Comparative Analysis of VaR and Some Distortion Risk Measures

Hideatsu Tsukahara

(tsukahar@seijo.ac.jp)

Dept of Economics, Seijo University

June 24, 2010

6th BFS World Congress, Toronto

Contents

- 1. The Class of Distortion Risk Measures (DRMs)
- 2. Statistical Estimation & Simulation
- 3. Capital Allocation with DRMs simulation study

1. Distortion Risk Measures (DRM)

For a rv *X* representing loss, put

• df of X:
$$
F_X(x) := P(X \le x)
$$

- *•* quantile of *X*: *F −*1 $\chi_X^{-1}(u) := \inf\{x \in \mathbb{R} : F_X(x) \ge u\}, \quad 0 < u < 1$
- **Def**: A functional $\rho: L^{\infty} \to \mathbb{R}$ is called *coherent* if it satisfies **[PO**] (positivity): $X < 0$ a.s. $\implies \rho(X) < 0$ **[PH**] (positive homogeneity): $\forall \lambda > 0$, $\rho(\lambda X) = \lambda \rho(X)$ **[TE**] (translation equivariance): $\forall c > 0$, $\rho(X + c) = \rho(X) + c$ **[SA]** (subadditivity): $\rho(X + Y) \leq \rho(X) + \rho(Y)$

Add two more axioms:

$$
[\text{L1}] \text{ (law invariance)}: \quad X \stackrel{\mathcal{L}}{=} Y \implies \rho(X) = \rho(Y)
$$

[CA] (comonotonic additivity):

X and *Y* are comonotone $\implies \rho(X+Y) = \rho(X) + \rho(Y)$

 X_1,\ldots,X_d are *comonotone* \Leftrightarrow There exist a rv Z and increasing func's f_1, \ldots, f_d s.t. (X_1, \ldots, X_d) *L* $\stackrel{\mathcal{L}}{=}$ $(f_1(Z), \ldots, f_d(Z))$

 $\blacktriangleright\blacktriangleright$ Kusuoka: The class of DRMs coincides with the set of coherent risk measures satisfying law invariance and comonotonic additivity

Distortion function

Any distribution function (df) *D* on [0*,* 1];

i.e., right-continuous, increasing on $[0, 1]$, $D(0) = 0$, $D(1) = 1$

For a distortion *D*, a *distortion risk measure (DRM)* is defined by

$$
\rho_D(X) := \int_{[0,1]} F_X^{-1}(u) dD(u) = \int_{\mathbb{R}} x dD \circ F_X(x).
$$

✒ ✑

[a.k.a. spectral risk measure (Acerbi), weighted V@R (Cherny)]

 \bigstar *D*^{VaR}(*u*) = 1_{*u*≥1−α} yields VaR_α(*X*) = F_X^{-1} $\alpha_X^{-1}(1-\alpha)$, 0 < α < 1, but this $D_{\alpha}^{\mathsf{VaR}}$ is not convex.

Example: *Expected Shortfall (ES)*

The expected loss that is incurred when VaR is exceeded

$$
ES_{\alpha}(X) := \frac{1}{\alpha} \int_{1-\alpha}^{1} F_X^{-1}(u) du
$$

$$
\doteq E(X \mid X \ge \text{VaR}_{\alpha}(X))
$$

Taking distortion of the form

$$
D^{\sf ES}_\alpha(u) = \frac{1}{\alpha} \big[u - (1 - \alpha) \big]_+, \quad 0 < \alpha < 1
$$

yields ES as a DRM

Other Examples:

• *Proportional Hazards*: $D_{\theta}^{PH}(u) = 1 - (1 - u)^{\theta}$

• **Proportional Odds**:
$$
D_{\theta}^{PO}(u) = \frac{\theta u}{1 - (1 - \theta)u}
$$

• *Gaussian* (Wang transform): $D_{\theta}^{\textsf{GA}}$ $(u) = \Phi(\Phi^{-1}(u) + \log \theta)$

$$
\bullet \text{ Proportional }\gamma\text{-Odds:}\quad D^{PGO}_{\theta}(u)=1-\bigg[\dfrac{(1-u)^{\gamma}}{\theta-\theta(1-u)^{\gamma}+(1-u)^{\gamma}}\bigg]^{1/\gamma}
$$

• Positive Poisson Mixture:
$$
D_{\lambda}^{PPM}(u) = \frac{e^{\lambda u} - 1}{e^{\lambda} - 1}
$$

2. Statistical Estimation

 $(X_n)_{n\in\mathbb{N}}$: strictly stationary process with $X_n \sim F$

 \mathbb{F}_n : empirical df based on the sample X_1,\ldots,X_n

A natural estimator of *ρ*(*X*) is

$$
\widehat{\rho}_n(X) = \int_0^1 \mathbb{F}_n^{-1}(u) dD(u)
$$

$$
= \sum_{i=1}^n c_{ni} X_{n:i}, \qquad c_{ni} := D\left(\frac{i-1}{n}, \frac{i}{n}\right)
$$

Strong consistency -

Let $d(u) = \frac{d}{du}$ d*u* $D(u)$ for a convex distortion D , and $1 \leq p \leq \infty$, $1/p + 1/q = 1$. Suppose that $(X_n)_{n \in \mathbb{N}}$ is an ergodic stationary sequence, and that $d \in L^p(0,1)$ and $F^{-1} \in L^q(0,1).$ Then

$$
\widehat{\rho}_n(X) \longrightarrow \rho(X), \quad \text{a.s.}
$$

✒ ✑

For a proof, see van Zwet (1980, AP)

[All we need is SLLN and Glivenko-Cantelli Theorem].

Assumptions:

$$
\bullet
$$
 $(X_n)_{n \in \mathbb{N}}$ is strongly mixing with rate

$$
\alpha(n) = O(n^{-\theta - \eta}) \quad \text{for some } \theta \ge 1 + \sqrt{2}, \ \eta > 0
$$

• For *F −*1 -almost all *u*, *d* is continuous at *u*

•
$$
|d| \leq B
$$
, $B(u) := Mu^{-b_1}(1-u)^{-b_2}$,

$$
\bullet |F^{-1}| \le H, \quad H(u) := Mu^{-d_1}(1-u)^{-d_2}
$$

Assume b_i , d_i & θ satisfy b_i+d_i+1 $2b_i + 1$ 2*θ* \lt $\frac{1}{2}$ $\frac{1}{2}$, $i = 1, 2$

Set

$$
\sigma(u, v) := [u \wedge v - uv] + \sum_{j=1}^{\infty} [C_j(u, v) - uv] + \sum_{j=1}^{\infty} [C_j(v, u) - uv],
$$

$$
C_j(u, v) := P(X_1 \le F^{-1}(u), X_{j+1} \le F^{-1}(v))
$$

Theorem (Asymptotic Normality) -

Under the above assumptions, we have

$$
\sqrt{n}(\widehat{\rho}_n(X)-\rho(X))\ \stackrel{\mathcal{L}}{\longrightarrow}\ N(0,\sigma^2),
$$

where

$$
\sigma^2 := \int_0^1 \int_0^1 \sigma(u, v) d(u) d(v) \, dF^{-1}(u) dF^{-1}(v) < \infty
$$

✒ ✑

• GARCH model:

$$
X_n = \sigma_n Z_n, \quad (Z_n) : \text{ i.i.d.}
$$

$$
\sigma_n^2 = \alpha_0 + \sum_{i=1}^p \alpha_i X_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2
$$

 $\blacktriangleright\blacktriangleright$ If the stationary distribution has a positive density around 0, then GARCH is strongly mixing with exponentially decaying *α*(*n*)

• Stochastic Volatility model:

 $X_n = \sigma_n Z_n$, (Z_n) : i.i.d., (σ_n) : strictly stationary positive (Z_n) and (σ_n) are assumed to be independent

 $\blacktriangleright\blacktriangleright$ The mixing rate of (X_n) is the same as that of $(\log \sigma_n)$

Simulation example: inverse-gamma SV model

$$
X_t = \sigma_t Z_t
$$

 Z_t i.i.d. $\mathsf{N}(0,1)$ and $V_t = 1/\sigma_t^2$ satisfies $V_t = \rho V_{t-1} + \varepsilon_t$

where $V_t \sim \text{Gamma}(a, b)$ for each t , (ε_t) i.i.d. rv's, and $0 \leq \rho < 1$

 \Rightarrow X_t has scaled *t*-distribution with $\nu = 2a, \ \sigma^2 = b/a$

 $\blacktriangleright\blacktriangleright$ Lawrance (1982): the distribution of ε_t is compound Poisson

 $\blacktriangleright\blacktriangleright$ Can be shown that (X_t) is geometrically ergodic

Simulation results for estimating VaR, ES & PO risk measures with inverse-gamma SV observations ($n = 500$, $\#$ of replication $= 1000$)

$$
X_t = \sigma_t Z_t
$$
, where $V_t = 1/\sigma_t^2$ follows AR(1)

with gamma $(2,\!16000)$ marginal & $\rho=0.5,~Z_t~$ i.i.d. $\mathsf{N}(0,\!1)$

Simulation results for estimating VaR, ES & PO risk measures with GARCH observations ($n = 500$, $\#$ of replication $= 1000$)

$$
X_t = 0.0009 + \varepsilon_t, \quad \sigma_t^2 = 0.5 + 0.85\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2
$$

• Estimation of Asymptotic Variance

$$
\sigma^2 = \iint \sigma(F(x), F(y))d(F(x))d(F(y)) \,dxdy
$$

where

$$
\sigma(F(x), F(y)) = [F(x) \wedge F(y) - F(x)F(y)] + \sum_{j=1}^{\infty} [F_j(u, v) - F(x)F(y)] + \sum_{j=1}^{\infty} [F_j(y, x) - F(x)F(y)],
$$

and

$$
F_j(x, y) = P(X_1 \le x, X_{j+1} \le y)
$$

 $\blacktriangleright\blacktriangleright$ How to estimate this? (to construct confidence intervals)

3. Capital Allocation

d investment opportunities (e.g., business units, subportfolios, assets) X_i : loss associated with the i th investments

- 1. Compute the overall risk capital $\rho(X)$, where $X = \sum_{i=1}^d X_i$ and *ρ* is a particular risk measure.
- 2. Allocate the capital $\rho(X)$ to the individual investment possibilities according to some mathematical *capital allocation principle* such that, if *κi* denotes the capital allocated to the investment opportunity with potential loss X_i , we have $\sum_{i=1}^d \kappa_i = \rho(X).$

 $\blacktriangleright\blacktriangleright$ Find $\kappa = (\kappa_1,\ldots,\kappa_d)\in\mathbb{R}^d$ s.t. $\sum_{i=1}^d \kappa_i = \rho(X)$ according to some criterion

Setup

It is convenient to introduce 'weights' $\lambda = (\lambda_1, \ldots, \lambda_d)$ (to be interpreted as amount of money invested in each opportunity)

$$
\begin{aligned} \text{Put } X(\lambda) := \sum_{i=1}^d \lambda_i X_i \text{ and } \\ r_\rho(\lambda) := \rho(X(\lambda)) \quad \text{risk measure function} \end{aligned}
$$

If ρ is positive homogeneous, then, for $h > 0$

$$
r_\rho(h\lambda)=hr_\rho(\lambda)
$$

i.e., r_{ρ} is positive homogeneous of degree 1

Euler's rule: If *rρ* is positive homogeneous and differentiable,

$$
r_{\rho}(\lambda)=\sum_{i=1}^d\lambda_i\frac{\partial r_{\rho}}{\partial\lambda_i}(\lambda)
$$

Euler allocation principle

If r_{ρ} is a positive homogeneous risk measure function, which is differentiable on the set Λ , then the (per-unit) Euler capital allocation principle associated with *rρ* is

$$
\kappa_i(\lambda) = \frac{\partial r_\rho}{\partial \lambda_i}(\lambda)
$$

✒ ✑

Justification

• Tasche: RORAC compatibility

rρ: differentiable risk measure function *κ*: capital allocation principle

κ is called *suitable for performance measurement* if for all *λ* we have

$$
\frac{\partial}{\partial \lambda_i}\left(\frac{-\mathcal{E}(X(\lambda))}{r_\rho(\lambda)}\right) \begin{cases} > 0 & \text{if } \frac{-\mathcal{E}(X_i)}{\kappa_i(\lambda)} > \frac{-\mathcal{E}(X(\lambda))}{r_\rho(\lambda)}, \\ < 0 & \text{if } \frac{-\mathcal{E}(X_i)}{\kappa_i(\lambda)} < \frac{-\mathcal{E}(X(\lambda))}{r_\rho(\lambda)}. \end{cases}
$$

 $\blacktriangleright\blacktriangleright$ The only per-unit capital allocation principle suitable for performance measurement is the Euler principle.

• Denault: Coorperative game theory

 d investment opportunities $= d$ players If ρ is subadditive, then $\rho(X(\lambda)) \leq \sum_{i=1}^d \rho(\lambda_i X_i)$.

A fuzzy core (Aubin, 1981) is given by

$$
\mathscr{C} = \left\{ \kappa \in \mathbb{R}^d \colon r_{\rho}(\mathbf{1}) = \sum_{i=1}^d \kappa_i \; \& \; r_{\rho}(\lambda) \geq \sum_{i=1}^d \lambda_i \kappa_i \; \forall \lambda \in [0,1]^d \right\}
$$

 $\blacktriangleright\blacktriangleright$ If r_ρ is differentiable at $\lambda = 1$, then *C* consists only of the gradient vector of r_ρ at $\lambda = 1$:

$$
\kappa_i = \frac{\partial r_{\rho}(\lambda)}{\partial \lambda_i} \bigg|_{\lambda = 1}
$$

Examples

• Covariance principle:

$$
r_{\rho}(\lambda) = \sqrt{\text{var}(X(\lambda))} = \sqrt{\lambda' \Sigma \lambda}
$$

where Σ is the covariance matrix of $(X_1,\ldots,X_d).$ Then

$$
\kappa_i(\lambda) = \frac{\partial r_{\rho}(\lambda)}{\partial \lambda_i} = \frac{\text{cov}(X_i, X(\lambda))}{\sqrt{\text{var}(X(\lambda))}}
$$

In particular, the capital allocated to the *i*th investment opportunity is

$$
\kappa_i = \frac{\text{cov}(X_i, X)}{\sqrt{\text{var}(X)}}
$$

• VaR contributions:

$$
r_\rho(\lambda) = \mathsf{VaR}_\alpha(X(\lambda))
$$

Then (Tasche, 1999)

$$
\kappa_i(\lambda) = \frac{\partial r_{\rho}(\lambda)}{\partial \lambda_i} = \mathrm{E}(X_i \mid X(\lambda) = \mathrm{VaR}_{\alpha}(X(\lambda)))
$$

In particular, the capital allocated to the *i*th investment opportunity is given by

$$
\kappa_i = \mathrm{E}(X_i \,|\, X = \mathsf{VaR}_{\alpha}(X))
$$

(It is hard to compute, though)

• ES contributions:

$$
r_\rho(\lambda) = \mathsf{ES}_\alpha(X(\lambda)) = \frac{1}{\alpha} \int_{1-\alpha}^1 F^{-1}_{X(\lambda)}(u) \, du
$$

Then

$$
\kappa_i(\lambda) = \frac{\partial r_{\rho}(\lambda)}{\partial \lambda_i} = \mathrm{E}(X_i \mid X(\lambda) \geq \mathrm{VaR}_{\alpha}(X(\lambda)))
$$

In particular, the capital allocated to the *i*th investment opportunity is given by

$$
\kappa_i = \mathrm{E}(X_i \,|\, X \geq \mathsf{VaR}_{\alpha}(X))
$$

Capital Allocation with DRM

$$
r_{\rho}(\lambda) = \rho_D(X(\lambda)) = \int_{[0,1]} F_{X(\lambda)}^{-1}(u) dD(u)
$$

Then, under some regularity conditions (Tsanakas),

$$
\kappa_i(\lambda) = \frac{\partial r_\rho(\lambda)}{\partial \lambda_i} = \int_{[0,1]} \frac{\partial}{\partial \lambda_i} F_{X(\lambda)}^{-1}(u) dD(u)
$$

=
$$
\int_{[0,1]} \mathbb{E}[X_i | X(\lambda) = F_{X(\lambda)}^{-1}(u)] dD(u)
$$

=
$$
\int_{\mathbb{R}} \mathbb{E}[X_i | X(\lambda) = x] d(F_{X(\lambda)}(x)) dF_{X(\lambda)}(x)
$$

=
$$
\mathbb{E}[X_i d(F_{X(\lambda)}(X(\lambda)))]
$$

Thus, the capital allocated to the *i*th investment opportunity is

$$
\kappa_i = \mathbb{E}[X_i d(F_X(X))]
$$

 $\blacktriangleright\blacktriangleright$ We can think of $d(F_X(X))$ as a Radon-Nikodym density: $E(d(F_X(X)) = 1$ trivially dQ dP $= d(F_X(X)) \implies \kappa_i = E^Q(X_i)$

Even when we know the joint df of (X_1, \ldots, X_d) , it is still difficult to compute κ_i since the joint df of X_i and X is needed (The only exception is a Gaussian case).

⇒ Resort to Monte Carlo

Given a random sample (X_1^k, \ldots, X_d^k) *d* $),\ k=1,\ldots,n,$ put $X^k = X_1^k + \cdots + X_d^k$ $\frac{d}{dx}$, $\mathbb{F}_X(x) = \frac{1}{n+1}$ $n+1$ ∑ *n k*=1 **1***{Xk≤x}*

Then we can estimate *κi* by

$$
\widehat{\kappa}_i = \frac{1}{n} \sum_{k=1}^n X_i^k d(\mathbb{F}_X(X^k))
$$

$$
= \iint x_i d(\mathbb{F}_X(x)) d\mathbb{F}_{X_i, X}(x_i, x)
$$

where

$$
\mathbb{F}_{X_i,X}(x_i, x) = \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{X_{k,i} \le x_i, \ X^k \le x\}}
$$

The error $\widehat{\kappa}_i - \kappa_i$ can be asymptotically evaluated by proving asymptotic normality: Under certain regularity conditions,

$$
\sqrt{n}(\widehat{\kappa}_i - \kappa_i) \xrightarrow{\mathcal{L}} N(0, \sigma^2)
$$

where

$$
\sigma^2 = \text{var}\left(F_{X_i}^{-1}(\xi_i)d(\xi) + \iint F_{X_i}^{-1}(u_i)d'(u)\mathbf{1}_{\{\xi \le u\}} dC_i(u_i, u)\right)
$$

$$
C_i(F_{X_i}(x_i), F_X(x)) = P(X_i \le x_i, X \le x) \text{ and } (\xi_i, \xi) \sim C_i
$$

(Needs to be modified for ES)

Numerical Experiments: Take distortion densities

- \bullet Expected Shortfall: $d_{\theta}(u) = \frac{1}{\theta}$ *θ* **1***{u≥*1*−θ}*
- *•* Proportional Odds: $d_{\theta}(u) = \frac{\theta}{\sqrt{1-\theta}}$ $\overline{(1-u+\theta u)^2}$
- \bullet Proportional Hazards: $d_{\theta}(u) = \theta(1-u)^{\theta-1}$

• Gaussian:
$$
d_{\theta}(u) = \frac{\phi(\Phi^{-1}(u) + \log \theta)}{\phi(\Phi^{-1}(u))}
$$

Elliptical loss distribution: *E^d* (*µ,*Σ*, ψ*)

µ: location vector, Σ: dispersion matrix, *ψ*: characteristic generator

Assume r_{ρ} is the risk measure function of a positive homogeneous, law invariant risk measure ρ . Let $(X_1,\ldots,X_d)\sim E_d(\mathbf{0},\Sigma,\psi)$. Then under an Euler allocation, the relative capital allocation is given by

$$
\frac{\kappa_i}{\kappa_j} = \frac{\kappa_i(\mathbf{1})}{\kappa_j(\mathbf{1})} = \frac{\sum_{k=1}^d \Sigma_{ik}}{\sum_{k=1}^d \Sigma_{jk}}, \quad 1 \le i, j \le d.
$$

 $\blacktriangleright\blacktriangleright$ The relative amounts of capital allocated to each investment opportunity are the same as long as we use a positive homogeneous, law invariant risk measure.

Estimated ratios $\hat{\kappa}_i/\hat{\kappa}_{i+1}$ of capital allocation $(\theta = \alpha = 0.05)$ sample from *N* $\bigg)$ **0***,* $\bigg)$ $\overline{\mathcal{L}}$ 1 0*.*1 0*.*5 0*.*1 1 0*.*9 0*.*5 0*.*9 1 \setminus $\Big\}$ \setminus \int , size = n , 1000 runs

Comparison in terms of DI $(\theta = \alpha = 0.05)$

Marginal: N(0,1)

Dependence: Gaussian & t copula with correlation matrix

 $\bigg)$ $\overline{\mathcal{L}}$ 1 0*.*1 0*.*5 0*.*1 1 0*.*9 0*.*5 0*.*9 1 \setminus $\begin{array}{c} \hline \end{array}$

$$
\blacktriangleright\blacktriangleright\text{ Compute diversification index: } \text{DI}_{\rho}(X)=\frac{\rho(X)}{\sum\rho(X_i)}
$$

• Gaussian: $Dl_{\rho}(X) = 0.8165$ for all DRM ρ theoretically

• t copula:
$$
\text{DI}_{\text{ES}}(X) = 0.8329 \text{ (std= } 0.021)
$$
,
\n $\text{DI}_{\text{PO}}(X) = 0.8285 \text{ (std= } 0.015)$,
\n $\text{DI}_{\text{GA}}(X) = 0.7367 \text{ (std= } 0.076)$

Estimated capital allocation with GPD & t marginals $(\theta = \alpha = 0.05)$ using Gaussian copula with correlation matrix $\bigg)$ $\overline{\mathcal{L}}$ 1 0*.*1 0*.*5 0*.*1 1 0*.*9 0*.*5 0*.*9 1 \setminus $\Big\}$

4. Concluding Remarks

- *•* Estimation of DRMs is possible, but for some DRMs, we don't get nice asymptotic properties; proportional odds risk measure has some nice features.
- *•* Euler capital allocation based on DRMs are easy to compute and widely applicable (more stable than VaR). Need more computational efficiency for tail-exaggerating DRMs.
- *•* Future research: Careful study of portfolio optimization
- *•* Future research: Extension to dynamic setting