{i=1}^{\infty} a_i \rho_i^{-3} \left\{ \sum_{i=1}^{\infty} \hat{a}_i \hat{\rho}_i^{-3} \right\}
$$

must converge.

A > + = > + = >

- [Wiener-Hopf factorization](#page-2-0)
- [Well-known examples](#page-4-0)

2 β -family of Lévy processes

- ³ [Distribution of extrema](#page-16-0)
- ⁴ [Exit problem for an interval](#page-24-0)
- ⁵ [Numerical examples](#page-27-0)

舌

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$

4 0 8

Lemma

Assume that we have two increasing sequences $\rho = {\rho_n}_{n>1}$ and $\zeta = {\zeta_n}_{n>1}$ of positive numbers which satisfy the following conditions.

- (i) Interlacing condition $\zeta_1 < \rho_1 < \zeta_2 < \rho_2 < \dots$
- (ii) There exists $\alpha > 1/2$ and $\epsilon > 0$ such that $\rho_n > \epsilon n^{\alpha}$ for all integer numbers n.

Then we have the following partial fraction decompositions

$$
\prod_{n\geq 1} \frac{1 + \frac{z}{\rho_n}}{1 + \frac{z}{\zeta_n}} = a_0(\rho, \zeta) + \sum_{n\geq 1} a_n(\rho, \zeta) \frac{\zeta_n}{\zeta_n + z},
$$

$$
\prod_{n\geq 1} \frac{1 + \frac{z}{\zeta_n}}{1 + \frac{z}{\rho_n}} = 1 + zb_0(\zeta, \rho) + \sum_{n\geq 1} b_n(\zeta, \rho) \left[1 - \frac{\rho_n}{\rho_n + z}\right],
$$

舌

イロメ イ何メ イヨメ イヨメ

Main analytical tool: partial fraction decomposition

where

$$
a_0(\rho,\zeta) = \lim_{n \to +\infty} \prod_{k=1}^n \frac{\zeta_k}{\rho_k}, \quad a_n(\rho,\zeta) = \left(1 - \frac{\zeta_n}{\rho_n}\right) \prod_{\substack{k \geq 1 \\ k \neq n}} \frac{1 - \frac{\zeta_n}{\rho_k}}{1 - \frac{\zeta_n}{\zeta_k}},
$$

$$
b_0(\zeta,\rho) = \frac{1}{\zeta_1} \lim_{n \to +\infty} \prod_{k=1}^n \frac{\rho_k}{\zeta_{k+1}}, \quad b_n(\zeta,\rho) = -\left(1 - \frac{\rho_n}{\zeta_n}\right) \prod_{\substack{k \geq 1 \\ k \neq n}} \frac{1 - \frac{\rho_n}{\zeta_k}}{1 - \frac{\rho_n}{\rho_k}}.
$$

活

4 ロ > 4 御 > 4 ミ > 4 ミ > 1

Everything will depend on the coefficients $\{a_n(\rho,\zeta), a_n(\hat{\rho},\hat{\zeta})\}_{n>0}$ and ${\{b_n(\zeta,\rho), b_n(\hat{\zeta},\hat{\rho})\}_{n\geq 0}}$. We define for convenience a column vector

$$
\bar{\mathbf{a}}(\rho,\zeta) = \left[\mathbf{a}_0(\rho,\zeta),\mathbf{a}_1(\rho,\zeta),\mathbf{a}_2(\rho,\zeta),\ldots\right]^T
$$

and similarly for $a(\hat{\rho}, \hat{\zeta})$, $b(\zeta, \rho)$ and $b(\hat{\zeta}, \hat{\rho})$. Next, given a sequence of positive numbers $\zeta = {\zeta_n}_{n\geq 1}$, we define the column vector $\bar{v}(\zeta, x)$ as a vector of distributions

$$
\bar{\mathbf{v}}(\zeta, x) = \left[\delta_0(x), \zeta_1 e^{-\zeta_1 x}, \zeta_2 e^{-\zeta_2 x}, \dots\right]^T,
$$

where $\delta_0(x)$ is the Dirac delta function at $x = 0$.

 $\sqrt{2}$) $\sqrt{2}$) $\sqrt{2}$

Corollary

(i) For $x > 0$

$$
\mathbb{P}(\overline{X}_{e(q)} \in dx) = \overline{a}(\rho, \zeta)^T \times \overline{v}(\zeta, x) dx \n\mathbb{P}(-\underline{X}_{e(q)} \in dx) = \overline{a}(\hat{\rho}, \hat{\zeta})^T \times \overline{v}(\hat{\zeta}, x) dx.
$$

- (ii) $a_0(\rho, \zeta)$ (equiv. $a_0(\hat{\rho}, \hat{\zeta})$) is nonzero if and only if 0 is irregular for $(0, \infty)$ (equiv. $(-\infty, 0)$).
- (iii) $b_0(\zeta,\rho)$ (equiv. $b_0(\hat{\zeta},\hat{\rho})$) is nonzero if and only if the process X_t creeps upwards. (equiv. downwards)

 $\left\{ \left| \left| \left| \Phi \right| \right| \right\} \right. \left| \left| \left| \left| \Phi \right| \right| \right. \right\} \left| \left| \Phi \right| \right. \left| \left| \Phi \right| \right| \left| \left| \Phi \right| \right| \left| \left| \Phi \right| \right| \left| \left| \Phi \right| \left| \left| \Phi \right| \right| \left| \left| \Phi \right| \left| \Phi \right| \left| \left| \Phi \right| \left| \Phi \$

Expression in vector/matrix form

$$
\mathbb{P}(\overline{X}_{e(q)} \in dx) = \bar{a}(\rho, \zeta)^T \times \bar{v}(\zeta, x) dx
$$

is equivalent to

$$
\mathbb{P}(\overline{X}_{\mathrm{e}(q)}=0)=\mathrm{a}_0(\rho,\zeta)
$$

and

$$
\frac{\mathrm{d}}{\mathrm{d}x}\mathbb{P}(\overline{X}_{\mathrm{e}(q)} < x) = \sum_{n\geq 1} \mathrm{a}_n(\rho, \zeta) \zeta_n e^{-\zeta_n x}
$$

÷.

メロメ メタメ メミメ メミメ

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ → 경

Define
$$
\tau_a^+ = \inf\{t > 0 : X_t > a\}.
$$

Theorem

Define a matrix $\mathbf{A} = \{a_{i,j}\}_{i,j\geq 0}$ as

$$
a_{i,j} = \begin{cases} 0 & \text{if } i = 0, j \ge 0\\ a_i(\rho, \zeta)b_0(\zeta, \rho) & \text{if } i \ge 1, j = 0\\ \frac{a_i(\rho, \zeta)b_j(\zeta, \rho)}{\rho_j - \zeta_i} & \text{if } i \ge 1, j \ge 1 \end{cases}
$$

Then for $c > 0$ and $y \ge 0$ we have

$$
\mathbb{E}\left[e^{-q\tau_c^+}\mathbb{I}\left(X_{\tau_c^+}-c\in\mathrm{d}y\right)\right] \quad = \quad \bar{\mathbf{v}}(\zeta,c)^T\times\mathbf{A}\times\bar{\mathbf{v}}(\rho,y)\mathrm{d}y.
$$

K ロ X K @ X K 경 X K 경 X X 경

- [Wiener-Hopf factorization](#page-2-0)
- [Well-known examples](#page-4-0)
- 2 β -family of Lévy processes
- ³ [Distribution of extrema](#page-16-0)
- ⁴ [Exit problem for an interval](#page-24-0)
- ⁵ [Numerical examples](#page-27-0)

舌

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$

4 0 8

Theorem

Let $a > 0$ and define a matrix $\mathbf{B} = \mathbf{B}(\hat{\rho}, \zeta, a) = \{b_{i,j}\}_{i,j\geq 0}$ with

$$
b_{i,j} = \begin{cases} \zeta_j e^{-a\zeta_j} & \text{if } i = 0, \ j \ge 1 \\ 0 & \text{if } i \ge 0, \ j = 0 \\ \frac{\hat{\rho}_i \zeta_j}{\hat{\rho}_i + \zeta_j} e^{-a\zeta_j} & \text{if } i \ge 1, \ j \ge 1 \end{cases}
$$

and similarly $\hat{\mathbf{B}} = \mathbf{B}(\rho, \hat{\zeta}, a)$. There exist matrices \mathbf{C}_1 , \mathbf{C}_2 and $\hat{\mathbf{C}}_1$, $\hat{\mathbf{C}}_2$ such that for $x \in (0, a)$ we have

$$
\mathbb{E}_x \left[e^{-q\tau_a^+} \mathbb{I} \left(X_{\tau_a^+} \in dy \; ; \; \tau_a^+ < \tau_0^- \right) \right] \n= \left[\bar{\mathbf{v}}(\zeta, a - x)^T \times \mathbf{C}_1 + \bar{\mathbf{v}}(\hat{\zeta}, x)^T \times \mathbf{C}_2 \right] \times \bar{\mathbf{v}}(\rho, y - a) \mathrm{d}y
$$

舌

 \overline{AB}) \overline{AB}) \overline{AB})

These matrices satisfy the following system of linear equations

$$
\begin{cases}\n\mathbf{C}_1 &= \mathbf{A} - \hat{\mathbf{C}}_2 \mathbf{B} \mathbf{A} \\
\hat{\mathbf{C}}_2 &= -\mathbf{C}_1 \hat{\mathbf{B}} \hat{\mathbf{A}}\n\end{cases}\n\qquad\n\begin{cases}\n\hat{\mathbf{C}}_1 &= \hat{\mathbf{A}} - \mathbf{C}_2 \hat{\mathbf{B}} \hat{\mathbf{A}} \\
\mathbf{C}_2 &= -\hat{\mathbf{C}}_1 \mathbf{B} \mathbf{A}\n\end{cases}
$$

This system of linear equations can be solved iteratively with exponential convergence.

舌

 $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$

- [Wiener-Hopf factorization](#page-2-0)
- [Well-known examples](#page-4-0)

2 β -family of Lévy processes

- ³ [Distribution of extrema](#page-16-0)
- ⁴ [Exit problem for an interval](#page-24-0)
- ⁵ [Numerical examples](#page-27-0)

э

 \overline{AB} > \overline{AB} > \overline{AB} +

4 0 8

We use a process from the β -family with parameters

$$
(\sigma,\mu,\alpha_1,\beta_1,\lambda_1,c_1,\alpha_2,\beta_2,\lambda_2,c_2)=(\sigma,\mu,1,1.5,1.5,1,1,1.5,1.5,1)
$$

Here $\mu = \mathbb{E}[X_1]$ and σ is the Gaussian coefficient, the other parameters define the density of a Lévy measure, which has exponentially decaying tails and $O(|x|^{-3/2})$ singularity at $x=0$, thus this process has jumps of infinite activity but finite varation. We define the following four parameter sets

Set 1:
$$
\sigma = 0.5
$$
, $\mu = 1$
\nSet 2: $\sigma = 0.5$, $\mu = -1$
\nSet 3: $\sigma = 0$, $\mu = 1$
\nSet 4: $\sigma = 0$, $\mu = -1$

(御) (唐) (唐)

(i) density of the overshoot if the exit happens at the upper boundary

$$
f_1(x,y) = \frac{\mathrm{d}}{\mathrm{d}y} \, \mathbb{E}_x \left[e^{-q\tau_1^+} \mathbb{I} \left(X_{\tau_1^+} \le y \; ; \; \tau_1^+ < \tau_0^- \right) \right]
$$

 (ii) probability of exiting from the interval $[0, 1]$ at the upper boundary

$$
f_2(x) = \mathbb{E}_x \left[e^{-q\tau_1^+} \mathbb{I} \left(\tau_1^+ < \tau_0^- \right) \right]
$$

 (iii) probability of exiting the interval $[0, 1]$ by creeping across the upper boundary

$$
f_3(x) = \mathbb{E}_x \left[e^{-q \tau_1^+} \mathbb{I} \left(X_{\tau_1^+} = 1 \; ; \; \tau_1^+ < \tau_0^- \right) \right]
$$

÷.

 $A\stackrel{\frown}{\Pi} \rightarrow A\stackrel{\frown}{\Xi} \rightarrow A\stackrel{\frown}{\Xi} \rightarrow$

- Truncate coefficients $a_i(\rho, \zeta)$ and $a_i(\hat{\rho}, \hat{\zeta})$ at $i = 200$; coefficients $b_j(\zeta,\rho)$ and $b_j(\hat{\zeta},\hat{\rho})$ at $j=100$.
- In order to compute coefficients $a_i(\rho, \zeta)$, $a_i(\hat{\rho}, \hat{\zeta})$, $b_i(\zeta, \rho)$ and $b_j(\hat{\zeta}, \hat{\rho})$ we truncate the corresponding infinite products at $k = 400$
- All the computations depend on precomputing $\{\zeta_n, \hat{\zeta}_n\}$ for $n = 1, 2, \ldots, 400$ (solving $q + \Psi(iz) = 0$).
- The code was written in Fortran and the computations were performed on a standard laptop (Intel Core 2 Duo 2.5 GHz processor and 3 GB of RAM).
- Time to produce the three graphs for each parameter set: 0.15 sec.

 \overline{z} (\overline{z}) \overline{z}) \overline{z}) \overline{z}) \overline{z}

Double sided exit: $\sigma > 0$ and positive drift

Figure: Unbounded variation case ($\sigma = 0.5$): computing the density of the overshoot $f_1(x, y)$ $(x \in (0, 1), y \in (0, 0.5))$, probability of first exit $f_2(x)$ and probability of creeping $f_3(x)$ for parameter Set 1, positive drift $\mu = 1$

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\exists \mathbb{P}$ \rightarrow $\exists \mathbb{P}$

Double sided exit: $\sigma > 0$ and negative drift

Figure: Unbounded variation case ($\sigma = 0.5$): computing the density of the overshoot $f_1(x, y)$ $(x \in (0, 1), y \in (0, 0.5))$, probability of first exit $f_2(x)$ and probability of creeping $f_3(x)$ for parameter Set 2, negative drift $\mu = -1$.

 $\left\{ \oplus \right| \leftarrow \left\{ \oplus \right| \leftarrow \left\{ \oplus \right\} \right\}$

Double sided exit: bounded variation and positive drift

Figure: Bounded variation case ($\sigma = 0$): computing the density of the overshoot $f_1(x, y)$ $(x \in (0, 1), y \in (0, 0.5))$, probability of first exit $f_2(x)$ and probability of creeping $f_3(x)$ for parameter Set 3, positive drift $\mu = 1$.

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\exists \mathbb{P}$ \rightarrow $\exists \mathbb{P}$

Double sided exit: bounded variation and negative drift

Figure: Bounded variation case ($\sigma = 0$): computing the density of the overshoot $f_1(x, y)$ $(x \in (0, 1), y \in (0, 0.5))$, probability of first exit $f_2(x)$ and probability of creeping $f_3(x)$ for parameter Set 4, positive drift $\mu = -1$.

(御) (ヨ) (ヨ)

Price of the rebate barrier option with the exponential maturity

$$
\pi_X(x,q) = \mathbb{E}_x \left[\mathbb{I}(\tau_a^+ < \mathbf{e}(q)) f(X_{\tau_a^+}) \right]
$$

Define a time-changed process $Y_s = X_{T_s}, s \geq 0$, where we assume that T_s is continuous and independent of X_t . Define s_a^+ to be the first passage time of process Y_s above a. Then the price of the option with the deterministic maturity u is given by

$$
\pi_Y(y, u) = \mathbb{E}_y \left[\mathbb{I}(s_a^+ < u) f(Y_{s_a^+}) \right] = \frac{1}{2\pi i} \int_{q_0 + i\mathbb{R}} \pi_X(y, q) \mathbb{E} \left[e^{qT_u} \right] q^{-2} dq
$$

イロメ イ何メ イヨメ イヨメ

S. A. Kuznetsov (2009)

"Wiener-Hopf factorization and distribution of extrema for a family of Lévy processes." to appear in Ann. Appl. Probab.

\blacksquare A. Kuznetsov (2009)

畐

"Wiener-Hopf factorization for a family of Lévy processes related to theta functions." preprint

F A. Kuznetsov, A.E. Kyprianou and J.C. Pardo (2010)

"Meromorphic Lévy processes and their fluctuation identities." preprint

A. Kuznetsov, A.E. Kyprianou, J.C. Pardo, and K. van Schaik (2010)

"A Wiener-Hopf Monte Carlo simulation technique for Lévy process." preprint

www.math.yorku.ca/∼akuznets

メタメ メミメ メミメー