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Motivation

Research Topic:

Which model should be used to model dynamics of equity
indices

Capturing stylized facts in the data:

Non-normality
Heavy tails
Skewness
Volatility clustering
Leverage effect

What has been done:

GBM: Black, Scholes, Merton Model (1973)
Jumps in returns: Merton (1976)
Stochastic volatility (SV): Heston (1993)
SV with jumps in returns: Bakshi et. al (1997), Pan (2002)
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Objective of the Paper

Empirical findings:

1 Heston model is misspecified
2 Jump components in returns reduce misspecification

Two approaches to better capture stock return properties:
Eraker et al. (2003): affine SV structure plus jumps in returns
and volatility (based on Duffie, Pan, Singleton (2000))

Christofferson et al. (2007): non-affine structure of SV process
(extending Heston (1993))

Objective of the paper:
compare the two approaches
combine the two approaches
consider SV, SVJ, and SVCJ model classes
estimate parameters via Markov Chain Monte Carlo (MCMC)
compare model performance (statistically / economically)
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Research Question

Objective of the paper / Research Questions:

1 Does the performance of non-affine SV models improve by
including jumps (in general)?

2 Do we still have to leave the class of affine models after
including jumps?

K. Ignatieve, P. Rodrigues, N. Seeger Stochastic Volatility and Jumps 4/19



Motivation Model and Estimation Data Set Results Conclusion Appendix
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Model Setup

SVCJ model specification

We assume that the logarithm of the stock price solves

dYt = µdt +
√

VtdW y
t + ξydNt

dVt = κV a
t (θ − Vt)dt + V b

t σvdW v
t + ξvdNt

Assumptions

dW y
t , dW v

t are Brownian motions with correlation ρ

Nt is a Poisson process with intensity λ

SVCJ: ξv
t ∼ Exp(µv ); ξy

t |ξv
t ∼ N(µy + ρjξ

v
t , σy )

a ∈ [0; 1] and b ∈ [1/2; 1; 3/2]

Stochastic volatility (SV) and stochastic volatility with jumps
in returns (SVJ) are special cases
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Model Setup (cont’d)

Model specifications for each model class

dVt = κV a
t (θ − Vt)dt + V b

t σvdW v
t

a b Name Features
0.0 0.5 SQR variance drift is linear in variance

square root diffusion
1.0 0.5 SQRN variance drift is nonlinear in variance

square root diffusion
0.0 1.0 VAR variance drift is linear in variance

linear diffusion
1.0 1.0 VARN variance drift is nonlinear in variance

linear diffusion
0.0 1.5 3/2 variance drift is linear in variance

3/2 diffusion
1.0 1.5 3/2N variance drift is nonlinear in variance

3/2 diffusion

Model classes: SV, SVJ, SVCJ (overall 18 different models)
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Criteria of Model Fit

Statistical model choice is based on using

Quantile to quantile plots (QQ-Plots)
plot quantiles of estimated errors of return equation against
standard normal distribution

εyt+1 = (Rt+1 − µ− ξy
t+1Jt+1)/V b

t

Deviance Information Criterion (DIC)
like any other information criterion combines a term for model
fit and model complexity

DIC = D̄ + pD

Bayes Factors
ratio of probabilities of two models given the data

p(M1|data)

p(M2|data)
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Data Set

Data used

Time series data

daily returns of S&P500 index
daily returns of NASDAQ index

Sample period from January 2, 1986 to July 31, 2008

robustness check: using different sub samples
including data up to first half of 2009 (Lehman)

MCMC procedure

number of draws 500,000; burn-in period of 200,000
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QQ-Plots

Comparing models via QQ-Plots:

SV-SQR
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a = 0,b = 0.5

SV-3/2N
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a = 1,b = 1.5

SVCJ-SQR
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a = 0,b = 0.5

Heston (SV-SQR) is misspecified

Non-affine SV model, and affine jump diffusion model have a
good fit

Performance in the tails is much better
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Deviance Information Criterion

Comparing models via DIC-Statistics:

Model DIC

1 SVCJ-VARN 14023.51
2 SVJ-3/2N 14062.19
3 SVCJ-3/2N 14091.67
4 SVJ-VAR 14103.33
5 SVJ-VARN 14125.84
6 SVCJ-SQR 14144.14
7 SVCJ-VAR 14177.38
8 SVJ-SQR 14177.90
9 SV-3/2N 14199.65

Model DIC

10 SVJ-SQRN 14212.51
11 SVCJ-SQRN 14222.77
12 SV-VARN 14240.15
13 SV-VAR 14263.10
14 SV-SQR 14281.59
15 SV-SQRN 14401.61
16 SV-3/2 15355.37
17 SVCJ-3/2 15373.22
18 SVJ-3/2 15474.34

SV models are outperformed by jump diffusion models
(affine as well as non-affine)

Non-affine models perform best

Of all models with linear drift SVCJ-SQR is second best
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Bayes Factors

Comparing models via Bayes Factors:

(a; b) SVJ vs. SV SVCJ vs. SV SVCJ vs. SVJ
(0.0;0.5) 19.74 4.57 -15.17
(1.0;0.5) 19.58 41.36 21.78
(0.0;1.0) 27.82 25.66 -2.15
(1.0;1.0) 25.05 26.50 1.45
(0.0;1.5) 40.46 38.70 -1.76
(1.0;1.5) 34.03 43.30 9.26

Computation of Bayes factors only for nested models

Ratio from 6 to 10: strong evidence for model in nominator

SV models are outperformed by jump diffusion models
(affine as well as non-affine)

Mixed results for SVCJ vs. SVJ

K. Ignatieve, P. Rodrigues, N. Seeger Stochastic Volatility and Jumps 15/19



Motivation Model and Estimation Data Set Results Conclusion Appendix

Agenda

Agenda:

1 Motivation

2 Model Setup and Estimation

3 Data Set

4 Results

5 Conclusion

K. Ignatieve, P. Rodrigues, N. Seeger Stochastic Volatility and Jumps 16/19



Motivation Model and Estimation Data Set Results Conclusion Appendix

Contributions and Findings

Contributions:

Combine two approaches to overcome model misspecification

Estimate model parameters via MCMC

Compare different model specifications by several test
statistics
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Findings:

Overall result:

1 Jump models are clearly preferred by test statistics

results hold for affine and non-affine specifications

2 Non-affine models exhibit a good fit to the data and are worth
investigating

mathematical and economic properties are unknown

3 Affine models with jumps similar performance than non-affine
models

we tend to prefer affine models since they are well understood
(closed form solution, mathematical properties)
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Thank you very much!

Thank you very much!
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Estimation

Estimation is based on

Euler discretization yields

Rt+1 = µ+
√

Vtε
y
t+1 + ξyt+1Jt+1

Vt+1 = Vt + κV a
t (θ − Vt) + σvV b

t ε
v
t+1 + ξvt+1Jt+1.

where

Rt+1 = Yt+1 − Yt

Jt+1 = Nt+1 − Nt

εit+1 = W i
t+1 −W i

t for i = y , v

Aim is to estimate

Parameters: Θ = (ρ, κ, θ, σv , µ, µy , σy , λ, µv , ρj)

Latent variables: X = {Vt , Jt , ξ
y
t , ξ

v
t }Tt=1
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Bayesian Framework

Baysian framework used for estimation

Posterior distribution (PD) is given by Bayes’ Theorem

p(θ|y) =
p(y|θ)p(θ)

p(y)
∝ p(y|θ)p(θ)

PD combines information in model and prices
likelihood p(y|θ) is given by the model
prior p(θ) exogenously given (uninformative)

As point estimator for parameters from posterior we use

E(θ|y) =

∫
θp(θ|y)dθ
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Bayesian Framework

Problems for estimation procedure:

Posterior distribution does not take the form of a well known
density

no closed form solution

Posterior distribution is high dimensional

Simultaneous estimation of parameters and latent variables

Solution: Using Markov Chain Monte Carlo (MCMC)

K. Ignatieve, P. Rodrigues, N. Seeger Stochastic Volatility and Jumps 22/19



Motivation Model and Estimation Data Set Results Conclusion Appendix

MCMC

MCMC in a nutshell:

We want to sample from PD p(θ|y)

MC: Construct Markov Chain which converges to the PD

Given initial values θ(0) draw a sequence

θ
(1)
1 ∼ p(θ1|all other parameters,Y)

...

θ
(1)
K ∼ p(θK |all other parameters,Y)

The resulting sequence
{

θ(g)
}G

g=1
converges to PD

MC: Calculate point estimators by approximating

E(θ|y) =

∫
θp(θ|y)dθ ≈ 1

N

N∑
n=G+1

θ(n)
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Comment on non-linear drift

Problems with non-linear drift specification

Non-linear drift specification means a = 1

dVt = κV a
t (θ − Vt)dt + V b

t σvdW v
t

dVt = κVtθdt − κV 2
t dt + V b

t σvdW v
t

Drift and diffusion term vanishes when variance hits 0

In this case long run mean of variance is 0

Is this specification economically questionable!?

Further research needed
(solution: condition process on not hitting 0)
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Summerize Results

Summerize Results:

1 In terms of QQ plots affine jump diffusion models similar to
non-affine models

2 Affine jump diffusion model second best DIC statistic of
models with linear drift

3 Jump diffusion models are clearly preferred by DIC statistic /
Bayes factors

4 We suggest further investigation of non-affine models, due to
good statistical properties

5 We tend to prefer affine model class

performance of affine models similar as non-affine models
mathematical and statistical properties of affine models are
well known
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Future Research

Future Research:

Comparison to Levy processes

Using high frequency data

Different drift specifications (regime switching models)

Consider out-of-sample test

What about the conditional return distribution?
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Criteria of Model Fit

Economic model choice is based on using

Model capability of capturing the smile

(a) calculation option prices via monte carlo (different strikes and
maturities)

(b) backing out the implied volatility

(c) comparing model generated smiles with actual smile observed
in the data (randomly chosen day)

(d) consistent estimation of Q and P parameters by means of
return and option data (Broadie et al.(2007))

(Θ̂Q, V̂t) =

arg min
∑

t,n

[
IVt(Kn, τn,St , r)− IV (Vt ,Θ

Q|ΘP,Kn, τn,St , r)
]2
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