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1. Distortion Risk Measures (DRM)

For a rv X representing loss, put

• df of X: FX(x) := P(X ≤ x)

• quantile of X: F−1
X (u) := inf{x ∈ R : FX(x) ≥ u}, 0 < u < 1

Def: A functional ρ : L∞ → R is called coherent if it satisfies

[PO] (positivity): X ≤ 0 a.s. =⇒ ρ(X) ≤ 0

[PH] (positive homogeneity): ∀λ > 0, ρ(λX) = λρ(X)

[TE] (translation equivariance): ∀c > 0, ρ(X + c) = ρ(X) + c

[SA] (subadditivity): ρ(X + Y ) ≤ ρ(X) + ρ(Y )



Add two more axioms:

[LI] (law invariance): X
L
= Y =⇒ ρ(X) = ρ(Y )

[CA] (comonotonic additivity):

X and Y are comonotone =⇒ ρ(X + Y ) = ρ(X) + ρ(Y )

X1, . . . , Xd are comonotone ⇔ There exist a rv Z and increasing

func’s f1, . . . , fd s.t. (X1, . . . , Xd)
L
= (f1(Z), . . . , fd(Z))

II Kusuoka: The class of DRMs coincides with the set of coherent

risk measures satisfying law invariance and comonotonic additivity



Distortion function¶ ³

Any distribution function (df) D on [0, 1];

i.e., right-continuous, increasing on [0, 1], D(0) = 0, D(1) = 1

µ ´

For a distortion D, a distortion risk measure (DRM) is defined by

ρD(X) :=

∫
[0,1]

F−1
X (u) dD(u) =

∫
R

x dD ◦ FX(x).

[a.k.a. spectral risk measure (Acerbi), weighted V@R (Cherny)]

F DVaR
α (u) = 1{u≥1−α} yields VaRα(X) = F−1

X (1−α), 0 < α < 1,

but this DVaR
α is not convex.



Example: Expected Shortfall (ES)

The expected loss that is incurred when VaR is exceeded

ESα(X) :=
1

α

∫ 1

1−α
F−1

X (u) du

.
= E(X |X ≥ VaRα(X))

Taking distortion of the form

DES
α (u) =

1

α

[
u − (1 − α)

]
+, 0 < α < 1

yields ES as a DRM



Other Examples:

• Proportional Hazards: DPH
θ (u) = 1 − (1 − u)θ

• Proportional Odds: DPO
θ (u) =

θu

1 − (1 − θ)u

• Gaussian (Wang transform): DGA
θ (u) = Φ(Φ−1(u) + log θ)

• Proportional γ-Odds: DPGO
θ (u) = 1−

[
(1 − u)γ

θ − θ(1 − u)γ + (1 − u)γ

]1/γ

• Positive Poisson Mixture: DPPM
λ (u) =

eλu − 1

eλ − 1



2. Statistical Estimation

(Xn)n∈N: strictly stationary process with Xn ∼ F

Fn: empirical df based on the sample X1, . . . , Xn

A natural estimator of ρ(X) is

ρ̂n(X) =

∫ 1

0
F−1

n (u) dD(u)

=

n∑
i=1

cniXn:i, cni := D

(
i − 1

n
,

i

n

]



Strong consistency¶ ³

Let d(u) = d
duD(u) for a convex distortion D, and 1 ≤ p ≤ ∞,

1/p + 1/q = 1. Suppose that (Xn)n∈N is an ergodic stationary

sequence, and that d ∈ Lp(0, 1) and F−1 ∈ Lq(0, 1). Then

ρ̂n(X) −→ ρ(X), a.s.

µ ´

For a proof, see van Zwet (1980, AP)

[All we need is SLLN and Glivenko-Cantelli Theorem].



Assumptions:

• (Xn)n∈N is strongly mixing with rate

α(n) = O(n−θ−η) for some θ ≥ 1 +
√

2, η > 0

• For F−1-almost all u, d is continuous at u

• |d| ≤ B, B(u) := Mu−b1(1 − u)−b2,

• |F−1| ≤ H, H(u) := Mu−d1(1 − u)−d2

Assume bi, di & θ satisfy bi + di + 2bi+1
2θ < 1

2, i = 1, 2



Set

σ(u, v) := [u ∧ v − uv] +

∞∑
j=1

[Cj(u, v) − uv] +

∞∑
j=1

[Cj(v, u) − uv],

Cj(u, v) := P(X1 ≤ F−1(u), Xj+1 ≤ F−1(v))

Theorem (Asymptotic Normality)¶ ³
Under the above assumptions, we have

√
n(ρ̂n(X) − ρ(X))

L−→ N(0, σ2),

where

σ2 :=

∫ 1

0

∫ 1

0
σ(u, v)d(u)d(v) dF−1(u)dF−1(v) < ∞

µ ´



• GARCH model:

Xn = σnZn, (Zn) : i.i.d.

σ2
n = α0 +

∑p
i=1 αiX

2
t−i +

∑q
j=1 βjσ

2
t−j

II If the stationary distribution has a positive density around 0,

then GARCH is strongly mixing with exponentially decaying α(n)

• Stochastic Volatility model:

Xn = σnZn, (Zn) : i.i.d., (σn) : strictly stationary positive

(Zn) and (σn) are assumed to be independent

II The mixing rate of (Xn) is the same as that of (log σn)



Simulation example: inverse-gamma SV model

Xt = σtZt

Zt i.i.d. N(0,1) and Vt = 1/σ2
t satisfies

Vt = ρVt−1 + εt,

where Vt ∼ Gamma(a, b) for each t, (εt) i.i.d. rv’s, and 0 ≤ ρ < 1

⇒ Xt has scaled t-distribution with ν = 2a, σ2 = b/a

II Lawrance (1982): the distribution of εt is compound Poisson

II Can be shown that (Xt) is geometrically ergodic



Simulation results for estimating VaR, ES & PO risk measures with

inverse-gamma SV observations (n = 500, # of replication = 1000)

Xt = σtZt, where Vt = 1/σ2
t follows AR(1)

with gamma(2,16000) marginal & ρ = 0.5, Zt i.i.d. N(0,1)

VaR ES PO

θ = α bias RMSE bias RMSE bias RMSE

0.1 0.0692 10.9303 −2.2629 22.1361 −1.7739 17.5522

SV 0.05 2.5666 17.6755 −1.2168 37.2719 −2.0200 28.5053

0.01 14.9577 61.2290 −11.9600 103.9269 −15.7888 73.7147

0.1 0.7976 10.5893 −1.2914 19.5756 −1.3574 15.3271

i.i.d. 0.05 0.7974 16.1815 −2.6346 31.3166 −2.8342 23.9933

0.01 10.6838 53.2567 −12.9355 95.9070 −15.8086 69.5425



Simulation results for estimating VaR, ES & PO risk measures with

GARCH observations (n = 500, # of replication = 1000)

Xt = 0.0009 + εt, σ2
t = 0.5 + 0.85σ2

t−1 + 0.1ε2
t−1

VaR ES PO PH

θ = α mean std mean std mean std mean std

0.5 0.0077 0.1679 2.4590 0.2687 1.2134 0.1854 2.2206 0.3119

0.05 5.1429 0.5488 6.6250 0.8048 5.0339 0.5959 8.9421 1.8604

0.01 7.7766 1.1182 8.8885 1.4658 7.3829 1.0806 10.2292 2.2618



• Estimation of Asymptotic Variance

σ2 =

∫∫
σ(F (x), F (y))d(F (x))d(F (y)) dxdy

where

σ(F (x), F (y)) = [F (x) ∧ F (y) − F (x)F (y)]

+

∞∑
j=1

[Fj(u, v) − F (x)F (y)] +

∞∑
j=1

[Fj(y, x) − F (x)F (y)],

and

Fj(x, y) = P(X1 ≤ x,Xj+1 ≤ y)

II How to estimate this? (to construct confidence intervals)



3. Capital Allocation

d investment opportunities (e.g., business units, subportfolios, assets)

Xi: loss associated with the ith investments

1. Compute the overall risk capital ρ(X), where X =
∑d

i=1 Xi and

ρ is a particular risk measure.

2. Allocate the capital ρ(X) to the individual investment possibilities

according to some mathematical capital allocation principle such

that, if κi denotes the capital allocated to the investment opportu-

nity with potential loss Xi, we have
∑d

i=1 κi = ρ(X).

II Find κ = (κ1, . . . , κd) ∈ Rd s.t.
∑d

i=1 κi = ρ(X) according to

some criterion



Setup

It is convenient to introduce ‘weights’ λ = (λ1, . . . , λd)

(to be interpreted as amount of money invested in each opportunity)

Put X(λ) :=
∑d

i=1 λiXi and

rρ(λ) := ρ(X(λ)) risk measure function

If ρ is positive homogeneous, then, for h > 0

rρ(hλ) = hrρ(λ)

i.e., rρ is positive homogeneous of degree 1



Euler’s rule: If rρ is positive homogeneous and differentiable,

rρ(λ) =

d∑
i=1

λi
∂rρ

∂λi
(λ)

Euler allocation principle¶ ³
If rρ is a positive homogeneous risk measure function, which is dif-

ferentiable on the set Λ, then the (per-unit) Euler capital allocation

principle associated with rρ is

κi(λ) =
∂rρ

∂λi
(λ)

µ ´



Justification

• Tasche: RORAC compatibility

rρ: differentiable risk measure function

κ: capital allocation principle

κ is called suitable for performance measurement if for all λ we have

∂

∂λi

(
−E(X(λ))

rρ(λ)

) 
> 0 if

−E(Xi)
κi(λ)

>
−E(X(λ))

rρ(λ)
,

< 0 if
−E(Xi)
κi(λ)

<
−E(X(λ))

rρ(λ)
.

II The only per-unit capital allocation principle suitable for per-

formance measurement is the Euler principle.



• Denault: Coorperative game theory

d investment opportunities = d players

If ρ is subadditive, then ρ(X(λ)) ≤
∑d

i=1 ρ(λiXi).

A fuzzy core (Aubin, 1981) is given by

C =

{
κ ∈ Rd : rρ(1) =

d∑
i=1

κi & rρ(λ) ≥
d∑

i=1

λiκi ∀λ ∈ [0, 1]d
}

II If rρ is differentiable at λ = 1, then C consists only of the

gradient vector of rρ at λ = 1:

κi =
∂rρ(λ)

∂λi

∣∣∣∣
λ=1



Examples

• Covariance principle:

rρ(λ) =
√

var(X(λ)) =
√

λ′Σλ

where Σ is the covariance matrix of (X1, . . . , Xd). Then

κi(λ) =
∂rρ(λ)

∂λi
=

cov(Xi, X(λ))√
var(X(λ))

In particular, the capital allocated to the ith investment opportunity

is

κi =
cov(Xi, X)√

var(X)



• VaR contributions:

rρ(λ) = VaRα(X(λ))

Then (Tasche, 1999)

κi(λ) =
∂rρ(λ)

∂λi
= E(Xi |X(λ) = VaRα(X(λ)))

In particular, the capital allocated to the ith investment opportunity

is given by

κi = E(Xi |X = VaRα(X))

(It is hard to compute, though)



• ES contributions:

rρ(λ) = ESα(X(λ)) =
1

α

∫ 1

1−α
F−1

X(λ)
(u) du

Then

κi(λ) =
∂rρ(λ)

∂λi
= E(Xi |X(λ) ≥ VaRα(X(λ)))

In particular, the capital allocated to the ith investment opportunity

is given by

κi = E(Xi |X ≥ VaRα(X))



Capital Allocation with DRM

rρ(λ) = ρD(X(λ)) =

∫
[0,1]

FX(λ)
−1(u) dD(u)

Then, under some regularity conditions (Tsanakas),

κi(λ) =
∂rρ(λ)

∂λi
=

∫
[0,1]

∂

∂λi
FX(λ)

−1(u) dD(u)

=

∫
[0,1]

E[Xi |X(λ) = FX(λ)
−1(u)] dD(u)

=

∫
R

E[Xi |X(λ) = x]d(FX(λ)(x)) dFX(λ)(x)

= E[Xid(FX(λ)(X(λ)))]



Thus, the capital allocated to the ith investment opportunity is

κi = E[Xid(FX(X))]

II We can think of d(FX(X)) as a Radon-Nikodym density:

E(d(FX(X)) = 1 trivially

dQ

dP
= d(FX(X)) =⇒ κi = EQ(Xi)

Even when we know the joint df of (X1, . . . , Xd), it is still difficult

to compute κi since the joint df of Xi and X is needed (The only

exception is a Gaussian case).

⇒ Resort to Monte Carlo



Given a random sample (Xk
1 , . . . , Xk

d ), k = 1, . . . , n, put

Xk = Xk
1 + · · · + Xk

d , FX(x) =
1

n + 1

n∑
k=1

1{Xk≤x}

Then we can estimate κi by

κ̂i =
1

n

n∑
k=1

Xk
i d(FX(Xk))

=

∫∫
xid(FX(x)) dFXi,X

(xi, x)

where

FXi,X
(xi, x) =

1

n

n∑
k=1

1{Xk,i≤xi, Xk≤x}



The error κ̂i−κi can be asymptotically evaluated by proving asymptotic

normality: Under certain regularity conditions,

√
n(κ̂i − κi)

L−→ N(0, σ2)

where

σ2 = var

(
F−1

Xi
(ξi)d(ξ) +

∫∫
F−1

Xi
(ui)d

′(u)1{ξ≤u} dCi(ui, u)

)
Ci(FXi

(xi), FX(x)) = P(Xi ≤ xi, X ≤ x) and (ξi, ξ) ∼ Ci

(Needs to be modified for ES)



Numerical Experiments: Take distortion densities

• Expected Shortfall: dθ(u) =
1

θ
1{u≥1−θ}

• Proportional Odds: dθ(u) =
θ

(1 − u + θu)2

• Proportional Hazards: dθ(u) = θ(1 − u)θ−1

• Gaussian: dθ(u) =
φ(Φ−1(u) + log θ)

φ(Φ−1(u))



Elliptical loss distribution: Ed(µ, Σ, ψ)

µ: location vector, Σ: dispersion matrix, ψ: characteristic generator

Assume rρ is the risk measure function of a positive homogeneous,

law invariant risk measure ρ. Let (X1, . . . , Xd) ∼ Ed(0, Σ, ψ). Then

under an Euler allocation, the relative capital allocation is given by

κi

κj
=

κi(1)

κj(1)
=

∑d
k=1 Σik∑d
k=1 Σjk

, 1 ≤ i, j ≤ d.

II The relative amounts of capital allocated to each investment op-

portunity are the same as long as we use a positive homogeneous, law

invariant risk measure.



Estimated ratios κ̂i/κ̂i+1 of capital allocation (θ = α = 0.05)

sample from N

0,

 1 0.1 0.5

0.1 1 0.9

0.5 0.9 1


, size = n, 1000 runs

true ES PO PH Gaussian

n ratio bias
√

MSE bias
√

MSE bias
√

MSE bias
√

MSE

100 4/5 0.0740 0.3962 0.0352 0.2815 0.0422 0.3281 0.0587 0.3933

5/6 −0.0081 0.1045 −0.0028 0.0793 −0.0023 0.0908 −0.0033 0.1048

250 4/5 0.0129 0.2239 0.0101 0.1669 0.0219 0.2185 0.0332 0.2660

5/6 0.0007 0.0634 −0.0003 0.0483 −0.0017 0.0623 −0.0030 0.0740

500 4/5 0.0092 0.1441 0.0064 0.1103 0.0138 0.1594 0.0188 0.1911

5/6 −0.0006 0.0429 −0.0007 0.0329 −0.0015 0.0465 −0.0019 0.0552

5000 4/5 0.0017 0.0459 0.0006 0.0356 10−5 0.0888 0.0005 0.0931

5/6 −0.0003 0.0139 9·10−6 0.0108 0.0008 0.0265 0.0008 0.0278



Comparison in terms of DI (θ = α = 0.05)

Marginal: N(0,1)

Dependence: Gaussian & t copula with correlation matrix

 1 0.1 0.5

0.1 1 0.9

0.5 0.9 1


II Compute diversification index: DIρ(X) =

ρ(X)∑
ρ(Xi)

• Gaussian: DIρ(X) = 0.8165 for all DRM ρ theoretically

• t copula: DIES(X) = 0.8329 (std= 0.021),

DIPO(X) = 0.8285 (std= 0.015),

DIGA(X) = 0.7367 (std= 0.076)



Estimated capital allocation with GPD & t marginals (θ = α = 0.05)

using Gaussian copula with correlation matrix

 1 0.1 0.5

0.1 1 0.9

0.5 0.9 1


ES PO PH Gaussian

cont. ratio cont. ratio cont. ratio cont. ratio

GPD(1/25) 2.60 2.21 1.58 3.25

GPD(1/10) 4.38 (0.59) 3.45 (0.64) 4.18 (0.38) 8.30 (0.39)

GPD(1/3) 9.12 (0.48) 6.99 (0.49) 24.32 (0.17) 38.87 (0.21)

t(25) 1.28 0.99 0.74 1.60

t(10) 2.04 (0.63) 1.54 (0.64) 1.69 (0.44) 3.44 (0.47)

t(3) 3.82 (0.53) 2.88 (0.54) 9.62 (0.18) 14.97 (0.23)



4. Concluding Remarks

• Estimation of DRMs is possible, but for some DRMs, we don’t get

nice asymptotic properties; proportional odds risk measure has some

nice features.

• Euler capital allocation based on DRMs are easy to compute and

widely applicable (more stable than VaR). Need more computational

efficiency for tail-exaggerating DRMs.

• Future research: Careful study of portfolio optimization

• Future research: Extension to dynamic setting


