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Risk Measurement

Security positions today

Hundreds or thousands of securities

Stocks, bonds, options, swaps, structured products

Equities, fixed income, foreign exchange, commodities

Security values at risk horizon τ
Multiple underlying financial factors

Financial model: distribution of factors at τ
Security prices at τ in state ω
Prices depend on cashflows from time τ to T
Distribution of portfolio losses L(ω)

Risk measure

Distribution of losses L(ω) is mapped to a risk measure ρ(L)
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The Risk Measurement Problem

Time t
0

τ

ω
L(ω) cashflows

T

Today: t = 0

Risk horizon: t = τ
ω = state at time τ

L(ω) = portfolio loss at time τ, given state ω

L(ω) depends on realized cashflows between τ and T
Risk measure ρ(L) ∈ R

Probability of large loss: P(L ≥ c)
VARα(L) = inf {c : P(L ≥ c) ≤ α}
CVARα(L) = E [L|L ≥ VARα(L)]
Coherent risk measures . . .
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Related Literature

Uniform nested simulation
Lee (1998)
Lee and Glynn (2003)
Gordy and Juneja (2006, 2008)

Importance sampling
Glasserman, Heidelberger, Shahabuddin (2000)

Stochastic kriging
Liu and Staum (2009)
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The Risk Measurement Problem
ω1

ω2

...
ωi
...
ωn

Ẑi,1
...

Ẑi,m

Time t
0 τ T

Simulate ω1, . . . ,ωn

For each ωi: simulate future portfolio cashflows Ẑi,1, . . . , Ẑi,m

L̂i =
1
m

m∑
j=1

Ẑi,j

 estimate of loss L(ωi)

Estimate probability of loss

α̂ = 1
n

n∑
i=1

1{L̂i≥c}
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Probability of Loss: Gaussian Example

First stage: L(ωi) =ωi, where ωi ∼ N(0, σ2
1 )

Second stage: Zi,j =ωi + εi,j, where εi,j ∼ N(0, σ2
2 )

Probability of loss: α = P(L ≥ c) = Φ(−c/σ1)

Estimator: α̂ = 1
n
∑n
i=1 1{L̂i≥c} where L̂i = Li + 1

m
∑m
j=1 Ẑi,j

Mean-Squared Error (MSE):

MSE = E[(α̂−α)2]
= E[(α̂− E(α̂))2]+ (E[α̂−α])2

= Variance+ Bias2
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Bias Illustration

c L i0

For Li > c, 1{Li≥c} = 1, but E[1{L̂i≥c}] = P(L̂i ≥ c) < 1.

The local bias is negative: E[1{L̂i≥c} − 1] < 0.

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation 7



Bias Illustration

c0 L i

For Li < c, 1{Li≥c} = 0, but E[1{L̂i≥c}] = P(L̂i ≥ c) > 0.

The local bias is positive: E[1{L̂i≥c} − 0] > 0.
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Optimal MSE Formulation

ω1

ω2

...
ωi
...
ωn

Ẑi,1
...

Ẑi,m

Time t
0 τ T

n first stage samples

m second stage samples
total work: k =mn

Optimal allocation problem:

minimize
n,m

MSE

subject to nm = k
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Bias and Variance

α = P(L ≥ c) α̂ = 1
n

n∑
i=1

1{L̂i≥c}

MSE = E
[
(α̂− Eα̂)2

]
︸ ︷︷ ︸

variance

+
(
E [α− α̂]

)2︸ ︷︷ ︸
bias2

Under mild technical assumptions, as m,n ↑ ∞:

variance→ α(1−α)
n

bias→ γ
m

Optimal allocation:

minimize
n,m

MSE

subject to nm = k
⇒


n∗ = Ck2/3

m∗ = 1
Ck

1/3

MSE∝ k−2/3

Gordy and Juneja (2006)
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Optimal MSE Estimator

ω1

ω2

...
ωi
...
ωn

Ẑi,1
...

Ẑi,m

Time t
0 τ T

Optimal allocation: n∗ = Ck2/3, m∗ = 1
Ck

1/3, MSE∝ k−2/3

Observations:

Similar expressions for VAR and CVAR, different constants

Not clear how to implement! Need to estimate the constant C
Can we do better?
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Non-Uniform Sampling

ω1

ω2

...
ωi
...
ωn

Ẑi,1
...

Ẑi,mi

Time t
0 τ T

Idea: use a non-uniform number
of stage 2 samples

mi = number of samples at ωi

c

Probability

Loss

L(ω1)

set m1 small

L(ω2)

set m2 large

α̂ = 1
n

n∑
i=1

1{L̂i≥c}
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Ẑi,1
...
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Ẑi,1
...
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Stage 2 Algorithm

c

Probability

Loss

L̂iL̂′i
add 1 sample

L̂i =
1
mi

mi∑
j=1

Ẑi,j

α̂ = 1
n

n∑
i=1

1{L̂i≥c}

Idea:

Sequentially add stage 2 samples

Add the next sample where it will most affect the estimate α̂

Use a normal approximation: given one more sample at ωi,

P
(
estimate α̂ changes

)
≈ Φ(−mi

σ2

∣∣∣L̂i − c∣∣∣)
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Non-Uniform Stage 2 Algorithm

ω1

ω2

...
ωi
...
ωn

Ẑi,1
...

Ẑi,mi

Time t
0 τ T

Simulate ω1, . . . ,ωn
For each ` from 1 to k:

Pick i∗ ∈ argmin
i

mi

σ2

∣∣∣L̂i − c∣∣∣ , Add 1 sample at ωi∗

Estimate probability of loss

α̂ = 1
n

n∑
i=1

1{L̂i≥c}
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Key Result

Under suitable assumptions,

bias∝ 1
m̄2

(
vs. bias∝ 1

m
under uniform sampling

)

Proof Technique:
For a given ωi, consider the sequential hypothesis testing
problem:

Observe IID samples Ẑi,1, Ẑi,2, . . . with L(ωi) = E[Zi,1]
Hypotheses:

H0(ωi) = {L(ωi) < c}
H1(ωi) = {L(ωi) ≥ c}

We wish to determine which hypothesis is true, with a
minimal number of observations

Our non-uniform sampling algorithm is solving many sequential
hypothesis testing problems simultaneously
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Rate of Convergence

Uniform algorithm:

minimize
n,m

MSE

subject to nm = k
⇒


n∗ ∝ k2/3

m∗ ∝ k1/3

MSE∝ k−2/3

Non-uniform algorithm:

minimize
n,m̄

MSE

subject to nm̄ = k
⇒


n∗ ∝ k4/5

m̄∗ ∝ k1/5

MSE∝ k−4/5
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Gaussian Example

ω1

ω2

...
ωi
...
ωn

Ẑi,1
...

Ẑi,mi

Time t
0 τ T

First stage: L(ωi) =ωi, where ωi ∼ N(0, σ2
1 )

Second stage: Zi,j =ωi + εi,j, where εi,j ∼ N(0, σ2
2 )

Probability of loss: P(L ≥ c) = Φ(−c/σ1)
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Number of Inner Stage Samples versus Loss

−3 −2 −1 0 1 2 3

102

103

104

c = 2.326

Loss L(ωi)

N
u
m

b
er

o
f

in
n
er

st
ag

e
sa

m
p
le

s
m
i

sequential
uniform

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation 18



Bias versus Number of Inner Stage Samples

∝ k−2

∝ k−1

105 106
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Numerical Results: Gaussian Example

σ1 = 1, σ2 = 5, α = 0.1%, k = 4,000,000

n m̄ MSE Rel MSE

n =m =
√
k 2,000 2,000 5.7·10−7 23

n = k2/3, m = k1/3 25,200 159 1.2·10−6 48
uniform (optimal constant) 7,788 514 2.5·10−7 10

adaptive 30,628 132 3.6·10−8 1.5
optimal sequential 56,686 71 2.5·10−8 1
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Put Option Example
ω1

ω2

...
ωi
...
ωn

Ẑi,1
...

Ẑi,mi

Time t
0 τ T

Stock price: Sτ(ω) Õ S0e(µ−σ
2/2)τ+σ√τω

L(ω) = X0 − E
[
e−r(T−τ)max (K − ST (ω,W),0)

∣∣∣ ω] where

ST (ω,W) Õ Sτ(ω)e(r−σ
2/2)(T−τ)+σ

√
T−τW

and
Ẑi,j = X0 − e−r(T−τ)max

(
K − ST (ωi,Wi,j),0

)
,

Outer stage: the real-world distribution (µ)

Inner stage: risk-neutral distribution (r )
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Numerical Results: Put Option

S0 = 100, K = 95, σ = 20%, τ = 1/52, T = 0.25

α = 0.1%, k = 4,000,000

n m̄ MSE Rel MSE

n =m =
√
k 2,000 2,000 5.6·10−7 12

n = k2/3, m = k1/3 25,200 159 8.2·10−6 175
uniform (optimal constant) 2,570 1,556 4.8·10−7 10

adaptive 14,384 284 9.2·10−8 2
optimal sequential 26,508 151 4.7·10−8 1
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Summary

Nested simulation can provide a more realistic assessment of
risk

Reduced computational burden by
Non-uniform inner sampling to reduce bias
More outer sampling to reduce variance

MSE reduced by factors from 4 to over 100
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