## BID ASK DYNAMIC PRICING IN FINANCIAL MARKETS WITH TRANSACTION COSTS AND LIQUIDITY RISK

Jocelyne Bion-Nadal CNRS-CMAP Ecole Polytechnique

June 24, 2010

## **INTRODUCTION**

GOAL: DEFINE AN AXIOMATIZATION FOR DYNAMIC PRICES IN CONTEXT OF LIQUIDITY RISK AND TRANSACTION COSTS

• Usual setting: linear pricing procedure. A no arbitrage dynamic price process is a martingale under a probability measure equivalent to the reference probability measure.

• Real Financial Markets:

Limit order book associated to a financial product X= Bid and Ask prices associated with nX.

 $C_{ask}(nX) > nC_{ask}(X)$  for *n* large enough.

The observation of limit order books  $\rightarrow$  ask price is convex.

## **INTRODUCTION**

#### DYNAMIC PRICING PROCEDURE

Introduce an axiomatic approach of dynamic pricing procedure for the ask price

- -indexed by two stopping times
- -convex
- consistent in time  $\rightarrow$  price consistently options with different maturities.
- No Arbitrage

#### **RELATED LITTERATURE**

Axiomatization in the setting of a Brownian filtration: Peng (2004):

g-expectations

Close definitions:

Monetary utility function for processes in a discrete time setting: Cheridito, Delbaen, Kupper (2006)

Monetary Concave Utility Functional: Klöppel and Schweizer (2007). One deterministic instant of time.

## **INTRODUCTION**

APPLICATION TO CALIBRATION ON BOTH LIQUID AND ILLIQUID ASSETS Reference family composed of

- liquid assets represented by their stochastic process  $S^k$ 

-options on these assets of various maturity dates for which a limit order book is observable today.

EXTENSION TO THE CASE OF MODEL UNCERTAINTY

## OUTLINE

## **1** TIME CONSISTENT PRICING PROCEDURE

- TCPP
- Fundamental theorem
- Properties of supply curve
- First Examples of TCPP

## 2 CALIBRATION ON BOTH LIQUID AND ILLIQUID ASSETS

- TCPP calibrated on option prices
- Hedging for TCPP calibrated on liquid options

## **3** PRICING UNDER MODEL UNCERTAINTY

## **PROPERTIES OF LIMIT ORDER BOOKS**

#### $Y^l$ traded financial asset.

| Bid      |             |   | Ask         |          |
|----------|-------------|---|-------------|----------|
| quantity | limit       |   | limit       | quantity |
| $M_1$    | $C^1_{bid}$ |   | $C_{ask}^1$ | $N_1$    |
| $M_2$    | $C_{bid}^2$ |   | $C_{ask}^2$ | $N_2$    |
|          |             |   |             |          |
| $M_p$    | $C^p_{bid}$ | ] | $C^q_{ask}$ | $N_q$    |

$$C_{bid}^{p} < \dots < C_{bid}^{1} < C_{ask}^{1} < \dots < C_{ask}^{q}$$
(1)

 $C^0$  price of transaction,  $N_0 = M_0$  number of shares exchanged at time  $t_0$ 

$$C_{bid}^1 \le C^0 \le C_{ask}^1 \tag{2}$$

Let  $n \leq \sum_{0 \leq i \leq q} N_i = N^l$  Let  $j \leq q$  such that  $\sum_{0 \leq i \leq j-1} N_i \leq n < \sum_{0 \leq i \leq j} N_i$ .  $C_{ask}(nY^l) = \sum_{0 \leq i \leq j-1} N_i C_{ask}^i + (n - \sum_{0 \leq i \leq j-1} N_i) C_{ask}^j$ 

 $n \to C_{ask}(nY^l)$  is convex.

## TCPP

#### FRAMEWORK

Filtered probability space  $(\Omega, \mathcal{F}_{\infty}, (\mathcal{F}_t)_{t \in \mathbb{R}^+}, P)$ .  $(\mathcal{F}_t)$  right continuous filtration.  $\mathcal{F}_0: \sigma$ -algebra generated by the *P* null sets of  $\mathcal{F}_{\infty}$ . One positive asset is taken as numéraire. A financial position at a stopping time  $\tau$  means an element of  $L^{\infty}(\mathcal{F}_{\tau})$ .

Modelize the dynamic ask price of  $X: (\Pi_{\sigma,\tau}(X))_{\sigma \leq \tau}$ . Selling X: same as buying -X. So dynamic bid price of  $X: -\Pi_{\sigma,\tau}(-X)$ . Dynamic limit order book associated to X at time  $\sigma \leq \tau$ :

$$(-\Pi_{\sigma,\tau}(-nX),\Pi_{\sigma,\tau}(nX))_{n\in\mathbb{N}}$$

TCPP Fundamental theorem Properties of supply curve First Examples of TCPP

## OUTLINE

## **1** TIME CONSISTENT PRICING PROCEDURE

- TCPP
- Fundamental theorem
- Properties of supply curve
- First Examples of TCPP
- 2 Calibration on both liquid and illiquid assets
  - TCPP calibrated on option prices
  - Hedging for TCPP calibrated on liquid options



TCPP Fundamental theorem Properties of supply curve First Examples of TCPP

## **DYNAMIC PRICING PROCEDURE**

#### DEFINITION

A dynamic pricing procedure  $(\Pi_{\sigma,\tau})_{0 \le \sigma \le \tau}$  ( $\sigma \le \tau$ : stopping times) is a family of maps  $(\Pi_{\sigma,\tau})_{0 \le \sigma \le \tau}$  :  $L^{\infty}(\mathcal{F}_{\tau}) \to L^{\infty}(\mathcal{F}_{\sigma})$  satisfying:

• monotonicity:

 $\forall (X,Y) \in (L^{\infty}(\mathcal{F}_{\tau}))^2$ , if  $X \leq Y$  then  $\Pi_{\sigma,\tau}(X) \leq \Pi_{\sigma,\tau}(Y)$ 

#### 2 translation invariance:

 $\forall Z \in L^{\infty}(\mathcal{F}_{\sigma}) , \ \forall X \in L^{\infty}(\mathcal{F}_{\tau}) \ \Pi_{\sigma,\tau}(X+Z) = \Pi_{\sigma,\tau}(X) + Z$ 

So convexity:  $\forall (X, Y) \in (L^{\infty}(\mathcal{F}_{\tau}))^2 \ \forall \lambda \in [0, 1]$ 

 $\Pi_{\sigma,\tau}(\lambda X + (1-\lambda)Y) \le \lambda \Pi_{\sigma,\tau}(X) + (1-\lambda)\Pi_{\sigma,\tau}(Y)$ 

• normalization:  $\Pi_{\sigma,\tau}(0) = 0$ 

**TCPP** Fundamental theorem Properties of supply curve First Examples of TCPP

## **DUAL REPRESENTATION**

## DUAL REPRESENTATION OF A PRICING PROCEDURE CONTINUOUS FROM BELOW

$$\forall X \in L^{\infty}(\mathcal{F}_{\tau}) \ \Pi_{\sigma,\tau}(X) = \text{esssup}_{\mathsf{R} \in \mathcal{M}^{\mathsf{l}}_{\sigma,\tau}}(\mathsf{E}_{\mathsf{R}}(\mathsf{X}|\mathcal{F}_{\sigma}) - \alpha^{\mathsf{m}}_{\sigma,\tau}(\mathsf{R})) \ \mathsf{P} \text{ a.s.} (3)$$

where 
$$\mathcal{M}_{\sigma,\tau}^{1} = \{ R \text{ on } (\Omega, \mathcal{F}_{\tau}) , R \ll P, R_{|\mathcal{F}_{\sigma}} = P \text{ and } E_{R}(\alpha_{\sigma,\tau}^{m}(R)) < \infty \}$$
  
(4)

$$\forall R \ll P \ \alpha^m_{\sigma,\tau}(R) = R - \operatorname{esssup}_{X \in L^{\infty}(\Omega, \mathcal{F}_{\tau}, P)}(E_R(X|\mathcal{F}_{\sigma}) - \Pi_{\sigma,\tau}(X))$$
(5)

static case: Föllmer and Schied; also Frittelli and Rosazza Gianin conditional case: Detlefsen and Scandolo and Bion-Nadal

**TCPP** Fundamental theorem Properties of supply curve First Examples of TCPP

## TCPP

#### TIME CONSISTENCY

#### DEFINITION

A dynamic pricing procedure  $(\Pi_{\sigma,\tau})_{0\leq\sigma\leq\tau}$  is time-consistent if

$$\forall \ 0 \leq \nu \leq \sigma \leq \tau \ \ \forall \ X \in L^{\infty}(\mathcal{F}_{\tau}) \ \ \Pi_{\nu,\sigma}(\Pi_{\sigma,\tau}(X)) = \Pi_{\nu,\tau}(X).$$

Time consistency + normalization  $\rightarrow \Pi_{\sigma,\tau}$  is the restriction of  $\Pi_{\sigma,\infty}$ .

#### NOTATION

a TCPP is a time-consistent dynamic pricing procedure continuous from below.

TCPP Fundamental theorem Properties of supply curve First Examples of TCPP

## TIME CONSISTENCY AND COCYCLE CONDITION

#### Theorem

Let  $(\Pi_{\sigma,\tau})_{0 \leq \sigma \leq \tau}$  be a dynamic pricing procedure continuous from below. It is time-consistent if and only if for every probability measure  $Q \ll P$ , the minimal penalty function satisfies the following cocycle condition for all stopping times  $\nu \leq \sigma \leq \tau$ :

$$\alpha_{\nu,\tau}^m(Q) = \alpha_{\nu,\sigma}^m(Q) + E_Q(\alpha_{\sigma,\tau}^m(Q)|\mathcal{F}_\nu) \quad Q \text{ a.s}$$
(6)

Another characterization of time consistency was given in Cheridito, Delbaen, Kupper (2006) in terms of acceptance sets and also in terms of a concatenation condition.

TCPP Fundamental theorem Properties of supply curve First Examples of TCPP

## **NO FREE LUNCH TCPP**

#### DEFINITION

Atteignable claims at zero cost via self financing simple strategies:

$$\mathcal{K}_0 = \{X = X_0 + \sum_{1 \le i \le n} (Z_i - Y_i), \ (X_0, Z_i, Y_i) \in L^{\infty}(\mathcal{F}_{\infty}) \mid \\ \Pi_{0,\infty}(X_0) \le 0; \ \Pi_{\tau_i,\infty}(Z_i) \le -\Pi_{\tau_i,\infty}(-Y_i) \ \forall 1 \le i \le n\}$$

where  $0 \le \tau_1 \le ... \le \tau_n < \infty$  are stopping times.

#### NO ARBITRAGE

 $\mathcal{K}_0 \cap L^{\infty}_+(\Omega, \mathcal{F}_{\infty}, P) = \{0\} \iff \mathcal{K} \cap L^{\infty}_+(\Omega, \mathcal{F}_{\infty}, P) = \{0\}$  where  $\mathcal{K}$  is the cone generated by  $\mathcal{K}_0$ 

#### DEFINITION

The TCPP has No Free Lunch if  $\overline{\mathcal{K}} \cap L^{\infty}_{+}(\Omega, \mathcal{F}_{\infty}, P) = \{0\}$  where  $\overline{\mathcal{K}}$  is the weak\* closure of  $\mathcal{K}$ 

TCPP Fundamental theorem Properties of supply curve First Examples of TCPP

## **NO FREE LUNCH TCPP**

#### DEFINITION

Atteignable claims at zero cost via self financing simple strategies:

$$\begin{split} \mathcal{K}_0 &= \{X = X_0 + \sum_{1 \leq i \leq n} (Z_i - Y_i), \; (X_0, Z_i, Y_i) \in L^{\infty}(\mathcal{F}_{\infty}) \mid \\ \Pi_{0,\infty}(X_0) \leq 0; \; \Pi_{\tau_i,\infty}(Z_i) \leq -\Pi_{\tau_i,\infty}(-Y_i) \; \forall 1 \leq i \leq n \} \end{split}$$

where  $0 \le \tau_1 \le ... \le \tau_n < \infty$  are stopping times.

#### NO ARBITRAGE

 $\mathcal{K}_0 \cap L^{\infty}_+(\Omega, \mathcal{F}_{\infty}, P) = \{0\} \iff \mathcal{K} \cap L^{\infty}_+(\Omega, \mathcal{F}_{\infty}, P) = \{0\}$  where  $\mathcal{K}$  is the cone generated by  $\mathcal{K}_0$ 

#### DEFINITION

The TCPP has No Free Lunch if  $\overline{\mathcal{K}} \cap L^{\infty}_{+}(\Omega, \mathcal{F}_{\infty}, P) = \{0\}$  where  $\overline{\mathcal{K}}$  is the weak\* closure of  $\mathcal{K}$ 

TCPP Fundamental theorem Properties of supply curve First Examples of TCPP

## **FUNDAMENTAL THEOREM**

#### Theorem

Let  $(\Pi_{\sigma,\tau})_{\sigma \leq \tau}$  be a TCPP. The following conditions are equivalent: *i*) The TCPP has No Free Lunch *iii*) There is a probability measure R equivalent to P with zero minimal penalty:  $\alpha_{0,\infty}^m(R) = 0$  *iv*) There is a probability measure R equivalent to P such that for every stopping time  $\sigma$ ,

$$\forall X \in L^{\infty}(\Omega, \mathcal{F}_{\infty}, P) \quad -\Pi_{\sigma, \infty}(-X) \le E_{R}(X|\mathcal{F}_{\sigma}) \le \Pi_{\sigma, \infty}(X)$$
(7)

TCPP Fundamental theorem **Properties of supply curve** First Examples of TCPP

## **REGULARITY OF PATHS**

#### THEOREM

Let  $(\Pi_{\sigma,\tau})_{\sigma \leq \tau}$  be a No Free Lunch TCPP. For every probability measure R equivalent to P with zero penalty, for every  $X \in L^{\infty}(\Omega, \mathcal{F}_{\infty}, P)$ ,  $(\Pi_{t,\infty}(X))_t$  is a R-supermartingale (resp.  $-(\Pi_{t,\infty}(-X))_t$  is a R-submartingale). It admits a cadlag version.

$$-\Pi_{\sigma,\infty}(-X)) \le E_R(X|\mathcal{F}_{\sigma}) \le \Pi_{\sigma,\infty}(X) \tag{8}$$

 $x \in \mathbb{R}^+*$ ,  $X(t, x, \omega)$  ask price at time t per share for an order of size x:

$$X(t,x,\omega) = \frac{\prod_{t,\infty} (xX)(\omega)}{x}$$

TCPP Fundamental theorem **Properties of supply curve** First Examples of TCPP

### **PROPERTIES OF THE SUPPLY CURVE**

#### PROPOSITION

- For every x,  $(t, \omega) \to X(t, x, \omega)$  is a càdlàg stochastic process.
- **②**  $\forall t \in \mathbb{R}^+$ , *P* a.s., *x* → *X*(*t*, *x*,  $\omega$ ) is non decreasing, continuous, admits a right and a left derivative at any point and is derivable almost surely.
- Solution limit in zero:  $x \to X(t, x, .)$  has a right limit in 0

$$X^+(t,0,.) = \operatorname{esssup}_{Q \in \mathcal{M}^0} \operatorname{E}_Q(X|\mathcal{F}_t)$$

where  $\mathcal{M}^0 = \{Q \sim P \mid \alpha^m_{0,\infty}(Q) = 0\}$ 

• Asymptotic limit: X(t, x, .) has a limit as  $x \to +\infty$ :

$$X^{\infty}(t,\omega) = \operatorname{esssup}_{\mathsf{Q}\in\mathcal{M}^{1,e}(\mathsf{P})}(\mathsf{E}_{\mathsf{Q}}(\mathsf{X}|\mathcal{F}_{\mathsf{t}})$$

with 
$$\mathcal{M}^{1,e}(P) = \{Q \sim P \mid E_Q(\alpha^m_{t,\infty}(Q)) < \infty\}$$

TCPP Fundamental theorem Properties of supply curve First Examples of TCPP

### INDIFFERENCE PRICE WITH EXPONENTIAL UTILITY

Pricing by indifference with respect to utility function: Hodges and Neuberger (1989) Exponential utility  $u(x) = -\frac{1}{\alpha}e^{-\alpha x}$ : Rouge and El Karoui (2000), Cheridito and Kupper (2006), Klöppel and Schweizer (2007)... Indifference price of  $X \in L^{\infty}(\mathcal{F}_{\tau})$ :  $\Pi_{\sigma,\tau}(X) = \frac{1}{\alpha}ln(E(e^{\alpha X}|\mathcal{F}_{\sigma}))$ . Dual representation:

$$\Pi_{\sigma,\tau}(X) = \text{esssup}_{\mathsf{R} \in \mathcal{M}^{\mathsf{e}}(\mathsf{P})}(\mathsf{E}_{\mathsf{R}}(\mathsf{X}|\mathcal{F}_{\sigma}) - \frac{1}{\alpha}\mathsf{H}_{\sigma}(\mathsf{R}|\mathsf{P}))$$

 $\mathcal{M}^{e}(P) = \{Q \sim P\}, H_{\sigma}(R|P) = E_{P}(\ln(\frac{dR}{dP})\frac{dR}{dP}|\mathcal{F}_{\sigma})$  $\Pi_{\sigma,\tau} \text{ is a No Free Lunch TCPP.}$ 

Dynamic pricing using BSDE give also exemples of TCPP.

TCPP Fundamental theorem Properties of supply curve First Examples of TCPP

## **TCPP FROM PORTFOLIO CONSTRAINTS**

Pricing and hedging under constraints on the set of admissible porfolios.

Föllmer and Kramkov (1997) and Klöppel and Schweizer (2007) have computed the value process associated with the minimal  $\mathcal{H}$ -constrained hedging portfolio (under some conditions on  $\mathcal{H}$ ) is

$$\Pi_{\tau,T}(X) = \text{esssup}_{\mathsf{Q}\in\mathcal{P}(\mathcal{H})}(\mathsf{E}_{\mathsf{Q}}(\mathsf{X}|\mathcal{F}_{\tau}) - \mathsf{E}_{\mathsf{Q}}[\mathcal{A}^{\mathcal{H}}(\mathsf{Q})_{\mathsf{T}} - \mathcal{A}^{\mathcal{H}}(\mathsf{Q})_{\tau}|\mathcal{F}_{\tau}]) \quad (9)$$

where  $\mathcal{A}^{\mathcal{H}}(Q)$  is the smallest increasing predictable process *A* such that Y - A is a local *Q* supermartingale for any  $Y \in \{H.S \mid H \in \mathcal{H}\}$ .

It defines a No Free Lunch TCPP.

TCPP calibrated on option prices Hedging for TCPP calibrated on liquid options

## OUTLINE

#### Time Consistent Pricing Procedure

- TCPP
- Fundamental theorem
- Properties of supply curve
- First Examples of TCPP

## 2 CALIBRATION ON BOTH LIQUID AND ILLIQUID ASSETS

- TCPP calibrated on option prices
- Hedging for TCPP calibrated on liquid options



## ECONOMIC MODEL

#### REFERENCE FAMILY

• d+1 liquid assets described by their locally bounded stochastic process

 $(S^k)_{0 \le k \le d}$ 

• *p* non liquid assets: options known only at one stopping time  $\tau_l$  (maturity date). Modelized by an essentially bounded  $\mathcal{F}_{\tau_l}$ -measurable map  $Y^l$ .

At one instant of time (time 0), a limit order book

 $(C_{bid}(mY^l))_{\leq M^l}, (C_{ask}(nY^l))_{n\leq N^l})$  is observed for each  $Y^l$ .

TCPP calibrated on option prices Hedging for TCPP calibrated on liquid options

## CALIBRATION ON OPTION PRICES

#### DEFINITION

A TCPP  $(\Pi_{\sigma,\tau})_{0 \leq \sigma \leq \tau}$  is calibrated on the reference family  $((S^k)_{0 \leq k \leq d}, (Y^l)_{1 \leq l \leq p})$  and the observed limit order books  $(C_{bid}(mY^l)_{m \leq M^l}, C_{ask}(nY^l)_{n \leq N^l})$  if

• it extends the dynamics of the process  $(S^k)_{0 \le k \le d}$ :  $\forall n \in \mathbb{Z}$ 

if 
$$S_{\tau}^k \in L^{\infty}(\mathcal{F}_{\tau})$$
 then  $\Pi_{\sigma,\tau}(nS_{\tau}^k) = nS_{\sigma}^k$ 

• it is compatible with the observed limit order books for  $(Y^l)_{1 \le l \le p}$ 

$$\forall 1 \leq l \leq p \quad C_{bid}(nY^l) \leq -\Pi_{0,\tau_l}(-nY^l) \leq \Pi_{0,\tau_l}(nY^l) \leq C_{ask}(nY^l)$$

## **CHARACTERIZATION OF CALIBRATION**

#### THEOREM

- A TCPP is calibrated on the reference family if and only if
  - Every probability measure R ≪ P such that α<sup>m</sup><sub>0,∞</sub>(R) < ∞ is a local martingale measure with respect to every process S<sup>k</sup>.
  - For every probability measure  $R \ll P$ , for every stopping time  $\tau$ ,

$$\alpha_{0,\tau}^{m}(R) \ge \sup_{\{\tau_{l} \le \tau\}} (\sup_{m \le M^{l}} (C_{bid}(mY^{l}) - E_{R}(mY^{l}), \sup_{n \le N^{l}} (E_{R}(nY^{l}) - C_{ask}(nY^{l})))$$
(10)

## HEDGING FOR TCPP CALIBRATED ON LIQUID OPTIONS

 $\Pi_{\sigma,\tau}$  be a No Free Lunch TCPP calibrated on the reference family. Assume that for any  $n \in N$ ,  $C_{ask}(nY^l) = C_{bid}(nY^l) = nC^l$ .

$$\Pi_{\sigma,\tau}(X) = \operatorname{esssup}_{\mathsf{Q} \in \mathcal{Q}}(\mathsf{E}_{\mathsf{Q}}(\mathsf{X}|\mathcal{F}_{\sigma}) - \alpha^{\mathsf{m}}_{\sigma,\tau}(\mathsf{Q}))$$

#### PROPOSITION

 $Z_t^l = \prod_{t,\infty}(Y^l)$  is a martingale for every Q in Q. The options  $(Y^l)_{0 \le l \le p}$  can be used to hedge dynamically (using  $\prod_{t,\infty}(Y^l)$ ) as well as the assets  $(S^k)_{1 \le k \le d}$ .

## OUTLINE

#### Time Consistent Pricing Procedure

- TCPP
- Fundamental theorem
- Properties of supply curve
- First Examples of TCPP
- 2 Calibration on both liquid and illiquid assets
  - TCPP calibrated on option prices
  - Hedging for TCPP calibrated on liquid options

## **3** PRICING UNDER MODEL UNCERTAINTY

## PRICING UNDER MODEL UNCERTAINTY

**FRAMEWORK** No reference probability measure is given but a weakly relatively compact set Q of probability measures not all absolutely continuous with respect to some probability measure. Framework first introduced by Denis Martini (2006) Example: The laws of  $X_t^{\sigma}$ , where

$$dX_t^{\sigma} = b_t dt + \sigma_t dW_t \quad \sigma_t \in [\underline{\sigma}, \overline{\sigma}]$$

Let  $\Omega$  be a Polish space. For example  $\Omega = C_0(\mathbf{R}^+, \mathbf{R}^d)$ . Let

$$c(f) = \sup_{Q \in \mathcal{Q}} E_Q(f) \quad \forall f \in \mathcal{C}_b(\Omega)$$

 $L^1(c)$  denotes the Banach space obtained by completion and separation of  $C_b(\Omega)$  for the semi-norm *c*.  $L^1(c)$ : introduced by Feyel de la Predelle (1989).

## CANONICAL CLASS OF PROBABILITY MEASURE ASSOCIATED TO $L^1(c)$

#### USUAL EQUIVALENCE CLASS OF MEASURES

let  $\mu_0$  be a non negative finite measure on  $(\Omega, \mathcal{B}(\Omega))$ . A non negative measure  $\mu$  on  $(\Omega, \mathcal{B}(\Omega)$  belongs to the (usual) equivalence class of the probability measure  $\mu_0$  if and only if

$$\forall A \in \mathcal{B}(\Omega), \ \mu(A) = 0 \iff \mu_0(A) = 0$$

Or equivalently

$$\mu \sim \mu_0 \iff [\forall X \in L^{\infty}(\Omega, \mathcal{B}(\Omega), \mu_0)_+, X = 0 \iff \int X d\mu = 0]$$

# Canonical class of probability measure associated to $L^1(c)$

When Q is not finite, characteristic functions of Borelian sets are not all in  $L^1(c)$  (recall:  $c(f) = \sup_{Q \in Q} E_Q(f)$   $f \in C_b(\Omega)$ ). Issues:

- Can one associate a probability measure to  $L^1(c)$ ?
- If yes, can one define a natural equivalence relation so that one gets a unique class characterizing the null elements in the cone  $L^1(c)_+$ ?

#### THEOREM

There is a probability measure P on  $(\Omega, \mathcal{B}(\Omega))$  characterizing the null elements of  $L^1(c)_+$ .

$$\forall X \in L^1(c)_+, \quad X = 0 \iff E_P(X) = 0$$

# Canonical class of probability measure associated to $L^1(c)$

When Q is not finite, characteristic functions of Borelian sets are not all in  $L^1(c)$  (recall:  $c(f) = \sup_{Q \in Q} E_Q(f)$   $f \in C_b(\Omega)$ ). Issues:

- Can one associate a probability measure to  $L^1(c)$ ?
- If yes, can one define a natural equivalence relation so that one gets a unique class characterizing the null elements in the cone  $L^1(c)_+$ ?

#### THEOREM

There is a probability measure P on  $(\Omega, \mathcal{B}(\Omega))$  characterizing the null elements of  $L^1(c)_+$ .

$$\forall X \in L^1(c)_+, \quad X = 0 \iff E_P(X) = 0$$

#### DEFINITION

 $\mathcal{M}^+(c)$  is the set of non negative finite measures on  $(\Omega, \mathcal{B}(\Omega))$  defining an element of  $L^1(c)^*$ .

The equivalence relation  $\mathcal{R}_c$  is defined on  $\mathcal{M}^+(c)$  by

$$\mu \mathcal{R}_c \nu \iff (11)$$

$$\{X \in L^1(c), X \ge 0 \mid \int X d\mu = 0\} = \{X \in L^1(c), X \ge 0 \mid \int X d\mu = 0\}$$

#### DEFINITION

The class of *P* for the equivalence relation  $\mathcal{R}_c$  is called the canonical c-class. It is the set of non negative measures belonging to  $L^1(c)^*$  characterizing the null elements of the cone  $L^1(c)_+$ .

## PRICING UNDER MODEL UNCERTAINTY

#### DEFINITION

 $\Pi: L^1(c) \to \mathbf{R}$  is a pricing function if it satisfies: monotonicity, convexity, translation invariance and normalization.

#### General result: DUAL REPRESENTATION THEOREM.

Specific result for  $\Pi$  sublinear:

#### Theorem

Let  $\Omega$  be a Polish space. Let c as above. Every regular sublinear pricing function  $\Pi$  on  $L^1(c)$  admits a dual representation

 $\forall X \in L^1(c), \ \Pi(X) = \sup_{n \in N} E_{\mathcal{Q}_n}[X]$ 

 $Q_n \ll P$ , P belongs to the canonical c-class.

## PRICING UNDER MODEL UNCERTAINTY

#### DEFINITION

 $\Pi: L^1(c) \to \mathbf{R}$  is a pricing function if it satisfies: monotonicity, convexity, translation invariance and normalization.

General result: DUAL REPRESENTATION THEOREM.

Specific result for  $\Pi$  sublinear:

#### Theorem

Let  $\Omega$  be a Polish space. Let c as above. Every regular sublinear pricing function  $\Pi$  on  $L^1(c)$  admits a dual representation

$$\forall X \in L^1(c), \ \Pi(X) = \sup_{n \in \mathbb{N}} E_{Q_n}[X]$$

 $Q_n \ll P$ , P belongs to the canonical c-class.

## CONCLUSION

 For every No Free Lunch Dynamic Pricing Procedure, the ask price process (Π<sub>σ,τ</sub>(X))<sub>σ</sub> has regular paths. For every *R* equivalent to *P* with zero penalty:

$$-\Pi_{\sigma,\tau}(-X)) \le E_R(X|\mathcal{F}_{\sigma}) \le \Pi_{\sigma,\tau}(X)$$

- Every dynamic pricing procedure calibrated on a reference family composed of liquid assets and options admits a dual representation in terms of equivalent local martingale measures for the liquid assets.
- Under model uncertainty (→ set of probability measures): For the appropriate semi-norm c, c(f) = sup<sub>Q∈Q</sub> E<sub>Q</sub>(f) ∀f ∈ C<sub>b</sub>(Ω), there is a probability measure P characterizing the null elements in the cone L<sup>1</sup>(c)<sub>+</sub>. Its c-class is unique.

#### PAPERS

- "Bid-Ask Dynamic Pricing in Financial Markets with Transaction Costs and Liquidity Risk", J. B.N. Journal of Mathemitical Economics, 45, 2009, p 738-750.
- "Dynamic pricing models calibrated on both liquid and illiquid assets", J.B.N. preprint.
- "Risk measuring under model uncertainty" J.B.N. and M. Kervarec, preprint.

http://www.cmap.polytechnique.fr/~bionnada

jocelyne.bion-nadal@cmap.polytechnique.fr