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1 Barrier Option

• Path-dependent options, very popular in foreign exchange markets. The

purchaser uses them to hedge very specific cash flows with similar prop-

erties but pays a cheaper price than regular options.

• Payoff is dependent on the realized asset path via its level.See Figure 1

for up-and-out call option payoff.

• Apart from “out” options, there are also “in” options which only receive

a payoff if a certain level is reached, otherwise they expireworthless.

• In-Out-Parity for Barrier options: Knock-in+ Knock-out = Vanilla.

• Put-Call-Symmetry for Barrier Options: Up-and-out Call(S, K, H, r, q, ρ) =

Down-and-out Put(K, S, SK/H, q, r, −ρ).

• We consider up-and-out call options in the following.
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2 Literature Review

• Merton (1973): the derivation of the pricing formula for barrier options;

• Rich (1994) and Wong & Kwok (2003): a list of pricing formulasfor
one and multi-asset barrier options both under the GBM framework;

• Gao, Huang & Subrahmanyam (2000): option contracts under GBM
with both knock-out barrier and American early exercise features;

• Zvan, Vetzal & Forsyth (2000): discuss the oscillatory behavior of the
Crank - Nicolson method for pricing barrier options. The backward Eu-
ler method is applied to avoid unwanted oscillations;

• Griebsch (2008): discusses evaluation of barrier option prices under the
Heston model with Fourier transform approach;

• Yousuf (2008, 2009): develops a higher order smoothing scheme for
pricing barrier options under SV without early exercise.
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3 Barrier Options - Evaluation under SV

• We follow Heston (1993) assuming the dynamics forS underRN mea-
suregoverned by

dS = (r − q)Sdt +
√

vSdZ1,

dv = (κvθv − (κv + λ)v)dt + σ
√

vdZ2.

• HereS andv are correlated withE(dZ1dZ2) = ρdt.

• Assumes market price of vol. risk= λ
√

v.
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• The price of a barrier optionC(S, v, τ ) at time to maturityτ is the

solution to a partial differential equation (PDE) problem.

• We need to solve the PDE

∂C

∂τ
= KC − rC,

on the interval0 ≤ τ ≤ T , where the Kolmogorov operatorK

K =
vS2

2

∂2

∂S2
+ ρσvS

∂2

∂S∂v
+

σ2v

2

∂2

∂v2
+ (r − q) S

∂

∂S
+

(κv(θv − v) − λv)
∂

∂v
.
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3.1 Continuously monitored barrier options

• Continuously monitored barrier optionC(S, v, τ ): an option which is
monitored all the time between the current timet and the maturity of the
option at timeT . Note thatτ = T − t.

• The option, has the terminal condition

C(S, v, 0) = (S − K)+.

• The domain for the up and out call option is

0 ≤ S ≤ H, 0 < v < ∞, 0 ≤ τ ≤ T.

• The boundary conditions for the barrier option without the early exercise
features are:

C(0, v, τ ) = 0; C(H, v, τ ) = 0; lim
v→∞

Cv(S, v, τ ) = 0.
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• The option with early exercise features has the free boundary condition

C(b(v, τ ), v, τ ) = b(v, τ ) − K, whenb(v, τ ) < H

whereS = b(v, τ ) is the early exercise boundary for the barrier option
at time to maturityτ and variancev.

• There also hold the smooth-pasting conditions

lim
S→b(v,τ)

∂C

∂S
= 1, lim

S→b(v,τ)

∂C

∂v
= 0.

• In the above case,

C(S, v, τ ) = S − K, ∀ b(v, τ ) < S < H.

• However, if we cannot find ab(v, τ ) < H then

C(H, v, τ ) = H − K.
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• Technically, for the knock-out event and the exercise date to be well

defined,

− the option contract is defined in a way such that when the assetprice first

touches the barrier, the option holder has the option to either exercise or

let the option be knocked out.

• Since in this paper we assume the rebate is equal to zero, the option

should be exercised once the asset price touches the barrier.
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3.2 Discretely monitored barrier options

• A discretely monitored barrier option is an option which is monitored

only at discrete datest ≤ t1 < t2 < · · · < tN ≤ T .

• The option has the terminal condition

C(S, v, 0) = (S − K)+.

• The domain for the up and out call option is:

S ∈
{

(0, H), τ ∈ {T − tN , T − tN−1, · · · , T − t1},

(0, ∞), otherwise,

and

0 < v < ∞, 0 < τ < T.
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• The boundary conditions for the barrier option without early exercise

features are:

C(0, v, τ ) = 0;

C(H, v, τ ) = 0, ∀τ ∈ {T − tN , · · · , T − t1};

lim
S→∞

C(S, v, τ ) = 0, ∀τ /∈ {T − tN , · · · , T − t1};

lim
v→∞

Cv(S, v, τ ) = 0.

• A discretely monitored barrier option with the early exercise feature, at

the monitoring timesτ ∈ {T − tN , · · · , T − t1}, has the free (early

exercise) boundary condition

C(b(v, τ ), v, τ ) = b(v, τ ) − K, whenb(v, τ ) < H.
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• Hereb(v, τ ) is the early exercise boundary for the barrier option at time
to maturityτ and variancev, and satisfies the smooth-pasting conditions

lim
S→b(v,τ)

∂C

∂S
= 1, lim

S→b(v,τ)

∂C

∂v
= 0.

• In the above case, we have

C(S, v, τ ) = S − K, ∀ b(v, τ ) < S < H

so thatC(S, v, τ ) is known over0 < S < H.

• If there is no suchb(v, τ ) then for the same reason as the case for the
continuously monitored option,C(S, v, τ ) must satisfy

C(H, v, τ ) = H − K.

• At all other timesτ /∈ {T − tN , · · · , T − t1}, standard American
option free boundary conditions apply.
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4 Method of Lines (MOL) Approach

• The method of lines has several strengths when dealing with Barrier

options, especially when allowing early exercise features:

− Theprice, free boundary, delta andgammaare all found as part of

the computation.

− The method discretises the PDE in an intuitive manner, and isreadily

adapted to besecond order accurate in time.

• The key idea behind the method of lines is to replace a PDE withan

equivalent system of one-dimensional ODEs.

• The system of ODEsis developed by discretising the time derivative

and the derivative terms involving the variance,v.
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• The PDE to be solved is

∂C

∂τ
=

vS2

2

∂2C

∂S2
+ ρσvS

∂2C

∂S∂v
+

σ2v

2

∂2C

∂v2

+ (r − q)S
∂C

∂S
+ (κv(θv − v) − λv)

∂C

∂v
.

• The computational domain for the problem will depend on the specific

Barrier option, for example,

− for a continuously monitored up and out call option, we wouldhave:

0 < S0 < S < H, 0 < v < ∞, 0 < τ < T.
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• We discretise according toτn = n∆τ andvm = m∆v, wheren =

1, . . . , N ; m = 1, . . . , M.

• C(S, vm, τn) = Cn
m(S),

V (S, vm, τn) ≡ ∂C(S, vm, τn)

∂S
= V n

m
(S).

• We use thestandard central difference scheme

∂2C

∂v2
=

Cn
m+1 − 2Cn

m + Cn
m−1

(∆v)2
,

∂2C

∂S∂v
=

V n
m+1 − V n

m−1

2∆v
.

• We use anupwinding finite difference schemefor the first order deriva-
tive term

∂C

∂v
=







Cn

m+1−Cn

m

∆v
if v ≤ α

β
,

Cn

m
−Cn

m−1

∆v
if v > α

β
.
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• A second order approximation for the time derivative,

∂C

∂τ
=

3

2

Cn
m − Cn−1

m

∆τ
+

1

2

Cn−1
m − Cn−2

m

∆τ
.

• After taking the boundary conditions into consideration, we must solve

a system of(M − 1) second order ODEs inS along the line segment

(vm, τn), S ∈ [S0, H] or S ∈ [S0, Smax] depending on the prop-

erties of the barrier option form = 1, .., M − 1 and fixedτn.

• We then solve the ODEs for increasing values ofv, using the latest avail-

able estimates forCn
m+1, Cn

m−1, V n
m+1 andV n

m−1.

• We iterate until the price profile converges to a desired level of accuracy.
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for the typical point o is displayed in Figure 3.
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• The generic first order form of the ODE

Delta
dCn

m

dS
= V n

m,

Gamma
dV n

m

dS
= Am(S)Cn

m
+ Bm(S)V n

m
+ P n

m
(S),

whereP n
m(S) is also a function ofCn

m+1, Cn
m−1, V n

m+1, V n
m−1,

Cn−1
m , Cn−2

m .

• We solve the above system using the Riccati transform.

• The Riccati transformation

Cn
m(S) = Rm(S)V n

m(S) + W n
m(S).
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• WhereR andW are solutions to the initial value problems

dRm

dS
= 1 − Bm(S)Rm − Am(S)(Rm)2, Rm(S0) = 0,

dW n
m

dS
= −Am(S)Rm(S)W n

m − Rm(S)P n
m(S), W n

m(S0) = 0.

• GivenR andW we try to findV n
m

by solving

dV n
m

dS
= Am(S)(Rm(S)V n

m
+W n

m
(S))+Bm(S)V n

m
+P n

m
(S),

backward subject to an terminal condition which depends on the prop-

erties and the specifications of the barrier options.
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Figure 4: Solving for the option prices along a(vm, τn) line.
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• Continuously monitored barrier options without early exercise oppor-

tunities, using the fact thatCn
m(H) = 0 we obtain from the Riccati

transform that the terminal condition is

V n
m(H) = −W n

m(H)

Rm(H)
,

and then integrate the equation forV n
m from S = H to S = S0.

• Continuously monitored barrier option with early exerciseopportunity

we integrate the equation forW n
m andRm from S0 to Smax and mon-

itor the function

φ(S) = Rm(S) + W n
m(S) − (S − K).
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• If φ(S∗) = 0 for someS∗ ∈ (S0, H) thenS∗ is the early exercise
boundaryb(vm, τn) = bn

m at the grid point(vm, τn).

− Oncebn
m is found we integrate the equation forV n

m backward frombn
m

towardS0 subject to the terminal condition

V (bn
m) = 1.

• If φ(S) has no zero in[S0, H) then there is no early exercise below
the barrier and we solve the equation forV n

m
subject to

V n
m(H) =

H − K − W n
m(H)

Rm(H)
.

− In fact, at any time to maturityτ , if the asset hits the barrierH, then the
option will be exercised, namely,C(H, v, τ ) = H − K, according to
the Riccati transform we have

Cn
m(H) = Rm(H)V n

m(H) + W n
m(H) = H − K.
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5 Numerical Examples

Parameter Value SV Parameter Value

r 0.03 θ 0.1

q 0.05 κv 2.00

T 0.5 σ 0.1

K 100 λv 0.00

ρ ±0.50 H 130

Table 1: Parameter values used for the barrier option. The stochastic volatil-

ity (SV) parameters are those used in Heston’s original paper.
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ρ = −0.50, v = 0.1 S

Method(N, M, Spts) 80 90 100 110 120

MOL (50,100,1140) 0.9045 1.8807 2.5978 2.4859 1.4858

MOL (100,200,6400) 0.9044 1.8781 2.5908 2.4769 1.4782

FD (200, 100, 200) 0.9029 1.8778 2.5903 2.4760 1.4775

MC (400, 20) 0.9355 1.9579 2.7407 2.6706 1.6773

MC upper bound 0.9389 1.9628 2.7464 2.6762 1.6820

MC lower bound 0.9321 1.9530 2.7351 2.6649 1.6726

Table 2: Prices of the continuously monitored barrier option without early

exercise features computed using method of lines (MOL), finite difference

(FD) and Monte Carlo simulation (MC). Parameter values are given in Table

1, with ρ = −0.50 andv = 0.1.
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ρ = −0.50, v = 0.1 S

Method(N, M, Spts) 80 90 100 110 120

MOL (50,150,1140) 1.4009 3.9350 8.2981 14.4015 21.8229

MOL (100,200,2440) 1.4012 3.9364 8.3003 14.4033 21.8219

MOL (100,200,6400) 1.4012 3.9363 8.3003 14.4032 21.8216

MOL (200,400,9100) 1.4015 3.9371 8.3014 14.4037 21.8201

MC (100, 20, 50) 1.3994 3.9238 8.2302 14.1086 20.9401

MC upper bound 1.4058 3.9347 8.2454 14.1261 20.9568

MC lower bound 1.3930 3.9129 8.2151 14.0909 20.9234

Table 3: Prices of the continuously monitored barrier option with early ex-

ercise features computed using method of lines (MOL) and Monte Carlo

simulation (MC). Parameter values are given in Table 1, withρ = −0.50

andv = 0.1.
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ρ = −0.50, v = 0.1 S

Method(N, M, Spts) 80 90 100 110 120

MOL(50,100,1140) 1.0764 2.5173 4.0895 4.9894 4.8291

MOL (100,200,6400) 1.0807 2.5289 4.1116 5.0235 4.8706

COS(100, 200, 100) 1.0809 2.4871 4.0454 4.9779 4.8646

MC (400, 20) 1.0780 2.5257 4.1033 5.0166 4.8605

MC upper bound 1.0834 2.5339 4.1135 5.0279 4.8718

MC lower bound 1.0726 2.5175 4.0930 5.0054 4.8492

Table 4: Prices of the discretely monitored barrier option without early exer-

cise features computed using method of lines (MOL), FourierCosine expan-

sion (COS) and Monte Carlo simulation (MC). Parameter values are given in

Table 1, withρ = −0.50 andv = 0.1.
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ρ = −0.50, v = 0.1 S

Method(N, M, Spts) 80 90 100 110 120

MOL(50,100,1140) 1.4008 3.9339 8.3010 14.4446 22.0389

MOL (100,250,2400) 1.4012 3.9364 8.3025 14.4182 21.8719

MOL (150,250,6400) 1.4014 3.9368 8.3028 14.4157 21.8615

MC (100, 20, 50) 1.4002 3.9338 8.2967 14.4285 21.9274

MC upper bound 1.4066 3.9449 8.3123 14.4473 21.9459

MC lower bound 1.3938 3.9228 8.2810 14.4097 21.9089

Table 5: Prices of the discretely monitored barrier option with early exercise

features computed using method of lines (MOL) and Monte Carlo simulation

(MC). Parameter values are given in Table 1, withρ = −0.50 andv = 0.1.
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6 Conclusions

• Set up a framework for pricing Barrier options under SV.

• Allow for early exercise features.

• Unify both continuously and discretely monitored options.

• Implement the method of lines approach.

• Some numerical examples.

• Future work:

− Incorporating jump diffusion as well,

− Pricing knock-in options under SV with early exercise features.
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