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Outline

◮ Problem: Minimize impact on execution prices
(as in Predoiu, Shaikhet, Shreve)

◮ Limit order book model with stochastic liquidity

◮ Structure of optimal strategies

◮ Examples and numerical implementation
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Block order book model

◮ Market buy order of x0 shares at t = 0 has linear price impact
Number of shares

Price per share
0

x

shares
0

q

B0 A0 A +D0 0+

◮ Ask price At martingale and bid Bt < At

 effect of A can be neglected for risk neutral investor
◮ Dynamic of price displacement D with resilience speed ρ > 0

dDt =
1

qt

dΘt − ρDtdt

◮ Impact cost at t:
(

Dt + 1
2qt

xt

)

xt
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Model with stochastic liquidity

◮ Dynamic order book height: Kt := 1
qt

e.g. positive diffusion

◮ Risk-neutral investor wants to purchase x shares on [t,T ]

Singular control problem in continuous time

U(t, δ, x , κ) := inf
Θ∈A(x)

J(t, δ,Θ, κ)

Admissible strategies A(x)

Θ : Ω × [t,T ] → [0, x ] adapted,increasing,càglàd, Θt = 0,ΘT+ = x a.s.

Trading costs (∆Θs := Θs+ − Θs)

J(Θ) := J(t, δ,Θ, κ) := E

[

∫

[t,T ]

(

Ds +
Ks

2
∆Θs

)

dΘs

∣

∣

∣
Dt = δ,Kt = κ

]
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Intuition: Wait and Buy region

◮ Scaling property of value function reduces dimension:

U(t, aδ, ax , κ) = a2U(t, δ, x , κ) for a ∈ R≥0

a= 1
δ⇒ U(t, δ, x , κ) = δ2U(t, 1,

x

δ
, κ)
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Intuition: Wait and Buy region

◮ Scaling property of value function reduces dimension:

U(t, aδ, ax , κ) = a2U(t, δ, x , κ) for a ∈ R≥0

a= 1
δ⇒ U(t, δ, x , κ) = δ2U(t, 1,

x

δ
, κ)

◮ How could optimal strategy look like for fixed t and κ?
◮ Wait if x

δ
is small, say x

δ
≤ c ∈ (0,∞]

◮ Otherwise buy ξ > 0 shares s.t. x−ξ

δ+ ξ
q

!
= c

x/d

k=1/q
0

Buy (BR)

Wait (WR)

Barrier
c(t, )k

At time t

Buy x
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WR-BR-WR example

t

kt

1

3

k0=2.1

t =00 t =0.00011 T=1

p=1/2

Scenario A

Scenario B

Binomial model and resilience=2
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Unique optimal strategies

Theorem (F./Schöneborn/Urusov)

dKs = µ(s,Ks)ds + σ(s,Ks)dWs

Let K be a positive, continuous diffusion satisfying

i) ηs := 2ρ

Ks
+ µ(s,Ks )

K 2
s

− σ
2(s,Ks)
K 3

s
> 0 for all s ∈ [t,T ]

ii) E

[

sups∈[t,T ] K
2
s

infs∈[t,T ] Ks

]

< ∞

iii) E

[(

∫ T

t
|ηs |ds

)(

sups∈[t,T ] K
2
s

)]

< ∞

Then J(Θ) is strictly convex and there exists a unique optimal strategy Θ∗.
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iii) E

[(

∫ T

t
|ηs |ds

)(

sups∈[t,T ] K
2
s

)]

< ∞

Then J(Θ) is strictly convex and there exists a unique optimal strategy Θ∗.

Idea:

◮ Strict convexity: rewrite J in terms of D via dDs = KsdΘs − ρDsds

J(Θ) ≈ E

[

∫

[t,T ] ηsD
2
s ds

]

 Assumption i)

◮ Existence: Komlos argument
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Uniqueness ensures WR-BR structure

Theorem (F./Schöneborn/Urusov)

Under the above assumptions there exists a unique barrier
function c : [0,T ] × (0,∞) → (0,∞] with c(T , κ) ≡ 0 such that

∆Θ∗
t (t, δ, x , κ) = max

{

0,
x − c(t, κ)δ

1 + κc(t, κ)

}

. (1)
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Under the above assumptions there exists a unique barrier
function c : [0,T ] × (0,∞) → (0,∞] with c(T , κ) ≡ 0 such that

∆Θ∗
t (t, δ, x , κ) = max

{

0,
x − c(t, κ)δ

1 + κc(t, κ)

}

. (1)

Idea:

◮ Trade splitting argument

◮ Exclude upper WR by uniqueness
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Example 1/3: K deterministic

◮ K càglàd, bounded ensures WR-BR structure

◮ Obizhaeva/Wang (dKt = 0) gives c(t, κ) = ρ(T−t)+1
κ

◮ Explicit barrier via Euler-Lagrange formalism, e.g.,
Kt = K0e

νρt gives

c(t, κ) =

{

∞ if ν < −1
1+ν−e−ρν(T−t)

ν(1+ν)κ otherwise

}
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Example 2/3: K GBM

dKt = Kt(µtdt + σtdWt)

◮ WR-BR-WR examples exist for time-inhomogeneous GBM

◮ If WR-BR structure holds: c(t, κ) = c(t)
κ

via scaling property,
’bad model’ due to passive in the liquidity behavior
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Example 3/3: K CIR- numerical scheme

dKs = µ(K − Ks)ds + σ
√

Ks dWs

1. Possible idea:

Implement HJB equation (QVI) by finite difference scheme

min
{

κUD − UX + D,Ut − ρDUD + µ(κ − κ)Uκ + σ
2

2 κUκκ

}

= 0

2. Here:
Approximate state space diffusion by a Markov chain à la Kushner

◮ Code is essentially the same as in 1.
◮ Convergence proof by probabilistic methods, i.e. no use of HJB

eq./verification argument or convexity/smoothness/growth conditions
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Example 3/3: K CIR- WR-BR-WR example

(for large vola)
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Example 3/3: K CIR- aggressive in the liquidity behavior

(for high mean-reversion)
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Summary

◮ Market microstructure model of order book
to study optimal execution problem

◮ Stochastic liquidity  differential order placement

◮ Wait/Buy Region structure does not always hold!

Models

WR-BR structure

Theorems

WR-BR-WR

◮ Numerical analysis via Markov chain implementation:
Aggressive/passive in the liquidity behavior
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Thank you for your attention!

Antje Fruth (QP Lab) Optimal execution June 2010 16 / 16


	References

