Optimal execution in limit order books with stochastic liquidity

Antje Fruth Joint work with Torsten Schöneborn and Mikhail Urusov

Technische Universität Berlin Deutsche Bank Quantitative Products Laboratory

Bachelier meeting, Toronto, June 2010

Technische Universität Berlin

dbqpl quantitative products laboratory

- ▶ Problem: Minimize impact on execution prices (as in Predoiu, Shaikhet, Shreve)
- \blacktriangleright Limit order book model with stochastic liquidity
- \triangleright Structure of optimal strategies
- \blacktriangleright Examples and numerical implementation

Block order book model

• Market buy order of x_0 shares at $t = 0$ has linear price impact

- Ask price A_t martingale and bid $B_t < A_t$ \rightsquigarrow effect of A can be neglected for risk neutral investor
- ► Dynamic of price displacement D with resilience speed $\rho > 0$

$$
dD_t = \frac{1}{q_t} d\Theta_t - \rho D_t dt
$$

• Impact cost at t:
$$
\left(D_t + \frac{1}{2q_t} x_t\right) x_t
$$

Model with stochastic liquidity

- \blacktriangleright Dynamic order book height: $K_t := \frac{1}{q_t}$ e.g. positive diffusion
- Risk-neutral investor wants to purchase x shares on $[t, T]$

Singular control problem in continuous time

$$
U(t,\delta,x,\kappa):=\inf_{\Theta\in\mathcal{A}(x)}J(t,\delta,\Theta,\kappa)
$$

Admissible strategies $A(x)$

 Θ : $\Omega \times [t, T] \rightarrow [0, x]$ adapted, increasing, càglàd, $\Theta_t = 0, \Theta_{T+} = x$ a.s.

Trading costs $(\Delta \Theta_s := \Theta_{s+} - \Theta_s)$

$$
J(\Theta) := J(t,\delta,\Theta,\kappa) := \mathbb{E}\Big[\int_{[t,T]} \left(D_s + \frac{K_s}{2}\Delta\Theta_s\right)d\Theta_s\Big|D_t = \delta, K_t = \kappa\Big]
$$

Intuition: Wait and Buy region

▶ Scaling property of value function reduces dimension:

$$
U(t, a\delta, ax, \kappa) = a^2 U(t, \delta, x, \kappa) \text{ for } a \in \mathbb{R}_{\geq 0}
$$

\n
$$
\Rightarrow^{a=\frac{1}{\delta}} U(t, \delta, x, \kappa) = \delta^2 U(t, 1, \frac{x}{\delta}, \kappa)
$$

Intuition: Wait and Buy region

 \triangleright Scaling property of value function reduces dimension:

$$
U(t, a\delta, ax, \kappa) = a^2 U(t, \delta, x, \kappa) \text{ for } a \in \mathbb{R}_{\geq 0}
$$

\n
$$
\Rightarrow^{a=\frac{1}{\delta}} U(t, \delta, x, \kappa) = \delta^2 U(t, 1, \frac{x}{\delta}, \kappa)
$$

How could optimal strategy look like for fixed t and κ ?

- ► Wait if $\frac{x}{\delta}$ is small, say $\frac{x}{\delta} \leq c \in (0, \infty]$
- ► Otherwise buy $\xi > 0$ shares s.t. $\frac{x-\xi}{\delta+\frac{\xi}{q}} = c$

Antje Fruth (QP Lab) [Optimal execution](#page-0-0) June 2010 5 / 16

WR-BR-WR example

Antje Fruth (QP Lab) **[Optimal execution](#page-0-0)** Optimal execution June 2010 6 / 16

$$
dK_s = \mu(s, K_s)ds + \sigma(s, K_s)dW_s
$$

Let K be a positive, continuous diffusion satisfying

\n- i)
$$
\eta_s := \frac{2\rho}{K_s} + \frac{\mu(s, K_s)}{K_s^2} - \frac{\sigma^2(s, K_s)}{K_s^3} > 0
$$
 for all $s \in [t, T]$
\n- ii) $\mathbb{E}\left[\frac{\sup_{s \in [t, T]} K_s^2}{\inf_{s \in [t, T]} K_s}\right] < \infty$
\n- iii) $\mathbb{E}\left[\left(\int_t^T |\eta_s| ds\right) \left(\sup_{s \in [t, T]} K_s^2\right)\right] < \infty$
\n- Then $J(\Theta)$ is strictly convex and there exists a unique optimal strategy Θ^* .
\n

$$
dK_s = \mu(s, K_s)ds + \sigma(s, K_s)dW_s
$$

Let K be a positive, continuous diffusion satisfying

i)
$$
\eta_s := \frac{2\rho}{K_s} + \frac{\mu(s, K_s)}{K_s^2} - \frac{\sigma^2(s, K_s)}{K_s^3} > 0
$$
 for all $s \in [t, T]$
\nii) $\mathbb{E}\left[\frac{\sup_{s \in [t, T]} K_s^2}{\inf_{s \in [t, T]} K_s}\right] < \infty$
\niii) $\mathbb{E}\left[\left(\int_t^T |\eta_s| ds\right) \left(\sup_{s \in [t, T]} K_s^2\right)\right] < \infty$

Then $J(\Theta)$ is strictly convex and there exists a unique optimal strategy Θ^* .

Idea:

- Strict convexity: rewrite J in terms of D via $dD_s = K_s d\Theta_s \rho D_s ds$ $J(\Theta)\approx \mathbb{E}\left[\int_{\left[t,\,T\right]} \eta_{s} D^2_{s} d s\right] \rightsquigarrow \text{Assumption i)}$
- ► Existence: Komlos argument

Antje Fruth (QP Lab) **[Optimal execution](#page-0-0)** June 2010 7/16

Under the above assumptions there exists a unique barrier function $c : [0, T] \times (0, \infty) \rightarrow (0, \infty]$ with $c(T, \kappa) \equiv 0$ such that

$$
\Delta\Theta_t^*(t,\delta,x,\kappa) = \max\left\{0,\frac{x-c(t,\kappa)\delta}{1+\kappa c(t,\kappa)}\right\}.
$$
 (1)

Under the above assumptions there exists a unique barrier function $c : [0, T] \times (0, \infty) \rightarrow (0, \infty]$ with $c(T, \kappa) \equiv 0$ such that

$$
\Delta\Theta_t^*(t,\delta,x,\kappa) = \max\left\{0,\frac{x-c(t,\kappa)\delta}{1+\kappa c(t,\kappa)}\right\}.
$$
 (1)

Idea:

- \blacktriangleright Trade splitting argument
- \blacktriangleright Exclude upper WR by uniqueness
- \triangleright K càglàd, bounded ensures WR-BR structure
- ► Obizhaeva/Wang ($dK_t = 0$) gives $c(t, \kappa) = \frac{\rho(T-t)+1}{\kappa}$
- \blacktriangleright Explicit barrier via Euler-Lagrange formalism, e.g., $K_t = K_0 e^{\nu \rho t}$ gives

$$
c(t,\kappa) = \left\{ \begin{array}{ll} \infty & \text{if } \nu < -1 \\ \frac{1+\nu-e^{-\rho\nu(T-t)}}{\nu(1+\nu)\kappa} & \text{otherwise} \end{array} \right\}
$$

$$
dK_t = K_t(\mu_t dt + \sigma_t dW_t)
$$

- ▶ WR-BR-WR examples exist for time-inhomogeneous GBM
- If WR-BR structure holds: $c(t, \kappa) = \frac{c(t)}{\kappa}$ via scaling property, 'bad model' due to passive in the liquidity behavior

Example $3/3$: K CIR- numerical scheme

$$
dK_s = \overline{\mu}(\overline{K} - K_s)ds + \overline{\sigma}\sqrt{K_s} dW_s
$$

1. Possible idea:

Implement HJB equation (QVI) by finite difference scheme min $\Big\{ \kappa U_D - U_{\mathsf{X}} + D, U_t - \rho D U_D + \overline{\mu} (\overline{\kappa} - \kappa) U_{\kappa} + \frac{\overline{\sigma}^2}{2}$ $\left\{\frac{\overline{\sigma}^2}{2}\kappa U_{\kappa\kappa}\right\}=0$

2. Here:

Approximate state space diffusion by a Markov chain à la Kushner

- \triangleright Code is essentially the same as in 1.
- ▶ Convergence proof by probabilistic methods, i.e. no use of HJB eq./verification argument or convexity/smoothness/growth conditions

Example $3/3$: K CIR- WR-BR-WR example (for large vola)

Example $3/3$: K CIR- aggressive in the liquidity behavior (for high mean-reversion)

- \triangleright Market microstructure model of order book to study optimal execution problem
- \triangleright Stochastic liquidity \rightsquigarrow differential order placement
- \triangleright Wait/Buy Region structure does not always hold!

$$
\begin{array}{c|c}\n\downarrow & \downarrow \\
\hline\n\text{WR-BR-WR} & \text{Theorems}\n\end{array}
$$
 Models

▶ Numerical analysis via Markov chain implementation: Aggressive/passive in the liquidity behavior

[1] Obizhaeva, Wang: Optimal trading strategy and supply/demand dynamics. Forthcoming in Journal of Financial Markets (2005)

[2] Alfonsi, F., Schied: Optimal execution strategies in limit order books with general shape functions. Quantitative Finance (2009)

[3] Predoiu, Shaikhet, Shreve: Optimal execution in a general one-sided limit order book. Preprint (2010)

[4] Budhiraja, Ross: Convergent numerical scheme for singular stochastic control with state constraints in a portfolio selection problem. SIAM Journal of Control and Optimization (2007)

Thank you for your attention!