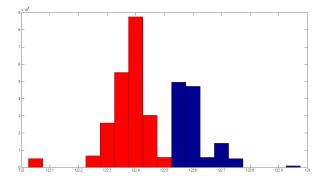
Averaging principle for an order book model

Ulrich Horst Michael Paulsen

Humboldt-Universität zu Berlin Department of Mathematics

6th World Conference of the Bachelier Finance Society June 24th, 2010

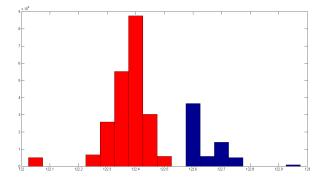

Image: Image:

OD IX Ed)efaults			Market De	pth Monito
iew E	3B0 Horiz		Display	Default				
			ast Trade	122.50	Volume 2032	2136		
To	otal	Ord	Size	Bid	Ask	Size	Ord	Total
	5696		5696		122.55	49432		49432
			30179	122.45	122.60	47036		96468
	123347		87472	122.40		5696		1 0 2164
	178481		55134	122.35		13986		116150
	204298		25817	122.30		4999		121149
	210923		6625	122.25		790		121939
			4999	122.05		27956		149895
	216632		710			7000		156895
	272861		56229					
	320323		47462					
	375417		55094	121.25				
	405417		30000	120.75				
	412417		7000					
			GROUP PLC) Show
	ngle Excha			ti Exchange (N	1DM) 7330 7500 Germanu			

A screen shot of an electronic limit order book.

Ulrich Horst, Michael Paulsen

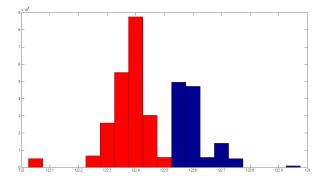
Averaging principle for an order book model



Initial state of the order book.

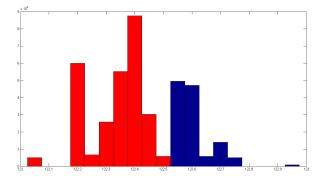
Ulrich Horst, Michael Paulsen

Averaging principle for an order book model


Introduction	Model description	Scaling Limit	Averaging Principle	Current work

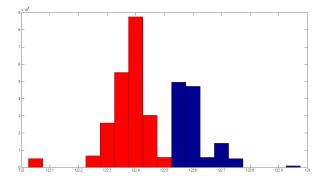
After market buy order placement.

Ulrich Horst, Michael Paulsen


Averaging principle for an order book model

Initial state of the order book.

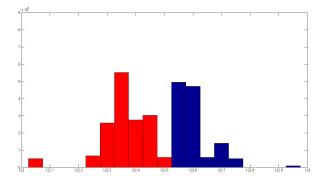
Ulrich Horst, Michael Paulsen


Averaging principle for an order book model

After buy limit order placement at 122.20.

Ulrich Horst, Michael Paulsen

Averaging principle for an order book model



Initial state of the order book.

Ulrich Horst, Michael Paulsen

Averaging principle for an order book model

Introduction	Model description	Scaling Limit	Averaging Principle	Current work

After buy limit order cancelation at 122.40.

Ulrich Horst, Michael Paulsen

Averaging principle for an order book model

Introduction	Model description	Scaling Limit	Averaging Principle	Current work

Humboldt-Universität zu Berlin

Ulrich Horst, Michael Paulsen

Introduction	Model description	Scaling Limit	Averaging Principle	Current work

Transparent double auction.

Ulrich Horst, Michael Paulsen

Introduction	Model description	Scaling Limit	Averaging Principle	Current work

Transparent double auction.

Waiting buy and sell limit orders are displayed + past trading data.

Introduction	Model description	Scaling Limit	Averaging Principle	Current work

- Transparent double auction.
- Waiting buy and sell limit orders are displayed + past trading data.
- We consider order driven ELOB (i.e. no market maker), i.e. order books for very liquid stocks.

Introduction	Model description	Scaling Limit	Averaging Principle	Current work

- Transparent double auction.
- Waiting buy and sell limit orders are displayed + past trading data.
- We consider order driven ELOB (i.e. no market maker), i.e. order books for very liquid stocks.

Introduction	Model description	Scaling Limit	Averaging Principle	Current work

- Transparent double auction.
- Waiting buy and sell limit orders are displayed + past trading data.
- We consider order driven ELOB (i.e. no market maker), i.e. order books for very liquid stocks.

Inherent complexity in order book modeling: high dimensionality and state-dependent random dynamics.

Introduction	Model description	Scaling Limit	Averaging Principle	Current work
Outline				

 Introduce discrete order book model (Microscopic setting, order flow).

Humboldt-Universität zu Berlin

Ulrich Horst, Michael Paulsen

Introduction	Model description	Scaling Limit	Averaging Principle	Current work
Outline				

- Introduce discrete order book model (Microscopic setting, order flow).
- Take scaling limits (LLN-scaling, tick size \rightarrow 0).

Introduction	Model description	Scaling Limit	Averaging Principle	Current work
Outline				

- Introduce discrete order book model (Microscopic setting, order flow).
- Take scaling limits (LLN-scaling, tick size \rightarrow 0).
 - V.V. Anisimov: Diffusion Approximation in Overloaded Switching Queueing models, Queueing Systems, 40:2, 2002.

Introduction	Model description	Scaling Limit	Averaging Principle	Current work
Outline				

- Introduce discrete order book model (Microscopic setting, order flow).
- Take scaling limits (LLN-scaling, tick size \rightarrow 0).
 - V.V. Anisimov: Diffusion Approximation in Overloaded Switching Queueing models, Queueing Systems, 40:2, 2002.
 - E. Bayraktar, U. Horst and R. Sircar: Queueing Theoretic Approaches to Financial Price Fluctuations, Handbook of Financial Engineering, Elsevier Science, 2007.

Introduction	Model description	Scaling Limit	Averaging Principle	Current work
Outline				

- Introduce discrete order book model (Microscopic setting, order flow).
- Take scaling limits (LLN-scaling, tick size \rightarrow 0).
 - V.V. Anisimov: Diffusion Approximation in Overloaded Switching Queueing models, Queueing Systems, 40:2, 2002.
 - E. Bayraktar, U. Horst and R. Sircar: Queueing Theoretic Approaches to Financial Price Fluctuations, Handbook of Financial Engineering, Elsevier Science, 2007.
- Prove averaging principle and consider examples (Macroscopic aggregates, ODE).

Deriving the model dynamics

trading mechanisms + random order flow \Rightarrow model dynamics

・ロト ・母 ト ・ヨト ・ヨー うへの

Humboldt-Universität zu Berlin

Ulrich Horst, Michael Paulsen

Deriving the model dynamics

trading mechanisms + random order flow \Rightarrow model dynamics

Random order flow (**input parameters, r.v.'s**) of market/limit orders and cancelations, i.e.

ロット・日・・日・・日・ 日・ シック

Humboldt-Universität zu Berlin

Ulrich Horst, Michael Paulsen

Deriving the model dynamics

trading mechanisms + random order flow \Rightarrow model dynamics

Random order flow (**input parameters**, **r.v.'s**) of market/limit orders and cancelations, i.e.

• when orders arrive - inter arrival times.

Deriving the model dynamics

trading mechanisms + random order flow \Rightarrow model dynamics

Random order flow (**input parameters**, **r.v.'s**) of market/limit orders and cancelations, i.e.

- when orders arrive inter arrival times.
- what happens limit/market order/cancelation volumes.

Deriving the model dynamics

trading mechanisms + random order flow \Rightarrow model dynamics

Random order flow (**input parameters**, **r.v.'s**) of market/limit orders and cancelations, i.e.

- when orders arrive inter arrival times.
- what happens limit/market order/cancelation volumes.
- where it happens limit order prices, cancelation prices.

Deriving the model dynamics

trading mechanisms + random order flow \Rightarrow model dynamics

Random order flow (**input parameters**, **r.v.'s**) of market/limit orders and cancelations, i.e.

- when orders arrive inter arrival times.
- what happens limit/market order/cancelation volumes.
- where it happens limit order prices, cancelation prices.
- randomness is dependent on the current state of the order book (e.g. state-dependent intensities, densities).

	Model description	Scaling Limit	Averaging Principle	Current work
II: Dynami	ics			

Humboldt-Universität zu Berlin

Ulrich Horst, Michael Paulsen

	Model description	Scaling Limit	Averaging Principle	Current work
II: Dynam	nics			

• B_k and A_k are the best bid and ask price.

Ulrich Horst, Michael Paulsen

Humboldt-Universität zu Berlin

	Model description	Scaling Limit	Averaging Principle	Current work
II: Dynan	nics			

- B_k and A_k are the best bid and ask price.
- *h*_{b,k} and *h*_{s,k} are the buy and sell volume densities (step functions, L²).

	Model description	Scaling Limit	Averaging Principle	Current work
II: Dynar	nics			

- B_k and A_k are the best bid and ask price.
- *h_{b,k}* and *h_{s,k}* are the buy and sell volume densities (step functions, *L*²).

Summarizing

Given input parameters and trading rules, we can derive the random incremental state change, denoted

$$\Delta S_k(S_k) := (\Delta B_k(S_k), \Delta A_k(S_k), \Delta h_{b,k}(S_k), \Delta h_{s,k}(S_k)).$$

Humboldt-Universität zu Berlin

Ulrich Horst, Michael Paulsen

I: Mathematical framework

Define sequence of models, $S_k^{(n)} := (B_k^{(n)}, A_k^{(n)}, h_{b,k}^{(n)}, h_{s,k}^{(n)})$, on $(\Omega^{(n)}, \mathcal{F}^{(n)}, \mathbb{P}^{(n)})$, $\mathcal{F}_0^{(n)} \subset \mathcal{F}_1^{(n)} \subset \ldots \subset \mathcal{F}^{(n)}$, where $\mathcal{F}_k^{(n)} := \left\{ (\Delta S_k^{(n)}(\alpha), \Delta t_k^{(n)}(\alpha)), \alpha \in E \right\}, \quad k \ge 0,$ (1)

are jointly **independent** families of random variables with values in $E \times [0, \infty)$, **i.d.** $\forall k \ge 0$ given $\alpha \in E$.

Ulrich Horst, Michael Paulsen

I: Mathematical framework

Define sequence of models, $S_k^{(n)} := (B_k^{(n)}, A_k^{(n)}, h_{b,k}^{(n)}, h_{s,k}^{(n)})$, on $(\Omega^{(n)}, \mathcal{F}^{(n)}, \mathbb{P}^{(n)})$, $\mathcal{F}_0^{(n)} \subset \mathcal{F}_1^{(n)} \subset \ldots \subset \mathcal{F}^{(n)}$, where $\mathcal{F}_k^{(n)} := \left\{ (\Delta S_k^{(n)}(\alpha), \Delta t_k^{(n)}(\alpha)), \alpha \in E \right\}, \quad k \ge 0,$ (1)

are jointly **independent** families of random variables with values in $E \times [0, \infty)$, **i.d.** $\forall k \ge 0$ given $\alpha \in E$.

Recurrent sequences

$$t_0^{(n)} := 0, \qquad t_{k+1}^{(n)} := t_k^{(n)} + \Delta t_k^{(n)}(S_k^{(n)}), \qquad [time].$$
 (2)

$$S_0^{(n)} := s_0^{(n)}, \quad S_{k+1}^{(n)} := S_k^{(n)} + \Delta S_k^{(n)}(S_k^{(n)}) \qquad [state].$$
 (3)

Ulrich Horst, Michael Paulsen

Humboldt-Universität zu Berlin

II: LLN-scaling of process

Order book process in physical time:

$$S^{(n)}(t) := S^{(n)}_k$$
 as $t \in [t^{(n)}_k, t^{(n)}_{k+1}), t \ge 0.$ (4)

Humboldt-Universität zu Berlin

Ulrich Horst, Michael Paulsen

II: LLN-scaling of process

Order book process in physical time:

$$S^{(n)}(t) := S^{(n)}_k$$
 as $t \in [t^{(n)}_k, t^{(n)}_{k+1}), t \ge 0.$ (4)

Consider LLN-scaling:

$$\lim_{n \to \infty} \frac{S^{(n)}(nt)}{n} \tag{5}$$

Humboldt-Universität zu Berlin

Ulrich Horst, Michael Paulsen

II: LLN-scaling of process

Order book process in physical time:

$$S^{(n)}(t) := S^{(n)}_k$$
 as $t \in [t^{(n)}_k, t^{(n)}_{k+1}), t \ge 0.$ (4)

Consider LLN-scaling:

$$\lim_{n \to \infty} \frac{S^{(n)}(nt)}{n} \tag{5}$$

(4) and (5): $\frac{S^{(n)}(nt)}{n} := \frac{S_k^{(n)}}{n} \quad \text{as} \quad t \in [\frac{t_k^{(n)}}{n}, \frac{t_{k+1}^{(n)}}{n}), \quad t \ge 0.$ (6)

Ulrich Horst, Michael Paulsen

Humboldt-Universität zu Berlin

III: Scaling of input parameters and tick size

Idea

• We have $\frac{S_k^{(n)}}{n} \sim S_k$ and we scale input parameters s.t. random incremental change $\frac{1}{n}\Delta S_k^{(n)} \sim \frac{1}{n}\Delta S_k$ over small time intervals.

Ulrich Horst, Michael Paulsen

III: Scaling of input parameters and tick size

Idea

• We have $\frac{S_k^{(n)}}{n} \sim S_k$ and we scale input parameters s.t. random incremental change $\frac{1}{n}\Delta S_k^{(n)} \sim \frac{1}{n}\Delta S_k$ over small time intervals.

• As $n \to \infty$, the tick size $\Delta p^{(n)} \to 0 \Rightarrow$ dynamics simplify.

Humboldt-Universität zu Berlin

Ulrich Horst, Michael Paulsen

III: Scaling of input parameters and tick size

Idea

• We have $\frac{S_k^{(n)}}{n} \sim S_k$ and we scale input parameters s.t. random incremental change $\frac{1}{n}\Delta S_k^{(n)} \sim \frac{1}{n}\Delta S_k$ over small time intervals.

• As $n \to \infty$, the tick size $\Delta p^{(n)} \to 0 \Rightarrow$ dynamics simplify.

Humboldt-Universität zu Berlin

Ulrich Horst, Michael Paulsen

Image: A math a math

Humboldt-Universität zu Berlin

III: Scaling of input parameters and tick size

Idea

• We have $\frac{S_k^{(n)}}{n} \sim S_k$ and we scale input parameters s.t. random incremental change $\frac{1}{n}\Delta S_k^{(n)} \sim \frac{1}{n}\Delta S_k$ over small time intervals.

• As $n \to \infty$, the tick size $\Delta p^{(n)} \to 0 \Rightarrow$ dynamics simplify.

Thus, we gain regularity as $n \to \infty$ and we have infinitesimally small changes over infinitesimal time intervals.

Ulrich Horst, Michael Paulsen

	Model description	Scaling Limit	Averaging Principle	Current work
IV: Heuris	stics			

 Write the doubly random discrete process as a composition of two processes (time and state separation).

Humboldt-Universität zu Berlin

Ulrich Horst, Michael Paulsen

- Write the doubly random discrete process as a composition of two processes (time and state separation).
- Study the processes **individually** and then their composition.

Ulrich Horst, Michael Paulsen

Humboldt-Universität zu Berlin

	Model description	Scaling Limit	Averaging Principle	Current work
IV: Heur	istics			

- Write the doubly random discrete process as a composition of two processes (time and state separation).
- Study the processes **individually** and then their composition.
- Rewrite the scaled state process in a deterministic and a random part (martingale difference sequence).

Ulrich Horst, Michael Paulsen

	Model description	Scaling Limit	Averaging Principle	Current work
IV: Heur	istics			

- Write the doubly random discrete process as a composition of two processes (time and state separation).
- Study the processes **individually** and then their composition.
- Rewrite the scaled state process in a deterministic and a random part (martingale difference sequence).
- Take scaling limits for each process under conditions for f.d.d. convergence and tightness.

	Model description	Scaling Limit	Averaging Principle	Current work
IV: Heur	istics			

- Write the doubly random discrete process as a composition of two processes (time and state separation).
- Study the processes **individually** and then their composition.
- Rewrite the scaled state process in a deterministic and a random part (martingale difference sequence).
- Take scaling limits for each process under conditions for f.d.d. convergence and tightness.
- Identify limit in probability as ODE on the state space ℝ₊ × ℝ₊ × L²([0, K_b], ℝ₋) × L²([0, K_s], ℝ₊).

	Model description	Scaling Limit	Averaging Principle	Current work
IV: Heur	istics			

- Write the doubly random discrete process as a composition of two processes (time and state separation).
- Study the processes **individually** and then their composition.
- Rewrite the scaled state process in a deterministic and a random part (martingale difference sequence).
- Take scaling limits for each process under conditions for f.d.d. convergence and tightness.
- Identify limit in probability as ODE on the state space ℝ₊ × ℝ₊ × L²([0, K_b], ℝ₋) × L²([0, K_s], ℝ₊).
- Use time change theorem for the composition i.e. the original scaled process.

I: Main result

Theorem (Horst, P.)

Given boundedness, convergence and Lipschitz continuity of the input parameters (as a function of the current order book state) it holds that

$$\frac{S^{(n)}(nt)}{n} \xrightarrow{\mathbb{P}} s^*(t), \text{ as } n \to \infty$$
(7)

where $s^*(t) \in E$ is the unique solution to the ODE

$$\begin{cases} \frac{\mathrm{d}s^*(t)}{\mathrm{d}t} = \frac{b^*(s^*(t))}{m^*(s^*(t))}, & t \in (0, T].\\ s^*(0) = s_0 \end{cases}$$
(8)

 $b^*(x) := \mathbb{E}[\Delta S_1^*(x,\omega)]$ and $m^*(x) := \mathbb{E}[\Delta t_1^*(x,\omega)].$ (9)

Ulrich Horst, Michael Paulsen

Corollary

If the volume densities have a stationary shape (e.g. block shaped), the ODE on the state space E (8) reduces to a coupled ODE on \mathbb{R}^2 for the best bid and ask prices.

Ulrich Horst, Michael Paulsen

Humboldt-Universität zu Berlin

	Model description	Scaling Limit	Averaging Principle	Current work
Current	work			

Diffusion approximation ("noise"), i.e. study

$$\frac{S^{(n)}(nt) - ns^*(t)}{\sqrt{n}} \quad \text{as } n \to \infty. \tag{10}$$

Ulrich Horst, Michael Paulsen

	Model description	Scaling Limit	Averaging Principle	Current work
Current	work			

Diffusion approximation ("noise"), i.e. study

$$\frac{S^{(n)}(nt) - ns^*(t)}{\sqrt{n}} \quad \text{as } n \to \infty. \tag{10}$$

• Alternative scaling \Rightarrow PDE.

Ulrich Horst, Michael Paulsen

Introc	luction		
--------	---------	--	--

Thank you!

Ulrich Horst, Michael Paulsen

Averaging principle for an order book model

Humboldt-Universität zu Berlin