Efficient Risk Estimation via Nested Sequential Simulation

Mark Broadie, Columbia University

Joint work with Yiping Du and Ciamac Moallemi

Bachelier Finance Society

June 24, 2010

Risk Measurement

Security positions today

- Hundreds or thousands of securities
- Stocks, bonds, options, swaps, structured products
- Equities, fixed income, foreign exchange, commodities

Security values at risk horizon au

- Multiple underlying financial factors
- Financial model: distribution of factors at au
- Security prices at au in state ω
- Prices depend on cashflows from time τ to T
- Distribution of portfolio losses $L(\omega)$

Risk measure

• Distribution of losses $L(\omega)$ is mapped to a risk measure $\rho(L)$

• Today: *t* = 0

- Today: t = 0
- Risk horizon: $t = \tau$

 ω = state at time au

 $L(\omega) = \text{portfolio} \log t$ at time τ , given state ω

- Today: t = 0
- Risk horizon: $t = \tau$

 ω = state at time au

 $L(\omega) = \text{portfolio} \log \alpha$ at time τ , given state ω

• $L(\omega)$ depends on realized cashflows between au and T

- Today: *t* = 0
- Risk horizon: $t = \tau$

 ω = state at time τ

 $L(\omega) = \text{portfolio} \log \alpha$ at time τ , given state ω

- $L(\omega)$ depends on realized cashflows between τ and T
- Risk measure $\rho(L) \in \mathbb{R}$

Probability of large loss: $P(L \ge c)$ $VAR_{\alpha}(L) = \inf \{c : P(L \ge c) \le \alpha\}$ $CVAR_{\alpha}(L) = E[L|L \ge VAR_{\alpha}(L)]$ Coherent risk measures ...

Related Literature

- Uniform nested simulation
 - Lee (1998)
 - Lee and Glynn (2003)
 - Gordy and Juneja (2006, 2008)
- Importance sampling
 - Glasserman, Heidelberger, Shahabuddin (2000)
- Stochastic kriging
 - Liu and Staum (2009)

• Simulate $\omega_1, \ldots, \omega_n$

- Simulate $\omega_1, \ldots, \omega_n$
- For each ω_i : simulate future portfolio cashflows $\hat{Z}_{i,1}, \ldots, \hat{Z}_{i,m}$

$$\hat{L}_i = \frac{1}{m} \sum_{j=1}^m \hat{Z}_{i,j}$$
 estimate of loss $L(\omega_i)$

- Simulate $\omega_1, \ldots, \omega_n$
- For each ω_i : simulate future portfolio cashflows $\hat{Z}_{i,1}, \ldots, \hat{Z}_{i,m}$

$$\hat{L}_i = \frac{1}{m} \sum_{j=1}^m \hat{Z}_{i,j}$$
 estimate of loss $L(\omega_i)$

• Estimate probability of loss

$$\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\hat{L}_i \ge c\}}$$

Probability of Loss: Gaussian Example

- First stage: $L(\omega_i) = \omega_i$, where $\omega_i \sim N(0, \sigma_1^2)$
- Second stage: $Z_{i,j} = \omega_i + \epsilon_{i,j}$, where $\epsilon_{i,j} \sim N(0, \sigma_2^2)$
- Probability of loss: $\alpha = P(L \ge c) = \Phi(-c/\sigma_1)$

Estimator: $\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\hat{L}_i \ge c\}}$ where $\hat{L}_i = L_i + \frac{1}{m} \sum_{j=1}^{m} \hat{Z}_{i,j}$

Mean-Squared Error (MSE):

$$MSE = E[(\hat{\alpha} - \alpha)^{2}]$$

= $E[(\hat{\alpha} - E(\hat{\alpha}))^{2}] + (E[\hat{\alpha} - \alpha])^{2}$
= Variance + Bias²

For $L_i > c$, $\mathbf{1}_{\{L_i \ge c\}} = 1$, but $E[\mathbf{1}_{\{\hat{L}_i \ge c\}}] = \mathsf{P}(\hat{L}_i \ge c) < 1$. The local bias is negative: $E[\mathbf{1}_{\{\hat{L}_i \ge c\}} - 1] < 0$.

Bias Illustration

For $L_i < c$, $\mathbf{1}_{\{L_i \ge c\}} = 0$, but $E[\mathbf{1}_{\{\hat{L}_i \ge c\}}] = \mathsf{P}(\hat{L}_i \ge c) > 0$. The local bias is positive: $E[\mathbf{1}_{\{\hat{L}_i \ge c\}} - 0] > 0$.

n first stage samples

n first stage samples

m second stage samples

n first stage samples m second stage samples total work: k = mn

n first stage samples m second stage samples total work: k = mn

Optimal allocation problem:

 $\begin{array}{ll} \underset{n,m}{\text{minimize}} & \text{MSE} \\ \text{subject to} & nm = k \end{array}$

Bias and Variance

$$\alpha = \mathsf{P}(L \ge c) \qquad \hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\hat{L}_i \ge c\}}$$
$$\mathsf{MSE} = \underbrace{\mathsf{E}\left[(\hat{\alpha} - \mathsf{E}\hat{\alpha})^2\right]}_{\text{variance}} + \underbrace{\left(\mathsf{E}\left[\alpha - \hat{\alpha}\right]\right)^2}_{\text{bias}^2}$$

Bias and Variance

$$\alpha = \mathsf{P}(L \ge c) \qquad \hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\hat{L}_i \ge c\}}$$
$$\mathsf{MSE} = \underbrace{\mathsf{E}\left[(\hat{\alpha} - \mathsf{E}\hat{\alpha})^2\right]}_{\text{variance}} + \underbrace{\left(\mathsf{E}\left[\alpha - \hat{\alpha}\right]\right)^2}_{\text{bias}^2}$$

Under mild technical assumptions, as $m, n \uparrow \infty$: variance $\rightarrow \frac{\alpha(1-\alpha)}{n}$ bias $\rightarrow \frac{\gamma}{m}$

Bias and Variance

$$\alpha = \mathsf{P}(L \ge c) \qquad \hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\hat{L}_i \ge c\}}$$
$$\mathsf{MSE} = \underbrace{\mathsf{E}\left[(\hat{\alpha} - \mathsf{E}\hat{\alpha})^2\right]}_{\text{variance}} + \underbrace{\left(\mathsf{E}\left[\alpha - \hat{\alpha}\right]\right)^2}_{\text{bias}^2}$$

Under mild technical assumptions, as $m, n \uparrow \infty$:

variance
$$\rightarrow \frac{\alpha(1-\alpha)}{n}$$
 bias $\rightarrow \frac{\gamma}{m}$

Optimal allocation:

minimize MSE
subject to
$$nm = k$$
 \Rightarrow $\begin{cases} n^* = Ck^{2/3} \\ m^* = \frac{1}{C}k^{1/3} \\ MSF \propto k^{-2/3} \end{cases}$

Gordy and Juneja (2006)

-- 2/2

Optimal allocation: $n^* = Ck^{2/3}$, $m^* = rac{1}{C}k^{1/3}$, MSE $\propto k^{-2/3}$

Optimal allocation: $n^* = Ck^{2/3}$, $m^* = \frac{1}{C}k^{1/3}$, MSE $\propto k^{-2/3}$

Observations:

• Similar expressions for VAR and CVAR, different constants

Optimal allocation: $n^* = Ck^{2/3}$, $m^* = \frac{1}{C}k^{1/3}$, MSE $\propto k^{-2/3}$

Observations:

- Similar expressions for VAR and CVAR, different constants
- Not clear how to implement! Need to estimate the constant C

Optimal allocation: $n^* = Ck^{2/3}$, $m^* = \frac{1}{C}k^{1/3}$, MSE $\propto k^{-2/3}$

Observations:

- Similar expressions for VAR and CVAR, different constants
- Not clear how to implement! Need to estimate the constant C
- Can we do better?

Idea: use a non-uniform number of stage 2 samples

 m_i = number of samples at ω_i

Idea: use a non-uniform number of stage 2 samples

 m_i = number of samples at ω_i

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation

Idea: use a non-uniform number of stage 2 samples

 m_i = number of samples at ω_i

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation

Idea: use a non-uniform number of stage 2 samples

 m_i = number of samples at ω_i

 $\hat{\boldsymbol{\alpha}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\hat{L}_i \ge c\}}$

Idea: use a non-uniform number of stage 2 samples

 m_i = number of samples at ω_i

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation

Idea: use a non-uniform number of stage 2 samples

 m_i = number of samples at ω_i

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation

Idea: use a non-uniform number of stage 2 samples

 m_i = number of samples at ω_i

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation

Idea:

• Sequentially add stage 2 samples

- Sequentially add stage 2 samples
- Add the next sample where it will most affect the estimate $\hat{\alpha}$

- Sequentially add stage 2 samples
- Add the next sample where it will most affect the estimate $\hat{\alpha}$

- Sequentially add stage 2 samples
- Add the next sample where it will most affect the estimate $\hat{\alpha}$

- Sequentially add stage 2 samples
- Add the next sample where it will most affect the estimate $\hat{\alpha}$
- Use a normal approximation: given one more sample at ω_i ,

P (estimate
$$\hat{lpha}$$
 changes) $pprox \Phi\left(-rac{m_i}{\sigma_2}\left|\hat{L}_i-c\right|
ight)$

Non-Uniform Stage 2 Algorithm

- Simulate $\omega_1, \ldots, \omega_n$
- For each ℓ from 1 to k: Pick $i^* \in \underset{i}{\operatorname{argmin}} \frac{m_i}{\sigma_2} \left| \hat{L}_i - c \right|$, Add 1 sample at ω_{i^*}
- Estimate probability of loss

$$\hat{\boldsymbol{\alpha}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\hat{L}_i \ge c\}}$$

Key Result

Under suitable assumptions,

bias
$$\propto \frac{1}{\bar{m}^2}$$
 (vs. bias $\propto \frac{1}{m}$ under uniform sampling)

Key Result

Under suitable assumptions,

bias $\propto \frac{1}{\bar{m}^2}$ (vs. bias $\propto \frac{1}{m}$ under uniform sampling)

Proof Technique:

For a given ω_i , consider the sequential hypothesis testing problem:

- Observe IID samples $\hat{Z}_{i,1}, \hat{Z}_{i,2}, \dots$ with $L(\omega_i) = \mathsf{E}[Z_{i,1}]$
- Hypotheses:

$$H_0(\omega_i) = \{L(\omega_i) < c\}$$

$$H_1(\omega_i) = \{L(\omega_i) \ge c\}$$

• We wish to determine which hypothesis is true, with a minimal number of observations

Our non-uniform sampling algorithm is solving many sequential hypothesis testing problems simultaneously

• Uniform algorithm:

 $\begin{array}{ll} \underset{n,m}{\text{minimize}} & \text{MSE} \\ \text{subject to} & nm = k \end{array} \Rightarrow \begin{cases} n^* \propto k^{2/3} \\ m^* \propto k^{1/3} \\ \text{MSE} \propto k^{-2/3} \end{cases}$

• Non-uniform algorithm:

 $\begin{array}{ll} \underset{n,\bar{m}}{\text{minimize}} & \text{MSE} \\ \text{subject to} & n\bar{m} = k \end{array} \Rightarrow \begin{cases} n^* \propto k^{4/5} \\ \bar{m}^* \propto k^{1/5} \\ \text{MSE} \propto k^{-4/5} \end{cases}$

Gaussian Example

- First stage: $L(\omega_i) = \omega_i$, where $\omega_i \sim N(0, \sigma_1^2)$
- Second stage: $Z_{i,j} = \omega_i + \epsilon_{i,j}$, where $\epsilon_{i,j} \sim N(0, \sigma_2^2)$
- Probability of loss: $P(L \ge c) = \Phi(-c/\sigma_1)$

Number of Inner Stage Samples versus Loss

Bias versus Number of Inner Stage Samples

Numerical Results: Gaussian Example

$$\sigma_1 = 1, \ \sigma_2 = 5, \ \alpha = 0.1\%, \ k = 4,000,000$$

	n	ħ	MSE	Rel MSE
$n=m=\sqrt{k}$	2,000	2,000	$5.7 \cdot 10^{-7}$	23
$n = k^{2/3}$, $m = k^{1/3}$	25,200	159	$1.2 \cdot 10^{-6}$	48
uniform (optimal constant)	7,788	514	$2.5 \cdot 10^{-7}$	10
adaptive	30,628	132	$3.6 \cdot 10^{-8}$	1.5
optimal sequential	56,686	71	$2.5 \cdot 10^{-8}$	1

Put Option Example

• Stock price:
$$S_{\tau}(\omega) \triangleq S_0 e^{(\mu - \sigma^2/2)\tau + \sigma\sqrt{\tau}\omega}$$

•
$$L(\omega) = X_0 - \mathsf{E}\left[e^{-r(T-\tau)}\max(K - S_T(\omega, W), 0) \mid \omega\right]$$
 where
 $S_T(\omega, W) \triangleq S_\tau(\omega)e^{(r-\sigma^2/2)(T-\tau)+\sigma\sqrt{T-\tau}W}$

and

$$\hat{Z}_{i,j} = X_0 - e^{-r(T-\tau)} \max\left(K - S_T(\omega_i, W_{i,j}), 0\right),$$

- Outer stage: the real-world distribution (μ)
- Inner stage: risk-neutral distribution (r)

$$S_0 = 100, \ K = 95, \ \sigma = 20\%, \ \tau = 1/52, \ T = 0.25$$

 $\alpha = 0.1\%, \ k = 4,000,000$

	n	ħ	MSE	Rel MSE
$n = m = \sqrt{k}$	2,000	2,000	$5.6 \cdot 10^{-7}$	12
$n = k^{2/3}$, $m = k^{1/3}$	25,200	159	$8.2 \cdot 10^{-6}$	175
uniform (optimal constant)	2,570	1,556	$4.8 \cdot 10^{-7}$	10
adaptive	14,384	284	$9.2 \cdot 10^{-8}$	2
optimal sequential	26,508	151	$4.7 \cdot 10^{-8}$	1

- Nested simulation can provide a more realistic assessment of risk
- Reduced computational burden by
 - · Non-uniform inner sampling to reduce bias
 - More outer sampling to reduce variance
- MSE reduced by factors from $4 \mbox{ to over } 100$