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Market Observations 
 
Three key observations: 
 

(1) Short-dated ATM expiring within a 
month are: 

• highly volatile  
• weakly correlated to ATM expiring 

beyond one year (when considering 
monthly changes). 
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(2) The ATM curve has often a local 
minimum within the first three months. 
 

(3) Strangle margins are persistent at the 
short-end of the curve and the implied 
volatility-of-volatility is therefore large 
at the short-end. 
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Eqvolvol, Eqrho for expiry T are respectively 
the SABR volatility-of-volatility  and the 
SABR correlation : 
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where S is the spot process, F is the forward, 
and T

0σ  is the initial volatility for expiry T. 
 
We calculate  and  using the local-time 
approximation as this is more accurate than the 
expansion formula in the vicinity of the 
forward: 
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See E. Benhamou, O. Croissant (2007). 
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Single Mean-Reversion 
 
We consider for each expiry T the following 
one-factor mean-reverting dynamic: 
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The volatility-of-volatility γ , correlation ρ  and 
mean-reversion λ  are calibrated to the entire 
smile-surface by moment matching: 
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As illustrated in the example below, the 
calibration loses accuracy at the short-end. This 
could be prevented by using a time-dependent 
volatility-of-volatility, but at the cost of losing 
time-homogeneity.  
 

USDJPY - May 2010
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Double Mean-Reversion 
 
We could improve the calibration’s accuracy at 
the short-end and maintain time-homogeneity 
by using a two-factor stochastic volatility 
model: 
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By direct integration, we obtain:  
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Typically, the dynamic is based on two non-
overlapping time-scales: 
 

 yearweek lddlsdsd 1/1,1/1 ∝=∝= λτλτ . 
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Hence, the dynamic is similar to the two-factor 
volatility model considered in Balland (2006) 
and Bergomi (2008, 2005): 
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 ATM Minimum 
 
We can approximate short-dated ATM levels as 
follows: 
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The ATM curves generated by the double mean-
reversion model admit typically local minima. 
  

USDJPY ATM curve

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0 0.5 1 1.5 2 2.5

double-mrev lnsv

double-mrev heston

USDJPY Nov09

P. Balland 10 June 2010 



Smile Calibration 
 
We calibrate the parameters ldsdldsd λλγγ ,,,  to 
the smile surface by moment matching: 
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where  and  are obtained by solving 
the following equations: 
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USDJPY - May 2010
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The moment-matching technique used to 
compute effective volatility-of-volatilities and 
correlations is accurate when compared to the 
Monte-Carlo method.  
 
We observe that the fit to market data is 
substantially improved by using double mean-
reversion.  
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As illustrated in the example below, the model 
parameters sdλ , ldλ , sdγ , ldγ , ldsd ,ρ  and fxld ,ρ  
appear relatively stable over time. 
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The correlation parameter fxsd ,ρ  appears less 
stable. This is expected since the model does not 
include any local volatility.  
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Two-Factor SLV Model 
 
We control the joint evolution between risk-
reversal and spot by including a local volatility 
component )ln,( tXtσ  in the dynamic: 
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where ⊥⊥ ldldsdsd mmmm ,,,  are the mixing-
weight parameters.  
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As these parameters vary between zero and one 
while maintaining fixed the target smile, the 
dynamic varies from local to stochastic 
volatility dynamic.  
 
The parameters  control the amount of 
volatility-of-volatility parallel to the spot 
motion. As they increase from zero to one while 
the target smile is fixed, the slope of the local 
volatility decreases to compensate for the 
increase in volatility-of-volatility parallel to 
spot. Despite these parameters affecting the 
backbone of the dynamic, they have in fact little 
effect on the valuation of exotics. 

ldsd mm ,

 
An asymptotic calculation shows that we have 
for all mixing weights: 
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The ATM-speed coefficient F
ATM
ln∆

∆  is to be 
understood in the sense of Malliavin derivative: 
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The parameters ⊥⊥ ldsd mm ,  control the amount 
of volatility-of-volatility orthogonal to the spot 
motion. As they increase from zero to one while 
the target smile is fixed, the convexity of the 
local volatility decreases to compensate for the 
increase in volatility-of-volatility.  
Hence, the mixing-weights ⊥⊥ sdld mm ,  control 
the convexity of the local volatility and thus 
control the joint evolution of risk-reversal (slope 
of smile) and spot.  
They are therefore critical to the valuation of 
Barrier and DNT products as these parameters 
affect directly the expected slope of the smile 
prevailing when spot hits the barrier level. 
 
An asymptotic calculation shows that the RR25 
speed F

RR
ln

25
∆
∆  depend on the level of mixing 

weights. 

P. Balland 16 June 2010 



 
As illustrated in the example below, the spot 
and risk-reversal are strongly correlated. 
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The mixing weight parameters ⊥⊥ sdld mm ,   can 
be set to match historical RR25 speeds or DNT 
prices. 
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Simplification 
 
Typical short-dated products do not depend 
strongly on the mixing-weights  and  as 
these parameters control whether the skew 
implied by the dynamic originates from local or 
stochastic volatility.  

sdm ldm

Consequently, we can simplify the dynamic by 
assuming  and  to be zero: sdm ldm
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Using our moment matching technique, we can 
approximate the dynamic of the volatility driver 
using either a one-factor or a two-factor 
dynamic: 
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The orthogonalisation allows fast backward and 
forward inductions. In particular, we can 
approximate the volatility drivers using Markov 
chains: 
 

(i)  ⊥⊥⊥⊥⊥⊥ Σ+Σ= tttttZ ξξσ  
 

(ii)  ⊥⊥Σ= tttZ ξσ  
 
where ⊥⊥⊥

tt ξξ ,  are independent N(0,1)-
processes characterized by their auto-correlation 
functions. 
 
The version (ii) is sufficient for first generation 
exotic products. We can calibrate the local-
volatility to the smile assuming (ii) in particular. 
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Calibration 
 
Parametric Local Volatility 
 
We parameterize the local volatility: 
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We choose the local volatility skew using a ratio 
of CEV. This ensures that the skew component 
has a CEV-like shape near the forward while 
being bounded: 
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The local volatility skew component has a 
functional form similar to that suggested by 
Brown and Randall (2003): 
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Note however that the BR functional form is 
additive while our parameterisation is in fact 
multiplicative.  
 
The convex local volatility shares the same 
short-dated asymptotic as SABR in order to 
minimize changes in the smile when the mixing-
weight parameters vary: 
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by exponentially decreasing the spot volatility 
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Finally, we calibrate the function )(0 tσ  to the 
prevailing ATM curve by forward induction. 
 
Parametric Smile 
 
We can parameterize the smile surface using 
asymptotic expansions of the previous diffusion 
( 0,0 == ldsd λγ ) which is a direct extension of 
SABR for FX: 
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In this case, the local volatility is obtained by 
forward induction using the equation: 
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where )ln,( tD Xtσ  is the Dupire local volatility 
obtained from the parameterized smile. 
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