[Credit Default Swaptions](#page-5-0) [Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

Hedging of Credit Default Swaptions

Marek Rutkowski School of Mathematics and Statistics University of Sydney Sydney, Australia

6th World Congress of the Bachelier Finance Society Toronto, July 22-26, 2010

[Credit Default Swaptions](#page-5-0) [Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

Outline

- **1** Credit Default Swaps and Swaptions
- ² Hazard Process Approach
- **3** Market Pricing Formulae
- **4 CIR Default Intensity Model**
- **6** Credit Default Index Swaptions
- **6** Market Models for CDS Spreads

References on Valuation of Credit Default Swaptions

- D. Brigo and M. Morini: CDS market formulas and models. Working paper, Banca IMI, 2005.
- D. Brigo and A. Alfonsi: Credit default swaps calibration and option pricing with the SSRD stochastic intensity and interest-rate model. *Finance and Stochastics* 9 (2005), 29-42.
- F. Jamshidian: Valuation of credit default swaps and swaptions. *Finance and Stochastics* 8 (2004), 343–371.
- M. Morini and D. Brigo: No-armageddon arbitrage-free equivalent measure for index options in a credit crisis. Working paper, Banca IMI and Fitch Solutions, 2007.
- M. Rutkowski and A. Armstrong: Valuation of credit default swaptions and credit default index swaptions. Working paper, UNSW, 2007.

[Credit Default Swaptions](#page-5-0) [Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

References on Modelling of CDS Spreads

- N. Bennani and D. Dahan: An extended market model for credit derivatives. Presented at the international conference *Stochastic Finance*, Lisbon, 2004.
- D. Brigo: Candidate market models and the calibrated CIR++ stochastic intensity model for credit default swap options and callable floaters. In: *Proceedings of the 4th ICS Conference*, Tokyo, March 18-19, 2004.
- D. Brigo: Constant maturity credit default swap pricing with market models. Working paper, Banca IMI, 2004.
- L. Li and M. Rutkowski: Market models for forward swap rates and forward CDS spreads. Working paper, UNSW, 2009.
- L. Schlögl: Note on CDS market models. Working paper, Lehman Brothers, 2007.

[Credit Default Swaptions](#page-5-0) [Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

References on Hedging of Credit Default Swaptions

- T. Bielecki, M. Jeanblanc and M. Rutkowski: Hedging of basket credit derivatives in credit default swap market. *Journal of Credit Risk* 3 (2007), 91-132.
- T. Bielecki, M. Jeanblanc and M. Rutkowski: Pricing and trading credit default swaps in a hazard process model. *Annals of Applied Probability* 18 (2008), 2495-2529.
- T. Bielecki, M. Jeanblanc and M. Rutkowski: Valuation and hedging of credit default swaptions in the CIR default intensity model. Forthcoming in *Finance and Stochastics*.

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Credit Default Swaptions

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Hazard Process Set-up

Terminology and notation:

- **1** The default time is a strictly positive random variable τ defined on the underlying probability space $(\Omega, \mathcal{G}, \mathbb{P})$.
- 2 We define the default indicator process $H_t = \mathbb{1}_{\{\tau \leq t\}}$ and we denote by \mathbb{H} its natural filtration.
- \bullet We assume that we are given, in addition, some auxiliary filtration $\mathbb F$ and we write $\mathbb{G} = \mathbb{H} \vee \mathbb{F}$, meaning that $\mathcal{G}_t = \sigma(\mathcal{H}_t, \mathcal{F}_t)$ for every $t \in \mathbb{R}_+$.
- **4** The filtration **F** is termed the reference filtration.
- The filtration $\mathbb G$ is called the full filtration.

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Martingale Measure

The underlying market model is arbitrage-free, in the following sense:

1 Let the savings account *B* be given by

$$
B_t = \exp\Big(\int_0^t r_u du\Big), \quad \forall \ t \in \mathbb{R}_+,
$$

where the short-term rate *r* follows an F-adapted process.

- 2 A spot martingale measure \odot is associated with the choice of the savings account *B* as a numéraire.
- **3** The underlying market model is arbitrage-free, meaning that it admits a spot martingale measure $\mathbb Q$ equivalent to $\mathbb P$. Uniqueness of a martingale measure is not postulated.

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Hazard Process

Let us summarize the main features of the hazard process approach:

1 Let us denote by

$$
G_t = \mathbb{Q}(\tau > t \,|\, \mathcal{F}_t)
$$

the survival process of τ with respect to the reference filtration \mathbb{F} . We postulate that $G_0 = 1$ and $G_t > 0$ for every $t \in [0, T]$.

2 We define the hazard process $\Gamma = -\ln G$ of τ with respect to the filtration F.

³ For any Q-integrable and F*^T* -measurable random variable *Y*, the following classic formula is valid

$$
\mathbb{E}_{\mathbb{Q}}(\mathbb{1}_{\{T<\tau\}}Y \mid \mathcal{G}_t) = \mathbb{1}_{\{t<\tau\}} G_t^{-1} \mathbb{E}_{\mathbb{Q}}(G_T Y \mid \mathcal{F}_t).
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Default Intensity

- ¹ Assume that the supermartingale *G* is continuous.
- 2 We denote by $G = \mu \nu$ its Doob-Meyer decomposition.
- **3** Let the increasing process ν be absolutely continuous, that is, $d\nu_t = v_t$ *dt* for some F-adapted and non-negative process v .
- \bullet Then the process $\lambda_t = \mathcal{G}_t^{-1} v_t$ is called the $\mathbb{F}\text{-intensity}$ of default time.

Lemma

The process M, given by the formula

$$
M_t = H_t - \int_0^{t \wedge \tau} \lambda_u du = H_t - \int_0^t (1 - H_u) \lambda_u du,
$$

is a (Q, G)*-martingale.*

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Defaultable Claim

A generic defaultable claim (X, A, Z, τ) consists of:

- ¹ A promised contingent claim *X* representing the payoff received by the holder of the claim at time *T*, if no default has occurred prior to or at maturity date *T*.
- ² A process *A* representing the dividends stream prior to default.
- ³ A recovery process *Z* representing the recovery payoff at time of default, if default occurs prior to or at maturity date *T*.
- 4 A random time τ representing the default time.

Definition

The dividend process D of a defaultable claim (X, A, Z, τ) maturing at T equals, for every $t \in [0, T]$,

$$
D_t=X1_{\{\tau>T\}}1_{[T,\infty[}(t)+\int_{]0,t]}(1-H_u)\,dA_u+\int_{]0,t]}Z_u\,dH_u.
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Ex-dividend Price

Recall that:

- The process *B* represents the savings account.
- \bullet A probability measure $\mathbb Q$ is a spot martingale measure.

Definition

The ex-dividend price *S* associated with the dividend process *D* equals, for every $t \in [0, T]$,

$$
S_t=B_t\,\mathbb{E}_{\mathbb{Q}}\Big(\int_{\left]t,T\right]}B_u^{-1}\,dD_u\,\Big|\,\mathfrak{G}_t\Big)=\mathbb{1}_{\left\{t<\tau\right\}}\,\widetilde{S}_t
$$

where $\mathbb O$ is a spot martingale measure.

- The ex-dividend price represents the (market) value of a defaultable claim.
- The F-adapted process *S* is termed the pre-default value.

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Valuation Formula

Lemma

The value of a defaultable claim (*X*, *A*, *Z*, τ) *maturing at T equals*

$$
S_t = 1_{\{t < \tau\}} \frac{B_t}{G_t} \mathbb{E}_{\mathbb{Q}}\left(B_t^{-1} G_T X 1_{\{t < T\}} + \int_t^T B_u^{-1} G_u Z_u \lambda_u du + \int_t^T B_u^{-1} G_u dA_u \, \Big| \, \mathcal{F}_t\right)
$$

where Q *is a martingale measure.*

- Recall that μ is the martingale part in the Doob-Meyer decomposition of *G*.
- Let *m* be the (\mathbb{Q}, \mathbb{F}) -martingale given by the formula

$$
m_t = \mathbb{E}_{\mathbb{Q}}\bigg(B_T^{-1}G_TX + \int_0^T B_u^{-1}G_uZ_u\lambda_u du + \int_0^T B_u^{-1}G_u dA_u \,\Big|\,\mathcal{F}_t\bigg).
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Price Dynamics

Proposition

The dynamics of the value process S on [0, *T*] *are*

$$
dS_t = -S_{t-} dM_t + (1 - H_t)((r_t S_t - \lambda_t Z_t) dt + dA_t) + (1 - H_t)G_t^{-1}(B_t dm_t - S_t d\mu_t) + (1 - H_t)G_t^{-2}(S_t d\langle \mu \rangle_t - B_t d\langle \mu, m \rangle_t).
$$

The dynamics of the pre-default value \widetilde{S} on [0, T] are

$$
d\widetilde{S}_t = ((\lambda_t + r_t)\widetilde{S}_t - \lambda_t Z_t) dt + dA_t + G_t^{-1} (B_t dm_t - \widetilde{S}_t d\mu_t) + G_t^{-2} (\widetilde{S}_t d\langle \mu \rangle_t - B_t d\langle \mu, m \rangle_t).
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Forward Credit Default Swap

Definition

A forward CDS issued at time *s*, with start date *U*, maturity *T*, and recovery at default is a defaultable claim $(0, A, Z, \tau)$ where

$$
dA_t = -\kappa \mathbb{1}_{\left]U,T\right]}(t) \, dL_t, \quad Z_t = \delta_t \mathbb{1}_{\left[U,T\right]}(t).
$$

- An f_s -measurable rate κ is the CDS rate.
- An F-adapted process *L* specifies the tenor structure of fee payments.
- An F-adapted process $\delta : [U, T] \to \mathbb{R}$ represents the default protection.

Lemma

The value of the forward CDS equals, for every $t \in [s, U]$ *,*

$$
S_t(\kappa) = B_t \mathbb{E}_{\mathbb{Q}}\Big(1_{\{U<\tau\leq T\}} B_{\tau}^{-1} Z_{\tau} \Big| \mathcal{G}_t\Big) - \kappa B_t \mathbb{E}_{\mathbb{Q}}\Big(\int_{\substack{Jt\wedge U, \tau\wedge T]}} B_{u}^{-1} dL_{u} \Big| \mathcal{G}_t\Big).
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Valuation of a Forward CDS

Lemma

The value of a credit default swap started at s, equals, for every $t \in [s, U]$ *,*

$$
S_t(\kappa)=1\!\!1_{\{t<\tau\}}\frac{B_t}{G_t}\,\mathbb{E}_{\mathbb{Q}}\left(-\int_U^{\tau}B_u^{-1}\delta_u\,dG_u-\kappa\int_{]U,\tau]}B_u^{-1}G_u\,dL_u\,\Big|\,\mathcal{F}_t\right).
$$

Note that $S_t(\kappa) = 1_{\{t < \tau\}} \widetilde{S}_t(\kappa)$ where the F-adapted process $\widetilde{S}(\kappa)$ is the pre-default value. Moreover

$$
\widetilde{S}_t(\kappa)=\widetilde{P}(t,U,T)-\kappa\widetilde{A}(t,U,T)
$$

where

- $\tilde{P}(t, U, T)$ is the pre-default value of the protection leg,
- \bullet $\widetilde{A}(t, U, T)$ is the pre-default value of the fee leg per one unit of κ .

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Forward CDS Rate

The forward CDS rate is defined similarly as the forward swap rate for a default-free interest rate swap.

Definition

The forward market CDS at time $t \in [0, U]$ is the forward CDS in which the F_t -measurable rate κ is such that the contract is valueless at time *t*.

The corresponding pre-default forward CDS rate at time *t* is the unique F_t -measurable random variable $\kappa(t, U, T)$, which solves the equation

 $\widetilde{S}_t(\kappa(t, U, T)) = 0.$

• Recall that for any F_t -measurable rate κ we have that

$$
\widetilde{S}_t(\kappa)=\widetilde{P}(t,U,T)-\kappa\widetilde{A}(t,U,T).
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Forward CDS Rate

Lemma

For every t \in [0, U],

$$
\kappa(t, U, T) = \frac{\widetilde{P}(t, U, T)}{\widetilde{A}(t, U, T)} = -\frac{\mathbb{E}_{\mathbb{Q}}\left(\int_{U}^{T} B_{u}^{-1} \delta_{u} dG_{u} \middle| \mathcal{F}_{t}\right)}{\mathbb{E}_{\mathbb{Q}}\left(\int_{[U, T]} B_{u}^{-1} G_{u} dL_{u} \middle| \mathcal{F}_{t}\right)} = \frac{M_{t}^{P}}{M_{t}^{A}}
$$

where the (Q, F)*-martingales M^P and M^A are given by*

$$
M_t^P = -\mathbb{E}_{\mathbb{Q}}\Big(\int_U^T B_u^{-1}\delta_u dG_u \,\Big|\, \mathcal{F}_t\Big)
$$

and

$$
M_t^A = \mathbb{E}_{\mathbb{Q}} \Big(\int_{\substack{J \cup \mathcal{J} \mathcal{J}}} B_u^{-1} G_u \, dL_u \, \Big| \, \mathcal{F}_t \Big).
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Credit Default Swaption

Definition

A credit default swaption is a call option with expiry date $R \leq U$ and zero strike written on the value of the forward CDS issued at time 0 ≤ *s* < *R*, with start date U, maturity T, and an \mathcal{F}_s -measurable rate κ .

The swaption's payoff C_R at expiry equals $C_R = (S_R(\kappa))^+$.

Lemma

For a forward CDS with an \mathcal{F}_s -measurable rate κ we have, for every t \in [s, U],

$$
S_t(\kappa) = \mathbb{1}_{\{t < \tau\}} \widetilde{A}(t, U, T)(\kappa(t, U, T) - \kappa).
$$

It is clear that

$$
C_R = \mathbb{1}_{\{R < \tau\}} \widetilde{A}(R, U, T) (\kappa(R, U, T) - \kappa)^+.
$$

A credit default swaption is formally equivalent to a call option on the forward CDS rate with strike κ. This option is knocked out if default occurs prior to *R*.

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Credit Default Swaption

Lemma

The price at time t ∈ [*s*, *R*] *of a credit default swaption equals*

$$
C_t = \mathbb{1}_{\{t < \tau\}} \frac{B_t}{G_t} \mathbb{E}_{\mathbb{Q}} \left(\frac{G_R}{B_R} \widetilde{A}(R, U, T) (\kappa(R, U, T) - \kappa)^+ \middle| \mathcal{F}_t \right).
$$

Define an equivalent probability measure \widehat{Q} on (Ω , \mathcal{F}_R) by setting

$$
\frac{d\widehat{\mathbb{Q}}}{d\mathbb{Q}}=\frac{M_{B}^{A}}{M_{0}^{A}},\quad \mathbb{Q}\text{-a.s.}
$$

Proposition

The price of the credit default swaption equals, for every $t \in [s, R]$ *,*

$$
C_t = \mathbb{1}_{\{t < \tau\}} \widetilde{A}(t, U, T) \mathbb{E}_{\widehat{\mathbb{Q}}} \big((\kappa(R, U, T) - \kappa)^+ \big| \mathcal{F}_t \big) = \mathbb{1}_{\{t < \tau\}} \widetilde{C}_t.
$$

The forward CDS rate ($\kappa(t, U, T)$, $t \leq R$) *is a* (\widehat{Q}, F)*-martingale.*

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Brownian Case

- Let the filtration F be generated by a Brownian motion *W* under Q.
- Since M^P and M^A are strictly positive (\mathbb{Q}, \mathbb{F})-martingales, we have that

$$
dM_t^P = M_t^P \sigma_t^P dW_t, \quad dM_t^A = M_t^A \sigma_t^A dW_t,
$$

for some $\mathbb F\text{-} \mathsf{adapted}$ processes $\sigma^{\textit{P}}$ and $\sigma^{\textit{A}}.$

Lemma

The forward CDS rate ($\kappa(t, U, T)$, $t \in [0, R]$) *is* (\widehat{Q}, \mathbb{F})*-martingale and*

$$
d\kappa(t, U, T) = \kappa(t, U, T)\sigma_t^{\kappa} d\widehat{W}_t
$$

where $\sigma^{\kappa} = \sigma^P - \sigma^A$ and the $(\widehat{\mathbb{Q}}, \mathbb{F})$ *-Brownian motion* \widehat{W} equals

$$
\widehat{W}_t = W_t - \int_0^t \sigma_u^A \, du, \quad \forall \ t \in [0, R].
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Trading Strategies

- Let $\varphi=(\varphi^1,\varphi^2)$ be a trading strategy, where φ^1 and φ^2 are G-adapted processes.
- The wealth of φ equals, for every $t \in [s, R]$,

$$
V_t(\varphi)=\varphi_t^1 S_t(\kappa)+\varphi_t^2 A(t,U,T)
$$

and thus the pre-default wealth satisfies, for every $t \in [s, R]$,

$$
\widetilde{V}_t(\varphi)=\varphi_t^1\widetilde{S}_t(\kappa)+\varphi_t^2\widetilde{A}(t,U,T).
$$

It is enough to search for $\mathbb{F}\text{-}$ adapted processes $\widetilde{\varphi}^i$, $i = 1, 2$ such that the equality the equality

$$
\mathbb{1}_{\{t<\tau\}}\varphi_t^i = \widetilde{\varphi}_t^i
$$

holds for every $t \in [s, R]$.

[Credit Default Swaptions](#page-5-0) [Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Hedging of Credit Default Swaptions

The next result yields a general representation for hedging strategy.

Proposition

Let the Brownian motion W be one-dimensional. The hedging strategy $\widetilde{\varphi} = (\widetilde{\varphi}^1, \widetilde{\varphi}^2)$ for the credit default swaption equals, for $t \in [s, R]$,

$$
\widetilde{\varphi}_t^1 = \frac{\widetilde{\xi}_t}{\kappa(t, U, T)\sigma_t^{\kappa}}, \quad \widetilde{\varphi}_t^2 = \frac{\widetilde{C}_t - \widetilde{\varphi}_t^1 \widetilde{S}_t(\kappa)}{\widetilde{A}(t, U, T)}
$$

where $\tilde{\xi}$ *is the process satisfying*

$$
\frac{\widetilde{C}_R}{\widetilde{A}(R, U, T)} = \frac{\widetilde{C}_0}{\widetilde{A}(0, U, T)} + \int_0^R \widetilde{\xi}_t d\widehat{W}_t.
$$

The main issue is an explicit computation of the process ξ .

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

.

Market Formula

Proposition

Assume that the volatility $\sigma^{\kappa} = \sigma^{\rho} - \sigma^{\mathsf{A}}$ of the forward CDS spread is *deterministic. Then the pre-default value of the credit default swaption with strike level* κ *and expiry date R equals, for every t* \in [0, U],

$$
\widetilde{C}_t = \widetilde{A}_t \Big(\kappa_t \, N \big(d_+(\kappa_t, U - t) \big) - \kappa \, N \big(d_-(\kappa_t, U - t) \big) \Big)
$$

where $\kappa_t = \kappa(t, U, T)$ *and* $\widetilde{A}_t = \widetilde{A}(t, U, T)$ *. Equivalently,*

$$
\widetilde{C}_t = \widetilde{P}_t N(d_+(\kappa_t,t,R)) - \kappa \widetilde{A}_t N(d_-(\kappa_t,t,R))
$$

where $\widetilde{P}_t = \widetilde{P}(t, U, T)$ *and*

$$
d_{\pm}(\kappa_t,t,R)=\frac{\ln(\kappa_t/\kappa)\pm\frac{1}{2}\int_t^R(\sigma^{\kappa}(u))^2 du}{\sqrt{\int_t^R(\sigma^{\kappa}(u))^2 du}}
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Assumption 1

Definition

For any $u \in \mathbb{R}_+$, we define the \mathbb{F} -martingale $G_t^u = \mathbb{Q}(\tau > u \,|\, \mathcal{F}_t)$ for $t \in [0, T]$.

- Let $G_t = G_t^t$. Then the process $(G_t,~t \in [0,~\!])$ is an $\mathbb F$ -supermartingale.
- We also assume that *G* is a strictly positive process.

Assumption

There exists a family of $\mathbb{F}-$ *adapted processes* $(f_t^x; t \in [0, T], x \in \mathbb{R}_+$ *) such that, for any* $u \in \mathbb{R}_+$ *,*

$$
G_t^u=\int_u^\infty f_t^x\,dx,\quad \forall\,t\in[0,T].
$$

[Credit Default Swaptions](#page-5-0) [Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Default Intensity

For any fixed $t \in [0, T]$, the random variable f_t represents the conditional density of τ with respect to the σ -field \mathcal{F}_t , that is,

$$
f_t^{\mathsf{x}} dx = \mathbb{Q}(\tau \in dx \,|\, \mathcal{F}_t).
$$

We write $f_t^t = f_t$ and we define $\hat{\lambda}_t = G_t^{-1} f_t$.

Lemma

Under Assumption 1, the process $(M_t, t \in [0, T])$ *given by the formula*

$$
M_t = H_t - \int_0^t (1 - H_u)\widehat{\lambda}_u \, du
$$

is a G*-martingale.*

It can be deduced from the lemma that $\lambda = \lambda$ **is the default intensity.**

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Assumption 2

Assumption

The filtration F *is generated by a one-dimensional Brownian motion W.*

We now work under Assumptions 1-2. We have that

For any fixed $u \in \mathbb{R}_+$, the \mathbb{F} -martingale G^u satisfies, for $t \in [0, T]$,

$$
G_t^u = G_0^u + \int_0^t g_s^u dW_s
$$

for some $\mathbb F$ -predictable, real-valued process $(g_t^{\mu},\,t\in[0,\,T]).$

For any fixed $x \in \mathbb{R}_+$, the process $(f_t^x, t \in [0, T])$ is an (\mathbb{Q}, \mathbb{F}) -martingale and thus there exists an $\mathbb{F}\text{-predictable process } (\sigma_t^{\chi},\, t\in [0,T])$ such that, for $t \in [0, T]$,

$$
f_t^x = f_0^x + \int_0^t \sigma_s^x dW_s.
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0)

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Survival Process

• The following relationship is valid, for any $u \in \mathbb{R}_+$ and $t \in [0, T]$,

$$
g_t^u=\int_u^\infty \sigma_t^x\,dx.
$$

By applying the Itô-Wentzell-Kunita formula, we obtain the following auxiliary result, in which we denote $g_s^s = g_s$ and $f_s^s = f_s$.

Lemma

The Doob-Meyer decomposition of the survival process G equals, for every $t \in [0, T]$,

$$
G_t = G_0 + \int_0^t g_s dW_s - \int_0^t f_s ds.
$$

In particular, G is a continuous process.

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Volatility of Pre-Default Value

Under the assumption that *B*, *Z* and *A* are deterministic, the volatility of the pre-default value process can be computed explicitly in terms of σ_t^u . Recall that, for $t \in [0, T]$,

$$
f_t^x = f_0^x + \int_0^t \sigma_s^x dW_s, \quad g_t^u = \int_u^\infty \sigma_t^x dx.
$$

Corollary

If B, Z and A are deterministic then we have that, for every $t \in [0, T]$ *,*

$$
d\widetilde{S}_t = \left((r(t) + \lambda_t)\widetilde{S}_t - \lambda_t Z(t) \right) dt + dA(t) + \zeta_t^T dW_t
$$

 \mathbf{w} *ith* $\zeta_t^{\mathsf{T}} = \mathbf{G}_t^{-1} \mathbf{B}(t) \nu_t^{\mathsf{T}}$ where

$$
\nu_t^T = B^{-1}(T)XG_t^T + \int_t^T B^{-1}(u)Z(u)\sigma_t^u du + \int_t^T B^{-1}(u)g_t^u dA(u).
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Volatility of Forward CDS Rate

Lemma

If B, δ *and L are deterministic then the forward CDS rate satisfies under* \widehat{Q}

$$
d\kappa(t, U, T) = \kappa(t, U, T)(\sigma_t^P - \sigma_t^A) \, d\widehat{W}_t
$$

where the process W, given by the formula c

$$
\widehat{W}_t = W_t - \int_0^t \sigma_u^A \, du, \quad \forall \ t \in [0, R],
$$

is a Brownian motion under \widehat{Q} *and*

$$
\sigma_t^P = \Big(\int_U^T B^{-1}(u)\delta(u)\sigma_t^u du\Big) \Big(\int_U^T B^{-1}(u)\delta(u) f_t^u du\Big)^{-1}
$$

$$
\sigma_t^A = \Big(\int_U^Y B^{-1}(u) g_t^u du\Big) \Big(\int_U^T B^{-1}(u) G_t^u du\Big)^{-1}.
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

CIR Default Intensity Model

We make the following standing assumptions:

1 The default intensity process λ is governed by the CIR dynamics

$$
d\lambda_t = \mu(\lambda_t) dt + \nu(\lambda_t) dW_t
$$

where
$$
\mu(\lambda) = a - b\lambda
$$
 and $\nu(\lambda) = c\sqrt{\lambda}$.

2 The default time τ is given by

$$
\tau = \inf \left\{ \ t \in \mathbb{R}_+ : \int_0^t \lambda_u \, du \geq \Theta \right\}
$$

where Θ is a random variable with the unit exponential distribution, independent of the filtration \mathbb{F} .

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Model Properties

From the martingale property of f^u we have, for every $t \leq u$,

$$
f_t^u = \mathbb{E}_{\mathbb{Q}}(f_u | \mathcal{F}_t) = \mathbb{E}_{\mathbb{Q}}(\lambda_u G_u | \mathcal{F}_t).
$$

• The immersion property holds between \mathbb{F} and \mathbb{G} so that $G_t = \exp(-\Lambda_t)$, where $\Lambda_t = \int_0^t \lambda_u \, du$ is the hazard process. Therefore

$$
f_t^s = \mathbb{E}_{\mathbb{Q}}(\lambda_s e^{-\Lambda_s} | \mathcal{F}_t).
$$

e Let us denote

$$
H_t^s = \mathbb{E}_{\mathbb{Q}}\big(e^{-(\Lambda_s - \Lambda_t)}\,\big|\,\mathcal{F}_t\big) = \frac{G_t^s}{G_t}.
$$

● It is important to note that for the CIR model

$$
H_t^s = e^{m(t,s)-n(t,s)\lambda_t} = \widehat{H}(\lambda_t,t,s)
$$

where $\hat{H}(\cdot, t, s)$ is a strictly decreasing function when $t < s$.

[Credit Default Swaptions](#page-5-0) [Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Volatility of Forward CDS Rate

We assume that:

- **1** The tenor structure process *L* is deterministic.
- **2** The savings account is *B* is deterministic. We denote $\beta = B^{-1}$.
- \bullet We also assume that δ is constant.

Proposition

The volatility of the forward CDS rate satisfies $\sigma^{\kappa} = \sigma^P - \sigma^A$ where

$$
\sigma_t^P = \nu(\lambda_t) \frac{\beta(T)H_t^T n(t, T) - \beta(U)H_t^U n(t, U) + \int_U^T r(u)\beta(u)H_t^U n(t, u) du}{\beta(U)H_t^U - \beta(T)H_t^T - \int_U^T r(u)\beta(u)H_t^U du}
$$

and

$$
\sigma_t^A = \nu(\lambda_t) \frac{\int_{]U,T]} \beta(u) H_t^u n(t,u) \, dL(u)}{\int_{]U,T]} \beta(u) H_t^u \, dL(u)}.
$$

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

.

Equivalent Representations

One can show that

$$
C_R = \mathbb{1}_{\{R < \tau\}} \left(\delta \int_U^T B(R, u) \lambda_R^u du - \kappa \int_{]U, \tau]} B(R, u) H_R^u dL(u) \right)^+
$$

Straightforward computations lead to the following representation

$$
C_R = \mathbb{1}_{\{R < \tau\}} \left(\delta B(R, U) H^\mathcal{U}_R - \int_{\mathcal{U}, \tau]} B(R, u) H^\mathcal{U}_R d\chi(u) \right)^+
$$

where the function $\chi : \mathbb{R}_+ \to \mathbb{R}$ satisfies

$$
d\chi(u)=-\delta\frac{\partial\ln B(R,u)}{\partial u}\,du+\kappa\,dL(u)+\delta\,d{\mathbb 1}_{[T,\infty[}(u).
$$

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Auxiliary Functions

• We define auxiliary functions $\zeta : \mathbb{R}_+ \to \mathbb{R}_+$ and $\psi : \mathbb{R} \to \mathbb{R}_+$ by setting

$$
\zeta(x)=\delta B(R,U)\hat{H}(x,R,U)
$$

and

$$
\psi(y) = \int_{]U,T]} B(R,u)\widehat{H}(y,R,u) d\chi(u).
$$

There exists a unique \mathcal{F}_R -measurable random variable λ_R^* such that

$$
\zeta(\lambda_R)=\delta \mathcal{B}(R,U)\widehat{H}(\lambda_R,R,U)=\int_{]U,T]}B(R,u)\widehat{H}(\lambda_R^*,R,u)\,d\chi(u)=\psi(\lambda_R^*).
$$

It suffices to check that $\lambda_R^* = \psi^{-1}(\zeta(\lambda_R))$ is the unique solution to this equation.

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Explicit Valuation Formula

• The payoff of the credit default swaption admits the following representation

$$
C_R = \mathbb{1}_{\{R < \tau\}} \int_{]U,T]} B(R,u) (\widehat{H}(\lambda_R^*,R,u) - \widehat{H}(\lambda_R,R,u))^+ d\chi(u).
$$

- Let $D^0(t, u)$ be the price at time t of a unit defaultable zero-coupon bond with zero recovery maturing at $u \geq t$ and let $B(t, u)$ be the price at time *t* of a (default-free) unit discount bond maturing at *u* ≥ *t*.
- If the interest rate process *r* is independent of the default intensity λ then $D^0(t, u)$ is given by the following formula

$$
D^0(t,u)=\mathbb{1}_{\{t<\tau\}}B(t,u)H_t^u.
$$
[Credit Default Swaptions](#page-5-0)

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Explicit Valuation Formula

• Let $P(\lambda_t, U, u, K)$ stand for the price at time *t* of a put bond option with strike *K* and expiry *U* written on a zero-coupon bond maturing at μ computed in the CIR model with the interest rate modeled by λ .

Proposition

Assume that R = *U. Then the payoff of the credit default swaption equals*

$$
C_U = \int_{]U,T]} (K(u)D^0(U,U) - D^0(U,u))^+ d\chi(u)
$$

where $K(u) = B(U, u)\hat{H}(\lambda_{U}^{*}, U, u)$ is deterministic, since $\lambda_{U}^{*} = \psi^{-1}(\delta)$. *The pre-default value of the credit default swaption equals*

$$
\widetilde{C}_t = \int_{]U,T]} B(t,u) P(\lambda_t, U, u, \widehat{K}(u)) d\chi(u)
$$

 W *Mere* $\widehat{K}(u) = K(u)/B(U, u) = \widehat{H}(\lambda_{U}^{*}, U, u)$.

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Hedging Strategy

1 The price $P_t^u := P(\lambda_t, U, u, K(u))$ of the put bond option in the CIR model with the interest rate λ is known to be

 $P_t^u = \hat{K}(u)H_t^U \mathbb{P}_U(H_U^U \leq \hat{K}(u) | \lambda_t) - H_t^u \mathbb{P}_u(H_U^U \leq \hat{K}(u) | \lambda_t)$

where $H_t^{\mu} = \hat{H}(\lambda_t, t, u)$ is the price at time *t* of a zero-coupon bond maturing at *u*.

 \bm{Z} Let us denote $Z_t = H_t^{\mu}/H_t^U$ and let us set, for every $u \in [U,T],$

$$
\mathbb{P}_u(H_u^U \leq \widehat{K}(u) \,|\, \lambda_t) = \Psi_u(t, Z_t).
$$

3 Then the pricing formula for the bond put option becomes

$$
P_t^u = \widehat{K}(u)H_t^u\Psi_u(t,Z_t) - H_t^u\Psi_u(t,Z_t)
$$

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Hedging of Credit Default Swaptions

Let us recall the general representation for the hedging strategy when $\mathbb F$ is the Brownian filtration.

Proposition

The hedging strategy $\widetilde{\varphi} = (\widetilde{\varphi}^1, \widetilde{\varphi}^2)$ for the credit default swaption equals, for
t \in [s_I l] $t \in [s, U]$,

$$
\widetilde{\varphi}_t^1 = \frac{\widetilde{\xi}_t}{\kappa(t, U, T)\sigma_t^{\kappa}}, \quad \widetilde{\varphi}_t^2 = \frac{\widetilde{C}_t - \widetilde{\varphi}_t^1 \widetilde{S}_t(\kappa)}{\widetilde{A}(t, U, T)}
$$

where $\tilde{\xi}$ *is the process satisfying*

$$
\frac{\widetilde{C}_U}{\widetilde{A}(U, U, T)} = \frac{\widetilde{C}_0}{\widetilde{A}(0, U, T)} + \int_0^U \widetilde{\xi}_t \, d\widehat{W}_t.
$$

All terms were already computed, except for the process $\widetilde{\xi}$.

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Computation of ξ

Recall that we are searching for the process $\widetilde{\xi}$ such that

$$
d(\widetilde{C}_t/\widetilde{A}(t,U,T))=\widetilde{\xi}_t d\widehat{W}_t.
$$

Proposition

Assume that R = U. Then we have that, for every $t \in [0, U]$ *,*

$$
\widetilde{\xi}_t = \frac{1}{\widetilde{A}_t} \bigg(\int_{\substack{J \cup \mathcal{J}}} B(t, u) \bigg(\vartheta_t H_t^u (b_t^u - b_t^U) - P_t^u b_t^U \bigg) d\chi(u) - \widetilde{C}_t \sigma_t^A \bigg)
$$

where

$$
\widetilde{A}_t = \widetilde{A}(t, U, T), H_t^{\mu} = \widehat{H}(\lambda_t, t, u), b_t^{\mu} = cn(t, u)\sqrt{\lambda_t}, P_t^{\mu} = P(\lambda_t, U, u, \widehat{K}(u))
$$

and

$$
\vartheta_t = \widehat{K}(u) \frac{\partial \Psi_U}{\partial z}(t,Z_t) - \Psi_u(t,Z_t) - Z_t \frac{\partial \Psi_u}{\partial z}(t,Z_t).
$$

[Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Hedging Strategy

For $R = U$, we obtain the following final result for hedging strategy.

Proposition

Consider the CIR default intensity model with a deterministic short-term interest rate. The replicating strategy $\widetilde{\varphi} = (\widetilde{\varphi}^1, \widetilde{\varphi}^2)$ *for the credit default*
swaption maturing at $B = U$ equals *for any t* \in [0, 1] *swaption maturing at R = U equals, for any t* \in *[0, U],*

$$
\widetilde{\varphi}_t^1 = \frac{\widetilde{\xi}_t}{\kappa(t, U, \mathcal{T}) \sigma_t^{\kappa}}, \quad \widetilde{\varphi}_t^2 = \frac{\widetilde{C}_t - \widetilde{\varphi}_t^1 \widetilde{S}_t(\kappa)}{\widetilde{A}(t, U, \mathcal{T})},
$$

where the processes σ^{κ} , \tilde{C} and $\tilde{\xi}$ are given in previous results.

Note that for *R* < *U* the problem remains open, since a closed-form solution for the process $\tilde{\xi}$ is not readily available in this case.

[Credit Default Swaptions](#page-5-0)

[Credit Default Index Swaptions](#page-42-0) [Market Models for CDS Spreads](#page-68-0) [Valuation of Forward Credit Default Swaps](#page-6-0) [Hedging of Credit Default Swaptions](#page-18-0) [CIR Default Intensity Model](#page-30-0)

Credit Default Index Swaptions

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Credit Default Index Swap

- ¹ A *credit default index swap* (CDIS) is a standardized contract that is based upon a fixed portfolio of reference entities.
- 2 At its conception, the CDIS is referenced to *n* fixed companies that are chosen by market makers.
- **3** The reference entities are specified to have equal weights.
- **4** If we assume each has a nominal value of one then, because of the equal weighting, the total notional would be *n*.
- ⁵ By contrast to a standard single-name CDS, the 'buyer' of the CDIS provides protection to the market makers.
- ⁶ By purchasing a CDIS from market makers the investor is not receiving protection, rather they are providing it to the market makers.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Credit Default Index Swap

- \bullet In exchange for the protection the investor is providing, the market makers pay the investor a periodic fixed premium, otherwise known as the *credit default index spread*.
- **2** The recovery rate $\delta \in [0, 1]$ is predetermined and identical for all reference entities in the index.
- ³ By purchasing the index the investor is agreeing to pay the market makers $1 - \delta$ for any default that occurs before maturity.
- ⁴ Following this, the nominal value of the CDIS is reduced by one; there is no replacement of the defaulted firm.
- **•** This process repeats after every default and the CDIS continues on until maturity.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Default Times and Filtrations

- **1** Let τ_1, \ldots, τ_n represent default times of reference entities.
- **2** We introduce the sequence $\tau_{(1)} < \cdots < \tau_{(n)}$ of ordered default times associated with τ_1, \ldots, τ_n . For brevity, we write $\widehat{\tau} = \tau_{(n)}$.
- \bullet We thus have $\mathbb{G}=\mathbb{H}^{(n)}\vee\hat{\mathbb{F}},$ where $\mathbb{H}^{(n)}$ is the filtration generated by the indicator process $H_t^{(n)} = 1_{\{\hat{\tau} \leq t\}}$ of the last default and the filtration $\hat{\mathbb{F}}$ equals $\mathbb{\hat{F}} = \mathbb{F} \vee \mathbb{H}^{(1)} \vee \cdots \vee \mathbb{H}^{(n-1)}.$
- \bullet We are interested in events of the form ${\hat{r}} < t$ and ${\hat{r}} > t$ for a fixed *t*.
- ⁵ Morini and Brigo (2007) refer to these events as the *armageddon* and the *no-armageddon* events. We use instead the terms *collapse* event and the *pre-collapse* event.
- **6** The event $\{\hat{\tau} \leq t\}$ corresponds to the total collapse of the reference portfolio, in the sense that all underlying credit names default either prior to or at time *t*.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Basic Lemma

- **1** We set $\widehat{F}_t = \mathbb{Q}(\widehat{\tau} \leq t | \widehat{\mathcal{F}}_t)$ for every $t \in \mathbb{R}_+$.
- 2 Let us denote by $\hat{G}_t = 1 \hat{F}_t = \mathbb{O}(\hat{\tau} > t | \hat{\mathcal{F}}_t)$ the corresponding survival process with respect to the filtration $\widehat{\mathbb{F}}$ and let us temporarily assume that the inequality $\widehat{G}_t > 0$ holds for every $t \in \mathbb{R}_+$.
- **3** Then for any Q-integrable and $\hat{\mathcal{F}}_T$ -measurable random variable *Y* we have that

$$
\mathbb{E}_{\mathbb{Q}}(\mathbb{1}_{\{\mathcal{T} < \widehat{\tau}\}} Y \,|\, \mathcal{G}_t) = \mathbb{1}_{\{t < \widehat{\tau}\}} \, \widehat{G}_t^{-1} \, \mathbb{E}_{\mathbb{Q}}(\widehat{G}_T Y \,|\, \widehat{\mathcal{F}}_t).
$$

Lemma

Assume that Y is some G*-adapted stochastic process. Then there exists a unique* \widehat{F} -adapted process \widehat{Y} such that, for every $t \in [0, T]$,

$$
Y_t = \mathbb{1}_{\{t < \hat{\tau}\}} \widehat{Y}_t.
$$

The process \hat{Y} *is termed the* pre-collapse value *of the process* Y.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Notation and Assumptions

We write $T_0 = T < T_1 < \cdots < T_J$ to denote the *tenor structure* of the forward-start CDIS, where:

- $T_0 = T$ is the inception date;
- ² *T^J* is the maturity date;
- \bullet \top_j is the *j*th fee payment date for $j=1,2,\ldots,J;$
- 4 $a_i = T_i T_{i-1}$ for every $i = 1, 2, ..., J$.

The process B is an $\mathbb F$ -adapted (or, at least, $\widehat{\mathbb F}$ -adapted) and strictly positive process representing the price of the savings account.

The underlying probability measure $\mathbb O$ is interpreted as a martingale measure associated with the choice of *B* as the numeraire asset.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Forward Credit Default Index Swap

Definition

The discounted cash flows for the seller of the *forward CDIS* issued at time $s \in [0, T]$ with an \mathcal{F}_s -measurable spread κ are, for every $t \in [s, T]$,

$$
D_t^n = P_t^n - \kappa A_t^n,
$$

where

$$
P_t^n = (1 - \delta)B_t \sum_{i=1}^n B_{\tau_i}^{-1} 1\!\!1_{\{T < \tau_i \leq T_J\}}
$$

$$
A_t^n = B_t \sum_{j=1}^J a_j B_{T_j}^{-1} \sum_{i=1}^n (1 - \mathbb{1}_{\{T_j \geq \tau_i\}})
$$

are discounted payoffs of the protection leg and the fee leg per one basis point, respectively. The *fair price* at time $t \in [s, T]$ of a forward CDIS equals

$$
\mathcal{S}_t^n(\kappa)=\mathbb{E}_{\mathbb{Q}}(D_t^n\,|\,\mathcal{G}_t)=\mathbb{E}_{\mathbb{Q}}(P_t^n\,|\,\mathcal{G}_t)-\kappa\,\mathbb{E}_{\mathbb{Q}}(A_t^n\,|\,\mathcal{G}_t).
$$

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Forward Credit Default Index Swap

- **1** The quantities P_t^n and A_t^n are well defined for any $t \in [0, T]$ and they do not depend on the issuance date *s* of the forward CDIS under consideration.
- **2** They satisfy

$$
P_t^n = 1_{\{T < \hat{\tau}\}} P_t^n, \quad A_t^n = 1_{\{T < \hat{\tau}\}} A_t^n.
$$

³ For brevity, we will write *J^t* to denote the *reduced nominal* at time *t* ∈ [*s*, *T*], as given by the formula

$$
J_t = \sum_{i=1}^n \bigl(1 - \mathbb{1}_{\{t \geq \tau_i\}}\bigr).
$$

 \bullet In what follows, we only require that the inequality $\widehat{G}_t > 0$ holds for every $t \in [s, T_1]$, so that, in particular, $\widehat{G}_{T_1} = \mathbb{Q}(\widehat{\tau} > T_1 | \widehat{\mathcal{F}}_{T_1}) > 0$.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Pre-collapse Price

Lemma

The price at time t ∈ [*s*, *T*] *of the forward CDIS satisfies*

$$
S_t^n(\kappa) = 1_{\{t < \hat{\tau}\}} \widehat{G}_t^{-1} \mathbb{E}_{\mathbb{Q}}(D_t^n | \widehat{\mathcal{F}}_t) = 1_{\{t < \hat{\tau}\}} \widehat{S}_t^n(\kappa),
$$

where the pre-collapse price of the forward CDIS satisfies $S_t^n(\kappa) = \hat{P}_t^n - \kappa \hat{A}_t^n$ *, where*

$$
\widehat{P}_t^n = \widehat{G}_t^{-1} \mathbb{E}_{\mathbb{Q}}(P_t^n | \widehat{\mathcal{F}}_t) = (1 - \delta) \widehat{G}_t^{-1} B_t \mathbb{E}_{\mathbb{Q}} \Big(\sum_{i=1}^n B_{\tau_i}^{-1} \mathbb{1}_{\{T < \tau_i \leq T_J\}} \Big| \widehat{\mathcal{F}}_t \Big)
$$

$$
\widehat{A}_t^n = \widehat{G}_t^{-1} \mathbb{E}_{\mathbb{Q}}(A_t^n | \widehat{\mathcal{F}}_t) = \widehat{G}_t^{-1} B_t \mathbb{E}_{\mathbb{Q}} \Big(\sum_{j=1}^J a_j B_{T_j}^{-1} J_{T_j} \Big| \widehat{\mathcal{F}}_t \Big).
$$

The process \hat{A}^n_t *may be thought of as the pre-collapse PV of receiving risky one basis point on the forward CDIS payment dates T^j on the residual nominal value* J_{T_j} *. The process* \widehat{P}_t^n *represents the pre-collapse PV of the protection leg.*

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Pre-Collapse Fair CDIS Spread

Since the forward CDIS is terminated at the moment of the *n*th default with no further payments, the forward CDS spread is defined only prior to $\hat{\tau}$.

Definition

The *pre-collapse fair forward CDIS spread* is the $\widehat{\mathcal{F}}_t$ -measurable random variable κ_t^n such that $S_t^n(\kappa_t^n) = 0$.

Lemma

Assume that $\hat{G}_{T_1} = \mathbb{Q}(\widehat{\tau} > T_1 \, | \, \widehat{\tau}_{T_1}) > 0$. Then the pre-collapse fair forward
CDIS spread satisfies, for $t \in [0, T]$ *CDIS spread satisfies, for* $t \in [0, T]$ *,*

$$
\kappa_t^n = \frac{\widehat{P}_t^n}{\widehat{A}_t^n} = \frac{(1-\delta)\mathbb{E}_{\mathbb{Q}}\left(\sum_{i=1}^n B_{\tau_i}^{-1} \mathbb{1}_{\{T < \tau_i \leq T_J\}} \middle| \widehat{\mathcal{F}}_t\right)}{\mathbb{E}_{\mathbb{Q}}\left(\sum_{j=1}^J a_j B_{\tau_j}^{-1} J_{T_j} \middle| \widehat{\mathcal{F}}_t\right)}.
$$

The price of the forward CDIS admits the following representation

$$
S_t^n(\kappa) = 1_{\{t < \hat{\tau}\}} \widehat{A}_t^n(\kappa_t^n - \kappa).
$$

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Market Convention for Valuing a CDIS

Market quote for the quantity A_t^p , which is essential in marking-to-market of a
 CDIC is not directly sucident assembly convention for assembly the of CDIS, is not directly available. The market convention for approximation of the value of \overline{A}_t^n hinges on the following postulates:

- ¹ all firms are identical from time *t* onwards (homogeneous portfolio); therefore, we just deal with a single-name case, so that either all firms default or none;
- ² the implied risk-neutral default probabilities are computed using a flat single-name CDS curve with a constant spread equal to κ_t^n .

Then

$$
\widehat{A}_t^n \approx J_t P V_t(\kappa_t^n),
$$

where $PV_t(\kappa_t)$ is the risky present value of receiving one basis point at all CDIS payment dates calibrated to a flat CDS curve with spread equal to κ_t^n , where κ_t^n is the quoted CDIS spread at time $t.$

The conventional market formula for the value of the CDIS with a fixed spread κ reads, on the pre-collapse event $\{t < \hat{\tau}\}\,$

$$
\widehat{S}_t(\kappa)=J_tPV_t(\kappa_t^n)(\kappa_t^n-\kappa).
$$

Market Payoff of a Credit Default Index Swaption

1 The conventional market formula for the payoff at maturity $U \leq T$ of the *payer credit default index swaption* with strike level κ reads

$$
C_U = \Big(\mathbb{1}_{\{U<\widehat{\tau}\}}PV_U(\kappa_U^n)J_U(\kappa_U^n-\kappa_0^n)-\mathbb{1}_{\{U<\widehat{\tau}\}}PV_U(\kappa)n(\kappa-\kappa_0^n)+L_U\Big)^+,
$$

where *L* stands for the loss process for our portfolio so that, for every $t \in \mathbb{R}_+$.

$$
L_t = (1 - \delta) \sum_{i=1}^n \mathbb{1}_{\{\tau_i \leq t\}}.
$$

2 The market convention is due to the fact that the swaption has physical settlement and the CDIS with spread κ is not traded. If the swaption is exercised, its holder takes a long position in the on-the-run index and is compensated for the difference between the value of the on-the-run index and the value of the (non-traded) index with spread κ , as well as for defaults that occurred in the interval [0, *U*].

Put-Call Parity for Credit Default Index Swaptions

1 For the sake of brevity, let us denote, for any fixed $\kappa > 0$,

$$
f(\kappa, L_U) = L_U - \mathbb{1}_{\{U < \hat{\tau}\}} PV_U(\kappa) n(\kappa - \kappa_0^n).
$$

² Then the payoff of the payer credit default index swaption entered at time 0 and maturing at *U* equals

$$
C_U = \Big(\mathbb{1}_{\{U<\widehat{\tau}\}}PV_U(\kappa_U^n)J_U(\kappa_U^n-\kappa_0^n)+f(\kappa,L_U)\Big)^+,
$$

whereas the payoff of the corresponding *receiver credit default index swaption* satisfies

$$
P_U = \Big(\mathbb{1}_{\{U<\widehat{\tau}\}}PV_U(\kappa_U^n)J_U(\kappa_0^n-\kappa_U^n)-f(\kappa,L_U)\Big)^+.
$$

³ This leads to the following equality, which holds at maturity date *U*

$$
C_U-P_U=\mathbb{1}_{\{U<\widehat{\tau}\}}PV_U(\kappa_U^n)J_U(\kappa_U^n-\kappa_0^n)+f(\kappa,L_U).
$$

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Model Payoff of a Credit Default Index Swaption

¹ The *model payoff* of the payer credit default index swaption entered at time 0 with maturity date U and strike level κ equals

$$
C_U=(S_U^n(\kappa)+L_U)^+
$$

or, more explicitly

$$
C_U=\Big(\mathbb{1}_{\{U<\widehat{\tau}\}}\widehat{A}^n_U(\kappa_U-\kappa)+L_U\Big)^+.
$$

² To formally derive obtain the model payoff from the market payoff, it suffices to postulate that

$$
PV_{U}(\kappa)n\approx PV_{U}(\kappa_U)J_U\approx \widehat{A}_U^n.
$$

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Loss-Adjusted Forward CDIS

$$
\bullet \quad \text{Since } L_U \geq 0 \text{ and}
$$

$$
L_U = \mathbb{1}_{\{U < \hat{\tau}\}} L_U + \mathbb{1}_{\{U \geq \hat{\tau}\}} L_U
$$

the payoff C_U can also be represented as follows

$$
C_U = (S_U^n(\kappa) + 1_{\{U < \hat{\tau}\}} L_U)^+ + 1_{\{U \geq \hat{\tau}\}} L_U = (S_U^a(\kappa))^+ + C_U^L,
$$

where we denote

$$
S_U^a(\kappa) = S_U^n(\kappa) + 1\!\!1_{\{U<\widehat{\tau}\}} L_U
$$

and

$$
C_U^L=\mathbb{1}_{\{U\geq \widehat{\tau}\}}L_U.
$$

2 The quantity $S_{U}^{a}(\kappa)$ represents the payoff at time U of the loss-adjusted forward CDIS.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Loss-Adjusted Forward CDIS

¹ The discounted cash flows for the seller of the *loss-adjusted forward CDIS* (that is, for the buyer of the protection) are, for every $t \in [0, U]$,

$$
D_t^a = P_t^a - \kappa A_t^n,
$$

where

$$
P_t^a = P_t^n + B_t B_U^{-1} \mathbb{1}_{\{U < \hat{\tau}\}} L_U.
$$

 \bullet It is essential to observe that the payoff D_U^a is the U -survival claim, in the sense that

$$
D_U^a=\mathbb{1}_{\{U<\hat{\tau}\}}D_U^a.
$$

3 Any other adjustments to the payoff P_t^n or A_t^n are also admissible, provided that the properties

$$
P_U^a = \mathbb{1}_{\{U<\widehat{\tau}\}} P_U^a, \quad A_U^a = \mathbb{1}_{\{U<\widehat{\tau}\}} A_U^a
$$

hold.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Price of the Loss-Adjusted Forward CDIS

Lemma

The price of the loss-adjusted forward CDIS equals, for every $t \in [0, U]$ *,*

$$
S_t^a(\kappa) = 1\!\!1_{\{t<\widehat{\tau}\}}\widehat{G}_t^{-1}\mathbb{E}_{\mathbb{Q}}(D_t^a|\widehat{\mathcal{F}}_t) = 1\!\!1_{\{t<\widehat{\tau}\}}\widehat{S}_t^a(\kappa),
$$

where the pre-collapse price satisfies $\hat{S}^a_t(\kappa) = P^a_t - \kappa A^a_t$, where in turn

$$
\widehat{P}_t^a = \widehat{G}_t^{-1} \mathbb{E}_{\mathbb{Q}}(P_t^a | \widehat{\mathcal{F}}_t), \quad \widehat{A}_t^n = \widehat{G}_t^{-1} \mathbb{E}_{\mathbb{Q}}(A_t^n | \widehat{\mathcal{F}}_t)
$$

or, more explicitly,

$$
\widehat{P}_t^a = \widehat{G}_t^{-1} B_t \mathbb{E}_{\mathbb{Q}} \Big((1-\delta) \sum_{i=1}^n B_{\tau_i}^{-1} \mathbb{1}_{\{T < \tau_i \le T_J\}} + \mathbb{1}_{\{U < \widehat{\tau}\}} B_U^{-1} L_U \Big| \widehat{\mathcal{F}}_t \Big)
$$

and

$$
\widehat{A}_t^n = \widehat{G}_t^{-1} B_t \, \mathbb{E}_{\mathbb{Q}} \Big(\sum_{j=1}^J a_j B_{T_j}^{-1} J_{T_j} \Big| \, \widehat{\mathcal{F}}_t \Big).
$$

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Pre-Collapse Loss-Adjusted Fair CDIS Spread

We are in a position to define the fair loss-adjusted forward CDIS spread.

Definition

The *pre-collapse loss-adjusted fair forward CDIS spread* at time *t* ∈ [0, *U*] is the $\widehat{\mathcal{F}}_t$ -measurable random variable κ_t^a such that $\widehat{\mathcal{S}}_t^a(\kappa_t^a)=0.$

Lemma

Assume that $\hat{G}_{T_1} = \mathbb{Q}(\hat{\tau} > T_1 | \hat{\mathcal{F}}_{T_1}) > 0$. Then the pre-collapse loss-adjusted
fair forward CDIS spread satisfies, for t \in [0, [1] *fair forward CDIS spread satisfies, for* $t \in [0, U]$ *,*

$$
\kappa_t^a = \frac{\widehat{P}_t^a}{\widehat{A}_t^n} = \frac{\mathbb{E}_{\mathbb{Q}}\left((1-\delta)\sum_{i=1}^n B_{\tau_i}^{-1} \mathbb{1}_{\{\mathcal{T} < \tau_i \leq \mathcal{T}_J\}} + \mathbb{1}_{\{U < \widehat{\tau}\}} B_U^{-1} L_U \middle| \widehat{\mathcal{F}}_t\right)}{\mathbb{E}_{\mathbb{Q}}\left(\sum_{j=1}^J a_j B_{\tau_j}^{-1} J_{\tau_j} \middle| \widehat{\mathcal{F}}_t\right)}.
$$

The price of the forward CDIS has the following representation, for $t \in [0, T]$ *,*

$$
S_t^a(\kappa) = 1_{\{t < \hat{\tau}\}} \hat{A}_t^n(\kappa_t^a - \kappa).
$$

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Model Pricing of Credit Default Index Swaptions

 \bullet It is easy to check that the model payoff can be represented as follows

$$
C_U = \mathbb{1}_{\{U < \hat{\tau}\}} \hat{A}_U^n (\kappa_U^a - \kappa)^+ + \mathbb{1}_{\{U \geq \hat{\tau}\}} L_U.
$$

2 The price at time $t \in [0, U]$ of the credit default index swaption is thus given by the risk-neutral valuation formula

$$
C_t=B_t\mathbb{E}_{\mathbb{Q}}\big(\mathbb{1}_{\{U<\widehat{\tau}\}}B_U^{-1}\widehat{A}_U^n(\kappa_U^a-\kappa)^+\big|\mathcal{G}_t\big)+B_t\mathbb{E}_{\mathbb{Q}}\big(\mathbb{1}_{\{U\geq\widehat{\tau}\}}B_U^{-1}L_U\big|\mathcal{G}_t\big).
$$

 \bullet Using the filtration $\widehat{\mathbb{F}}$, we can obtain a more explicit representation for the first term in the formula above, as the following result shows.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Model Pricing of Credit Default Index Swaptions

Lemma

The price at time t ∈ [0, *U*] *of the payer credit default index swaption equals*

$$
C_t = \mathbb{E}_{\mathbb{Q}}\left(\widehat{G}_U B_U^{-1} \widehat{A}_U^n (\kappa_U^a - \kappa)^+ \middle| \widehat{\mathcal{F}}_t\right) + B_t \mathbb{E}_{\mathbb{Q}}\left(\mathbb{1}_{\{U \geq \widehat{\tau}\}} B_U^{-1} L_U \middle| \mathcal{G}_t\right).
$$

- **1** The random variable $Y = B_U^{-1} \hat{A}_U^n (\kappa_U^n \kappa)^+$ is manifestly $\hat{\mathcal{F}}_U$ -measurable and $Y = 1_{\{U \leq \hat{\tau}\}} Y$. Hence the equality is an immediate consequence of the basic lemma.
- **2** On the collapse event $\{t \geq \hat{\tau}\}$ we have $\mathbb{1}_{\{U \geq \hat{\tau}\}} B_U^{-1} L_U = B_U^{-1} n(1 \delta)$ and thus the pricing formula reduces to

$$
C_t=B_t\mathbb{E}_{\mathbb{Q}}\big(\mathbb{1}_{\{U\geq\widehat{\tau}\}}B_U^{-1}L_U\,\big|\,\mathcal{G}_t\big)=n(1-\delta)\mathbb{E}_{\mathbb{Q}}\left(B_U^{-1}\,\big|\,\mathcal{G}_t\right)=n(1-\delta)B(t,T),
$$

where *B*(*t*, *T*) is the price at *t* of the *U*-maturity risk-free zero-coupon bond.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Model Pricing of Credit Default Index Swaptions

1 Let us thus concentrate on the pre-collapse event $\{t < \hat{\tau}\}\$. We now have $C_t = C_t^a + C_t^L$, where

$$
C_t^a = B_t \widehat{G}_t^{-1} \mathbb{E}_{\mathbb{Q}} \left(\widehat{G}_U B_U^{-1} \widehat{A}_U^n (\kappa_U^a - \kappa)^+ \middle| \widehat{\mathcal{F}}_t \right)
$$

and

$$
C_t^{\mathcal{L}} = B_t \mathbb{E}_{\mathbb{Q}} \big(\mathbb{1}_{\{U \geq \hat{\tau} > t\}} B_U^{-1} L_U \big| \hat{\mathcal{F}}_t \big).
$$

The last equality follows from the well known fact that on $\{t < \hat{\tau}\}\$ any \mathcal{G}_t -measurable event can be represented by an $\widehat{\mathcal{F}}_t$ -measurable event, in the sense that for any event $A \in \mathcal{G}_t$ there exists an event $\widehat{A} \in \widehat{\mathcal{F}}_t$ such that $\mathbb{1}_{\{t < \hat{\tau}\}} A = \mathbb{1}_{\{t < \hat{\tau}\}} A$.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Model Pricing of Credit Default Index Swaptions

- **D** The computation of C_t^L relies on the knowledge of the risk-neutral conditional distribution of $\hat{\tau}$ given $\hat{\mathcal{F}}_t$ and the term structure of interest rates, since on the event $\{U \ge \hat{\tau} > t\}$ we have $B_U^{-1}L_U = B_U^{-1}n(1-\delta)$.
- 2 For C_t^a , we define an equivalent probability measure \widehat{Q} on (Ω, \widehat{F}_U)

$$
\frac{d\widehat{\mathbb{Q}}}{d\mathbb{Q}}=c\widehat{G}_U B_U^{-1}\widehat{A}_U^n, \quad \mathbb{Q}\text{-a.s.}
$$

3 Note that the process $\widehat{\eta}_t = c\widehat{G}_tB_t^{-1}\widehat{A}_t^n$, $t \in [0, U]$, is a strictly positive $\widehat{\mathbb{F}}$ -martingale under \mathbb{Q} , since

$$
\widehat{\eta}_t = c \widehat{G}_t B_t^{-1} \widehat{A}_t^n = c \, \mathbb{E}_{\mathbb{Q}} \Big(\sum_{j=1}^J \textit{a}_j B_{\mathcal{T}_j}^{-1} J_{\mathcal{T}_j} \Big| \, \widehat{\mathcal{T}}_t \Big)
$$

and $\mathbb{Q}(\tau > \mathcal{T}_j \,|\, \widehat{\mathcal{F}}_{\mathcal{T}_j}) = \widehat{\mathcal{G}}_{\mathcal{T}_j} > 0$ for every *j*. \bullet Therefore, for every $t \in [0, U]$,

$$
\frac{d\widehat{\mathbb{Q}}}{d\mathbb{Q}}\big|\widehat{\mathcal{F}}_t=\mathbb{E}_{\mathbb{Q}}(\widehat{\eta}_U\,|\,\widehat{\mathcal{F}}_t)=\widehat{\eta}_t,\quad \mathbb{Q}\text{-a.s.}
$$

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Model Pricing Formula for Credit Default Index Swaptions

Lemma

The price at time t ∈ [0, *U*] *of the payer credit default index swaption on the pre-collapse event* $\{t < \hat{\tau}\}\$ *equals*

$$
C_t = \widehat{A}_t^n \mathbb{E}_{\widehat{\mathbb{Q}}} \big((\kappa_U^a - \kappa)^+ \big| \widehat{\mathbb{F}}_t \big) + B_t \mathbb{E}_{\mathbb{Q}} \big(\mathbb{1}_{\{U \geq \widehat{\tau} > t\}} B_U^{-1} L_U \big| \widehat{\mathbb{F}}_t \big).
$$

The next lemma establishes the martingale property of the process $\kappa^{\mathfrak{a}}$ under $\widehat{\mathbb{O}}$.

Lemma

The pre-collapse loss-adjusted fair forward CDIS spread κ_t^a , $t \in [0, U]$, is a *strictly positive* $\widehat{\mathbb{F}}$ -martingale under $\widehat{\mathbb{O}}$ *.*

Black Formula for Credit Default Index Swaptions

- **1** Our next goal is to establish a suitable version of the Black formula for the credit default index swaption.
- ² To this end, we postulate that the pre-collapse loss-adjusted fair forward CDIS spread satisfies

$$
\kappa_t^a = \kappa_0^a + \int_0^t \sigma_u \kappa_u^a d\widehat{W}_u, \quad \forall \ t \in [0, U],
$$

where \widehat{W} is the one-dimensional standard Brownian motion under \widehat{Q} with respect to $\widehat{\mathbb{F}}$ and σ is an $\widehat{\mathbb{F}}$ -predictable process.

 \bullet The assumption that the filtration $\widehat{\mathbb{F}}$ is the Brownian filtration would be too restrictive, since $\hat{\mathbb{F}}=\mathbb{F}\vee\mathbb{H}^{(1)}\vee\cdots\vee\mathbb{H}^{(n-1)}$ and thus $\hat{\mathbb{F}}$ will typically need to support also discontinuous martingales.

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Market Pricing Formula for Credit Default Index Swaptions

Proposition

Assume that the volatility σ *of the pre-collapse loss-adjusted fair forward CDIS spread is a positive function. Then the pre-default price of the payer credit default index swaption equals, for every* $t \in [0, U]$ *on the pre-collapse event* $\{t < \hat{\tau}\}\$ *,*

$$
C_t = \widehat{A}_t^n \Big(\kappa_t^a \mathcal{N} \big(d_+(\kappa_t^a,t,U) \big) - \kappa \mathcal{N} \big(d_-(\kappa_t^a,t,U) \big) \Big) + C_t^L
$$

or, equivalently,

$$
C_t = \widehat{P}_t^a N\big(d_+(\kappa^a_t,t,U)\big) - \kappa \widehat{A}_t^n N\big(d_-(\kappa^a_t,t,U)\big) + C_t^L,
$$

where

$$
d_{\pm}(\kappa_t^a,t,U)=\frac{\ln(\kappa_t^a/\kappa)\pm\frac{1}{2}\int_t^U\sigma^2(u)\,du}{\left(\int_t^U\sigma^2(u)\,du\right)^{1/2}}.
$$

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Approximation

Proposition

The price of a payer credit default index swaption can be approximated as follows

$$
C_t \approx \mathbb{1}_{\{t < \widehat{\tau}\}} \widehat{A}_t^n \Big(\kappa_t^n N\big(d_+(\kappa_t^n,t,U)\big) - (\kappa - \overline{L}_t) N\big(d_-(\kappa_t^n,t,U)\big)\Big),
$$

where for every $t \in [0, U]$

$$
d_{\pm}(\kappa_t^n, t, U) = \frac{\ln(\kappa_t^n/(\kappa - \bar{L}_t)) \pm \frac{1}{2} \int_t^U \sigma^2(u) \, du}{\left(\int_t^U \sigma^2(u) \, du\right)^{1/2}}
$$

and

$$
\bar{L}_t = \mathbb{E}_{\widehat{\mathbb{Q}}}((A_U^n)^{-1}L_U | \widehat{\mathcal{F}}_t).
$$

[Credit Default Index Swap](#page-42-0) [Credit Default Index Swaption](#page-52-0) [Loss-Adjusted Forward CDIS](#page-55-0)

Comments

- ¹ Under usual circumstances, the probability of all defaults occurring prior to *U* is expected to be very low.
- **2** However, as argued by Morini and Brigo (2007), this assumption is not always justified, in particular, it is not suitable for periods when the market conditions deteriorate.
- **3** It is also worth mentioning that since we deal here with the risk-neutral probability measure, the probabilities of default events are known to drastically exceed statistically observed default probabilities, that is, probabilities of default events under the physical probability measure.

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Market Models for CDS Spreads

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Notation

- \bullet Let $(\Omega, \mathcal{G}, \mathbb{F}, \mathbb{Q})$ be a filtered probability space, where $\mathbb{F}=(\mathcal{F}_t)_{t\in [0,\mathcal{T}]}$ is a filtration such that \mathcal{F}_0 is trivial.
- 2 We assume that the random time τ defined on this space is such that the F-*survival process* $G_t = \mathbb{Q}(\tau > t | \mathcal{F}_t)$ is positive.
- \bullet The probability measure \circledcirc is interpreted as the risk-neutral measure.
- \bullet Let $0 < T_0 < T_1 < \cdots < T_n$ be a fixed *tenor structure* and let us write $a_i = T_i - T_{i-1}$.
- **5** We denote $\tilde{a}_i = a_i/(1 \delta_i)$ where δ_i is the recovery rate if default occurs het uses between *Ti*−¹ and *Ti*.
- \bullet We denote by $\beta(t, T)$ the default-free discount factor over the time period [*t*, *T*].

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Bottom-up Approach under Deterministic Interest Rates

- **1** Assume first that the interest rate is deterministic.
- ² The *pre-default forward CDS spread* κ *i* corresponding to the single-period forward CDS starting at time *Ti*−¹ and maturing at *Tⁱ* equals

$$
1+\widetilde{a}_i\kappa_t^i=\frac{\mathbb{E}_{\mathbb{Q}}\left(\beta(t,\mathcal{T}_i)\mathbb{1}_{\{\tau>T_{i-1}\}}\,|\,\mathcal{F}_t\right)}{\mathbb{E}_{\mathbb{Q}}\left(\beta(t,\mathcal{T}_i)\mathbb{1}_{\{\tau>T_i\}}\,|\,\mathcal{F}_t\right)},\quad\forall\,t\in[0,\mathcal{T}_{i-1}].
$$

3 Since the interest rate is deterministic, we obtain, for $i = 1, \ldots, n$,

$$
1+\widetilde{a}_i\kappa_t^i=\frac{\mathbb{Q}(\tau>T_{i-1}|\mathcal{F}_t)}{\mathbb{Q}(\tau>T_i|\mathcal{F}_t)},\quad \forall\ t\in[0,T_{i-1}],
$$

and thus

$$
\frac{\mathbb{Q}(\tau > T_i \,|\, \mathcal{F}_t)}{\mathbb{Q}(\tau > T_0 \,|\, \mathcal{F}_t)} = \prod_{j=1}^i \frac{1}{1 + \widetilde{a}_j \kappa_t^j}, \quad \forall \ t \in [0, T_0].
$$

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Auxiliary Probability Measure P

We define the probability measure $\mathbb P$ equivalent to $\mathbb Q$ on $(\Omega, \mathcal F_T)$ by setting, for every $t \in [0, T]$,

$$
\eta_t = \frac{d\mathbb{P}}{d\mathbb{Q}}\Big|_{\mathcal{F}_t} = \frac{\mathbb{Q}(\tau > T_n | \mathcal{F}_t)}{\mathbb{Q}(\tau > T_n | \mathcal{F}_0)}.
$$

Lemma

For every i = 1, . . . , *n, the process* $Z^{\kappa,i}$ given by

$$
Z_t^{\kappa,i}=\prod_{j=i+1}^n(1+\widetilde{a}_j\kappa^j_t),\quad \forall\, t\in[0,\,T_i],
$$

is a positive (P, F)*-martingale.*
[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

CDS Martingale Measures

D For any $i = 1, \ldots, n$ we define the probability measure \mathbb{P}^i equivalent to \mathbb{P} on (Ω, \mathcal{F}_T) by setting (note that $Z_t^{\kappa, n} = 1$ and thus $\mathbb{P}^n = \mathbb{P}$)

$$
\frac{d\mathbb{P}^j}{d\mathbb{P}}\Big|_{\mathcal{F}_t}=c_iZ_t^{\kappa,i}=\frac{\mathbb{Q}(\tau>\mathcal{T}_i)}{\mathbb{Q}(\tau>\mathcal{T}_n)}\prod_{j=i+1}^n\big(1+\widetilde{a}_j\kappa_t^j\big).
$$

- **2** Assume that the PRP holds under $\mathbb{P} = \mathbb{P}^n$ with the \mathbb{R}^k -valued spanning (\mathbb{P}, \mathbb{F}) -martingale M. Then the PRP is also valid with respect to $\mathbb F$ under any probability measure \mathbb{P}^i for $i=1,\ldots,n$.
- **The positive process** κ^i is a $(\mathbb{P}^i,\mathbb{F})$ -martingale and thus it satisfies, for $i = 1, \ldots, n$

$$
\kappa^i_t = \kappa^i_0 + \int_{(0,t]} \kappa^i_s \sigma^i_s \cdot d\Psi^i(M)_s
$$

for some \mathbb{R}^k -valued, $\mathbb{F}\text{-predictable process }\sigma^i,$ where $\Psi^i(M)$ is the P *i* -Girsanov transform of *M*

$$
\Psi^i(M)_t = M^i_t - \int_{(0,t]} (Z^i_s)^{-1} d[Z^i, M]_s.
$$

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Dynamics of Forward CDS Spreads

Proposition

Let the processes $\kappa^i,\,i=1,\ldots,n,$ be defined by

$$
1+\widetilde{a}_i\kappa_t^i=\frac{\mathbb{E}_{\mathbb{Q}}\left(\beta(t,T_i)\mathbb{1}_{\{\tau>T_{i-1}\}}\,|\,\mathcal{F}_t\right)}{\mathbb{E}_{\mathbb{Q}}\left(\beta(t,T_i)\mathbb{1}_{\{\tau>T_i\}}\,|\,\mathcal{F}_t\right)},\quad\forall\,t\in[0,T_{i-1}].
$$

Assume that the PRP holds with respect to F *under* P *with the spanning* (\mathbb{P}, \mathbb{F}) -martingale $M = (M^1, \ldots, M^k)$. Then there exist \mathbb{R}^k -valued, F*-predictable processes* σ *i such that the joint dynamics of processes* $\kappa^i,\,i=1,\ldots,n$ under ${\mathbb P}$ are given by

$$
d\kappa_t^i = \sum_{l=1}^k \kappa_t^i \sigma_t^{i,l} dM_t^l - \sum_{j=i+1}^n \frac{\widetilde{a}_j \kappa_t^i \kappa_t^j}{1 + \widetilde{a}_j \kappa_t^i} \sum_{l,m=1}^k \sigma_t^{i,l} \sigma_t^{j,m} d[M^{l,c}, M^{m,c}]_t
$$

$$
- \frac{1}{Z_{t-}^i} \Delta Z_t^i \sum_{l=1}^k \kappa_t^i \sigma_t^{i,l} \Delta M_t^l.
$$

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Top-down Approach: First Step

Proposition

Assume that: (i) the positive processes κ^i , $i = 1, \ldots, n$, are such that the processes *Z* κ,*i* , *i* = 1, . . . , *n are* (P, F)*-martingales, where*

$$
Z_t^{\kappa,i} = \prod_{j=i+1}^n (1 + \widetilde{a}_j \kappa_t^j).
$$

(ii) $M = (M^1, \ldots, M^k)$ *is a spanning* (\mathbb{P}, \mathbb{F}) -martingale. *(iii)* σ^i , $i = 1, \ldots, n$ are \mathbb{R}^k -valued, \mathbb{F} -predictable processes. *Then:*

(i) for every i = 1, . . . , *n, the process* κ^{i} *is a* (\mathbb{P}^{i} , \mathbb{F})*-martingale where*

$$
\frac{d\mathbb{P}^j}{d\mathbb{P}}\Big|_{\mathcal{F}_t}=c_i\prod_{j=i+1}^n\big(1+\widetilde{a}_j\kappa_t^j\big),\,
$$

(ii) the joint dynamics of processes κ^i , $i = 1, \ldots, n$ under $\mathbb P$ are given by the *previous proposition.*

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Top-down Approach: Second Step

 \bullet We will now construct a default time τ consistent with the dynamics of forward CDS spreads. Let us set

$$
M_{T_{i-1}}^{i-1} = \prod_{j=1}^{i-1} \frac{1}{1 + \widetilde{a}_{j} \kappa_{T_{i-1}}^{j}}, \qquad M_{T_{i}}^{i} = \prod_{j=1}^{i} \frac{1}{1 + \widetilde{a}_{j} \kappa_{T_{i}}^{j}}.
$$

2 Since the process $\widetilde{a}_{i} \kappa^{i}$ is positive, we obtain, for every $i = 0, \ldots, n$,

$$
G_{T_i} := M_{T_i}^i = \frac{M_{T_{i-1}}^{i-1}}{1 + \widetilde{a}_i \kappa_{T_i}^i} \le M_{T_{i-1}}^{i-1} =: G_{T_{i-1}}^{i-1}.
$$

- **3** The process $G_{T_i} = M'_{T_i}$ is thus decreasing for $i = 0, \ldots, n$.
- \bullet We make use of the canonical construction of default time τ taking values in $\{T_0, \ldots, T_n\}$.
- \bullet We obtain, for every $i = 0, \ldots, n$,

$$
\mathbb{P}(\tau > T_i | \mathcal{F}_{T_i}) = G_{T_i} = \prod_{j=1}^i \frac{1}{1 + \widetilde{a}_j \kappa_{T_i}^j}.
$$

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Bottom-up Approach under Independence

Assume that we are given a model for Libors (L^1,\ldots,L^n) where $\mathcal{L}^i = \mathcal{L}(t, \mathcal{T}_{i-1})$ and CDS spreads $(\kappa^1, \dots, \kappa^n)$ in which:

- **D** The default intensity γ generates the filtration \mathbb{F}^{γ} .
- **2** The interest rate process *r* generates the filtration \mathbb{F}^r .
- \bullet The probability measure $\mathbb Q$ is the spot martingale measure.
- **The** \mathbb{H} **-hypothesis holds, that is,** $\mathbb{F} \overset{\mathbb{Q}}{\hookrightarrow} \mathbb{G}$ **, where** $\mathbb{F} = \mathbb{F}' \vee \mathbb{F}^\gamma$ **.**
- **6** The PRP holds with the (\mathbb{Q}, \mathbb{F}) -spanning martingale M.

Lemma

It is possible to determine the joint dynamics of Libors and CDS spreads $(L^1,\ldots,L^n,\kappa^1,\ldots,\kappa^n)$ *under any martingale measure* $\mathbb{P}^l.$

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Top-down Approach under Independence

To construct a model we assume that:

- **D** A martingale $M = (M^1, \ldots, M^k)$ has the PRP with respect to (\mathbb{P}, \mathbb{F}) .
- ² The family of process *Z i* given by

$$
Z_t^{L,\kappa,i}:=\prod_{j=i+1}^n(1+a_jL_t^j)(1+\widetilde{a}_j\kappa_t^j)
$$

are martingales on the filtered probability space $(\Omega, \mathbb{F}, \mathbb{P})$.

3 Hence there exists a family of probability measures \mathbb{P}^i , $i = 1, \ldots, n$ on $(Ω, *Fr*)$ with the densities

$$
\frac{d\mathbb{P}^i}{d\mathbb{P}}=c_iZ^{L,\kappa,i}.
$$

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Dynamics of LIBORs and CDS Spreads

Proposition

The dynamics of Lⁱ and κ ^{*i*} under \mathbb{P}^n with respect to the spanning (P, F)*-martingale M are given by*

$$
dL_t^i = \sum_{l=1}^k \xi_t^{i,l} dM_t^l - \sum_{j=i+1}^n \frac{a_j}{1 + a_j L_t^j} \sum_{l,m=1}^k \xi_t^{i,l} \xi_t^{j,m} d[M^{l,c}, M^{m,c}]_t
$$

$$
- \sum_{j=i+1}^n \frac{\widetilde{a}_j}{1 + \widetilde{a}_j \kappa_t^j} \sum_{l,m=1}^k \xi_t^{i,l} \sigma_t^{j,m} d[M^{l,c}, M^{m,c}]_t - \frac{1}{Z_t^i} \Delta Z_t^i \sum_{l=1}^k \xi_t^{i,l} \Delta M_t^l
$$

and

$$
d\kappa_t^i = \sum_{l=1}^k \sigma_t^{i,l} dM_t^l - \sum_{j=i+1}^n \frac{a_j}{1 + a_j L_t^j} \sum_{l,m=1}^k \sigma_t^{i,l} \xi_t^{j,m} d[M^{l,c}, M^{m,c}]_t
$$

-
$$
\sum_{j=i+1}^n \frac{\widetilde{a}_j}{1 + \widetilde{a}_j \kappa_t^j} \sum_{l,m=1}^k \sigma_t^{i,l} \sigma_t^{j,m} d[M^{l,c}, M^{m,c}]_t - \frac{1}{Z_t^i} \Delta Z_t^i \sum_{l=1}^k \sigma_t^{i,l} \Delta M_t^l.
$$

Bottom-up Approach: One- and Two-Period Spreads

- \bullet Let $(\Omega, \mathcal{G}, \mathbb{F}, \mathbb{Q})$ be a filtered probability space, where $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,\mathcal{T}]}$ is a filtration such that \mathcal{F}_0 is trivial.
- **2** We assume that the random time τ defined on this space is such that the F-*survival process* $G_t = \mathbb{Q}(\tau > t | \mathcal{F}_t)$ is positive.
- \bullet The probability measure $\mathbb Q$ is interpreted as the risk-neutral measure.
- \bullet Let $0 < T_0 < T_1 < \cdots < T_n$ be a fixed *tenor structure* and let us write $a_i = T_i - T_{i-1}$ and $\tilde{a}_i = a_i/(1 - \delta_i)$
- ⁵ We no longer assume that the interest rate is deterministic.
- \bullet We denote by $\beta(t, T)$ the default-free discount factor over the time period [*t*, *T*].

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

One-Period CDS Spreads

The *one-period forward CDS spread* $\kappa^{i} = \kappa^{i-1,i}$ satisfies, for $t \in [0, T_{i-1}],$

$$
1+\widetilde{\mathbf{a}}_i\kappa_t^i=\frac{\mathbb{E}_{\mathbb{Q}}\left(\beta(t,\,T_i)\mathbb{1}_{\{\tau>T_{i-1}\}}\,\big|\,\mathcal{F}_t\right)}{\mathbb{E}_{\mathbb{Q}}\left(\beta(t,\,T_i)\mathbb{1}_{\{\tau>T_i\}}\,\big|\,\mathcal{F}_t\right)}.
$$

Let *A i*−1,*i* be the *one-period CDS annuity*

$$
A_t^{i-1,i} = \widetilde{a}_i \mathbb{E}_{\mathbb{Q}} \left(\beta(t, T_i) \mathbb{1}_{\{\tau > T_i\}} \, \big| \, \mathcal{F}_t \right)
$$

and let

$$
P_t^{i-1,i} = \mathbb{E}_{\mathbb{Q}}\left(\beta(t,T_i)\mathbb{1}_{\{\tau>T_{i-1}\}}\big|\mathcal{F}_t\right) - \mathbb{E}_{\mathbb{Q}}\left(\beta(t,T_i)\mathbb{1}_{\{\tau>T_i\}}\big|\mathcal{F}_t\right).
$$

Then

$$
\kappa_t^i = \frac{P_t^{i-1,i}}{A_t^{i-1,i}}, \quad \forall \ t \in [0, T_{i-1}].
$$

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

One-Period CDS Spreads

Let *A i*−2,*i* stand for the *two-period CDS annuity*

$$
A_t^{i-2,i} = \widetilde{a}_{i-1} \mathbb{E}_{\mathbb{Q}} \left(\beta(t, T_{i-1}) \mathbb{1}_{\{\tau > T_{i-1}\}} \, \middle| \, \mathcal{F}_t \right) + \widetilde{a}_i \mathbb{E}_{\mathbb{Q}} \left(\beta(t, T_i) \mathbb{1}_{\{\tau > T_i\}} \, \middle| \, \mathcal{F}_t \right)
$$

and let

$$
P_t^{i-2,i} = \sum_{j=i-1}^i \left(\mathbb{E}_{\mathbb{Q}} \left(\beta(t, T_j) \mathbb{1}_{\{\tau > T_{j-1}\}} \, \Big| \, \mathcal{F}_t \right) - \mathbb{E}_{\mathbb{Q}} \left(\beta(t, T_j) \mathbb{1}_{\{\tau > T_j\}} \, \Big| \, \mathcal{F}_t \right) \right).
$$

The *two-period CDS spread* $\widetilde{\kappa}^i = \kappa^{i-2,i}$ is given by the following expression

$$
\widetilde{\kappa}_t^i = \kappa_t^{i-2,i} = \frac{P_t^{i-2,i}}{A_t^{i-2,i}} = \frac{P_t^{i-2,i-1} + P_t^{i-1,i}}{A_t^{i-2,i-1} + A_t^{i-1,i}}, \quad \forall \ t \in [0, T_{i-1}].
$$

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

One-Period CDS Measures

- **1** Our aim is to derive the semimartingale decomposition of $\kappa^i, i = 1, \ldots, n$ and $\widetilde{\kappa}^i$, $i = 2, \ldots, n$ under a common probability measure.
- 2 We start by noting that the process $A^{n-1,n}$ is a positive ($\mathbb Q,\mathbb F$)-martingale and thus it defines the probability measure \mathbb{P}^n on $(\Omega, \mathcal{F}_\mathcal{T})$.
- **The following processes are easily seen to be** $(\mathbb{P}^n, \mathbb{F})$ -martingales

$$
\frac{A_t^{i-1,i}}{A_t^{n-1,n}} = \prod_{j=i+1}^n \frac{\widetilde{a}_j(\widetilde{\kappa}_t^j - \kappa_t^j)}{\widetilde{a}_{j-1}(\kappa_t^{j-1} - \widetilde{\kappa}_t^j)} = \frac{\widetilde{a}_n}{\widetilde{a}_i} \prod_{j=i+1}^n \frac{\widetilde{\kappa}_t^j - \kappa_t^j}{\kappa_t^{j-1} - \widetilde{\kappa}_t^j}.
$$

Given this family of positive (Pⁿ, F)-martingales, we define a family of probability measures \mathbb{P}^i for $i=1,\ldots,n$ such that κ^i is a martingale under \mathbb{P}^i .

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Two-Period CDS Measures

D For every $i = 2, \ldots, n$, the following process is a $(\mathbb{P}^i, \mathbb{F})$ -martingale

$$
\frac{A_t^{i-2,i}}{A_t^{i-1,i}} = \frac{\widetilde{a}_{i-1} \mathbb{E}_{\mathbb{Q}} \left(\beta(t, T_{i-1}) \mathbb{1}_{\{\tau > T_{i-1}\}} \, \big| \, \mathcal{F}_t \right) + \widetilde{a}_i \mathbb{E}_{\mathbb{Q}} \left(\beta(t, T_i) \mathbb{1}_{\{\tau > T_i\}} \, \big| \, \mathcal{F}_t \right)}{\mathbb{E}_{\mathbb{Q}} \left(\beta(t, T_i) \mathbb{1}_{\{\tau > T_i\}} \, \big| \, \mathcal{F}_t \right)}
$$
\n
$$
= \widetilde{a}_{i-1} \left(\frac{A_t^{i-2, i-1}}{A_t^{i-1, i}} + 1 \right)
$$
\n
$$
= \widetilde{a}_i \left(\frac{\widetilde{\kappa}_t^i - \kappa_t^i}{\kappa_t^{i-1} - \widetilde{\kappa}_t^i} + 1 \right).
$$

- **2** Therefore, we can define a family of the associated probability measures $\widetilde{\mathbb{P}}^i$ on $(\Omega, \mathcal{F}_\mathcal{T})$, for every $i = 2, \ldots, n$.
- **3** It is obvious that $\widetilde{\kappa}^i$ is a martingale under $\widetilde{\mathbb{P}}^i$ for every $i = 2, \ldots, n$.

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

One and Two-Period CDS Measures

We will summarise the above in the following diagram

where

$$
\frac{d\mathbb{P}^n}{d\mathbb{Q}} = A_t^{n-1,n}
$$
\n
$$
\frac{d\mathbb{P}^i}{d\mathbb{P}^{i+1}} = \frac{A_t^{i-1,i}}{A_t^{i,i+1}} = \frac{\widetilde{a}_{i+1}}{\widetilde{a}_i} \left(\frac{\widetilde{\kappa}_t^{i+1} - \kappa_t^{i+1}}{\kappa_t^i - \widetilde{\kappa}_t^{i+1}} \right)
$$
\n
$$
\frac{d\widetilde{\mathbb{P}}^i}{d\mathbb{P}^i} = \frac{A_t^{i-2,i}}{A_t^{i-1,i}} = \widetilde{a}_i \left(\frac{\widetilde{\kappa}_t^i - \kappa_t^i}{\kappa_t^{i-1} - \widetilde{\kappa}_t^i} + 1 \right).
$$

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Bottom-up Approach: Joint Dynamics

- ¹ We are in a position to calculate the semimartingale decomposition of $(\kappa^1, \ldots, \kappa^n, \widetilde{\kappa}^2, \ldots, \widetilde{\kappa}^n)$ under \mathbb{P}^n .
- ² It suffices to use the following Radon-Nikodým densities

$$
\frac{d\mathbb{P}^j}{d\mathbb{P}^n} = \frac{A_t^{i-1,i}}{A_t^{n-1,n}} = \frac{\tilde{a}_n}{\tilde{a}_i} \prod_{j=i+1}^n \frac{\tilde{\kappa}_t^j - \kappa_t^j}{\kappa_t^{j-1} - \tilde{\kappa}_t^j}
$$
\n
$$
\frac{d\tilde{\mathbb{P}}^j}{d\mathbb{P}^n} = \frac{A_t^{i-2,i}}{A_t^{n-1,n}} = \tilde{a}_n \left(\frac{\tilde{\kappa}_t^i - \kappa_t^i}{\kappa_t^{i-1} - \tilde{\kappa}_t^i} + 1 \right) \prod_{j=i+1}^n \frac{\tilde{\kappa}_t^j - \kappa_t^j}{\kappa_t^{j-1} - \tilde{\kappa}_t^i}
$$
\n
$$
= \tilde{a}_n \left(\prod_{j=i}^n \frac{\tilde{\kappa}_t^j - \kappa_t^j}{\kappa_t^{j-1} - \tilde{\kappa}_t^j} + \prod_{j=i+1}^n \frac{\tilde{\kappa}_t^j - \kappa_t^j}{\kappa_t^{j-1} - \tilde{\kappa}_t^j} \right)
$$
\n
$$
= \tilde{a}_{i-1} \frac{d\mathbb{P}^{i-1}}{d\mathbb{P}^n} + \tilde{a}_i \frac{d\mathbb{P}^i}{d\mathbb{P}^n}.
$$

³ Explicit formulae for the joint dynamics of one and two-period spreads are available.

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Top-down Approach: Postulates

1 The processes $\kappa^1, \ldots, \kappa^n$ and $\widetilde{\kappa}^2, \ldots, \widetilde{\kappa}^n$ are $\mathbb F$ -adapted. \bullet For every $i=1,\ldots,n,$ the process $Z^{\kappa,\ell}$

$$
Z_t^{\kappa,i} = \frac{c_n}{c_i} \prod_{j=i+1}^n \frac{\widetilde{\kappa}_t^j - \kappa_t^j}{\kappa_t^{j-1} - \widetilde{\kappa}_t^j}
$$

is a positive (\mathbb{P}, \mathbb{F}) -martingale where c_1, \ldots, c_n are constants.

3 For every $i = 2, ..., n$, the process $Z^{\tilde{\kappa},i}$ given by the formula

$$
Z^{\widetilde{\kappa},i}=\widetilde{c}_i(Z^{\kappa,i}+Z^{\kappa,i-1})=\widetilde{c}_i\frac{\kappa^{i-1}-\kappa^i}{\kappa^{i-1}-\widetilde{\kappa}^i}Z^{\kappa,i}
$$

is a positive (\mathbb{P}, \mathbb{F}) -martingale where $\widetilde{c}_2, \ldots, \widetilde{c}_p$ are constants.

- **The process** $M = (M^1, \ldots, M^k)$ is the (\mathbb{P}, \mathbb{F}) -spanning martingale.
- **P** Probability measures \mathbb{P}^i and $\widetilde{\mathbb{P}}^i$ have the density processes $Z^{\kappa,i}$ and $Z^{\tilde{\kappa},i}$. In particular, the equality $\mathbb{P}^n = \mathbb{P}$ holds, since $Z^{\kappa,n} = 1$.
- **P** Processes κ^i and $\tilde{\kappa}^i$ are martingales under \mathbb{P}^i and $\tilde{\mathbb{P}}^i$, respectively.

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Top-down Approach: Lemma

Lemma

Let M = (*M* 1 , . . . , *M k*) *be the* (P, F)*-spanning martingale. For any i* = 1, . . . , *n, the process Xⁱ admits the integral representation*

$$
\kappa^i_t = \int_{(0,t]} \sigma^i_s \cdot d \Psi^i(M)_s
$$

and

$$
\widetilde{\kappa}^i_t = \int_{(0,t]} \zeta^i_s \cdot d \widetilde{\Psi}^i(M)_s
$$

 $\mathsf{where} \; \sigma^i = (\sigma^{i,1}, \ldots, \sigma^{i,k}) \; \mathsf{and} \; \zeta^i = (\zeta^{i,1}, \ldots, \zeta^{i,k}) \; \mathsf{are} \; \mathbb{R}^k\text{-valued},$ $\mathbb F$ *-predictable processes that can be chosen arbitrarily. The* $(\mathbb P^i,\mathbb F)$ *-martingale* Ψ *i* (*M l*) *is given by*

$$
\Psi^i(M')_t=M'_t-\left[(\ln Z^{\kappa,i})^c,M^{i,c}\right]_t-\sum_{0
$$

An analogous formula holds for the Girsanov transform $\widetilde{\Psi}^{i}(M^{\prime})$ *.*

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Top-down Approach: Joint Dynamics

Proposition

The semimartingale decomposition of the $(\mathbb{P}^i, \mathbb{F})$ -spanning martingale $\Psi^i(M)$ under the probability measure $\mathbb{P}^n = \mathbb{P}$ is given by, for $i = 1, \ldots, n$,

$$
\Psi^{i}(M)_{t}=M_{t}-\sum_{j=i+1}^{n}\int_{(0,t]}\frac{(\kappa_{s}^{j-1}-\kappa_{s}^{j})\zeta_{s}^{j}\cdot d[M^{c}]_{s}}{(\tilde{\kappa}_{s}^{j}-\kappa_{s}^{j})(\kappa_{s}^{j-1}-\tilde{\kappa}_{s}^{j})}-\sum_{j=i+1}^{n}\int_{(0,t]}\frac{\sigma_{s}^{j}\cdot d[M^{c}]_{s}}{\tilde{\kappa}_{s}^{j}-\kappa_{s}^{j}}{-\sum_{j=i+1}\int_{(0,t]}\frac{\sigma_{s}^{j-1}\cdot d[M^{c}]_{s}}{\kappa_{s}^{j-1}-\tilde{\kappa}_{s}^{j}}-\sum_{0
$$

An analogous formula holds for $\widetilde{\Psi}^{l}(M)$ *. Hence the joint dynamics of the*
 $\widetilde{\Psi}^{l}$ $\hat{\mathcal{R}}^n, \dots, \hat{\kappa}^n, \widetilde{\kappa}^2, \dots, \widetilde{\kappa}^n$ *under* $\mathbb{P} = \mathbb{P}^n$ are explicitly known.

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0)

Towards Generic Swap Models

Let $(\Omega, \mathbb{F}, \mathbb{P})$ be a filtered probability space. Suppose that we are given a family of swaps $\mathcal{S} = \{\kappa^1,\ldots,\kappa^l\}$ and a family of processes $\{Z^1,\ldots,Z^l\}$ satisfying the following conditions for every $j = 1, \ldots, l$:

- **1** the process κ^j is a positive special semimartingale,
- **2** the process $\kappa^{j}Z^{j}$ is a (\mathbb{P},\mathbb{F})-martingale,
- **3** the process Z^j is a positive (\mathbb{P}, \mathbb{F}) -martingale with $Z_0^j = 1$,
- \bullet the process Z^j is uniquely expressed as a function of some subset of swaps in δ , specifically, $Z^j = f_j(\kappa^{n_1}, \ldots, \kappa^{n_k})$ where $f_j: \mathbb{R}^k \to \mathbb{R}$ is a C^2 function in variables belonging to $\{\kappa^{n_1}, \ldots, \kappa^{n_k}\} \subset \mathcal{S}$.

[One-Period Case](#page-69-0) [One- and Two-Period Case](#page-79-0) [Towards Generic Swap Models](#page-89-0) **[Conclusions](#page-90-0)**

Volatility-Based Modelling

1 For the purpose of modelling, we select a (\mathbb{P}, \mathbb{F}) -martingale M and we define κ^j under \mathbb{P}^j as follows

$$
\kappa^j_t=\int_0^t\kappa^j_s\sigma^j_s\cdot d\Psi^j(M)_s.
$$

2 Therefore, specifying κ^j is equivalent to specifying the "volatility" σ^j .

3 The martingale part of κ^j can be expressed as

$$
(\kappa^j)^m_t = \int_0^t \kappa^j_s \sigma^j_s \cdot d\Psi^j(M)_s - \int_{(0,t]} Z^j_s \kappa^j_s \sigma^j_s \cdot d\Big[\frac{1}{Z^j}, \Psi^j(M)\Big]_s = \int_0^t \kappa^j_s \sigma^j_s \cdot dM^j_s
$$

where M^j is a (\mathbb{P}, \mathbb{F}) -martingale.

1 The Radon-Nikodým density process Z^j has the following decomposition

$$
Z_t^j = \sum_{i=1}^k \int_{[0,t)} \frac{\partial f_j}{\partial x_i} (\kappa_s^{n_1}, \ldots, \kappa_s^{n_k}) \kappa_s^{n_j} \sigma_s^{n_i} \cdot dM_s^{n_i}.
$$

• Hence the choice of "volatilities" completely specifies the model.