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Outline

1. Introduction: brief review of CDO structure & pricing

2. Basic problem

3. Comparison of approaches: traditional vs EAP

4. Application to CDOs

5. Pros & Cons

6. Source of exponential approximation
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1.1 Synthetic CDO structure
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1.1 Synthetic CDO structure

Pool

N1

Nk
…..

N2

NK

…..

CDO

Default Losses

Premiums 

t



© 2010 Algorithmics Incorporated. All rights reserved. 8

1.2 Synthetic CDO: Structure summary for pricing

General assumptions

• Constant fair spread rate,   ;
• Fixed premium times after today
• Deterministic discount factors,     , corresponding to 
• Credit events occur only “at” each premium date;
• Static underlying pool.

Notation

• loss on         name, up to time

• pool's cumulative losses up to time

• : attachment point of the tranche;
• : detachment point of the tranche;
• the   thickness of the tranche;

• tranche loss up to time     .
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1.3 CDO tranche payoff function
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1.4 Synthetic CDO: Pricing equations

Swap Equations
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1.4 Synthetic CDO: Pricing equations

Swap Equations

Essential Calculation

where
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2. Basic problem (abstracted)

• Setting: conditional independence framework; i.e.,

family of non-negative r.v.’s       which are conditionally independent, 
conditional on some auxiliary r.v. (possibly vectorial),      ,
with distribution           .

payoff function    , evaluated on                      .
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2. Basic problem (abstracted)

• Setting: conditional independence framework; i.e.,

family of non-negative r.v.’s       which are conditionally independent, 
conditional on some auxiliary r.v. (possibly vectorial),      ,
with distribution           .

payoff function    , evaluated on                      .

• Essential numerical aspect: Efficient and accurate evaluation of

leading to an evaluation of
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3.1 Comparison of approaches

• Two types of approaches
• Each addresses conditional expectation (1) differently
• Final integration (over      ) is the same for both types
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3.1 Comparison of approaches

• Two types of approaches
• Each addresses conditional expectation (1) differently
• Final integration (over      ) is the same for both types

Traditional approach

1. Compute the conditional distribution         of     , conditional on        using 
either FFT, recursion, or some approximation method.

2. Compute the conditional expectation 

3. (Integrate the conditional expectation over      )
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3.2 Comparison of approaches (cont’d)

EAP approach

1. Approximate the non-smooth function     by a finite sum of exponentials. 

2. Approximate the conditional expectation                     via explicit* evaluation 
of                               

3. (Integrate the conditional expectation over      )
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3.2 Comparison of approaches (cont’d)

EAP approach

1. Approximate the non-smooth function     by a finite sum of exponentials. 

2. Approximate the conditional expectation                     via explicit* evaluation 
of                               

3. (Integrate the conditional expectation over      )

2. (reprise)  Details:
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4.1 EAP applied to CDO: Reduction of payoff 
function to hockey-stick function

For CDO,

0 1

1

where
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4.2 EAP applied to CDO (recap)

Suppose

where        and      are (in general) complex numbers.

Then

Note: Only of individual names are computed, where            
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4.3 EAP applied to CDO: Hockey-stick function’s 
parameters

EAP approach reduces to the uniform approximation problem:

where      and      are complex numbers.  E.g., with N = 25:
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4.4 Plots of two approximations to h

The maximum absolute error in the approximation is roughly proportional to 1/N:
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5. Pros and cons of EAP approach

Pros
• Faster than traditional approach for:

single tranches 
very heterogeneous pools
large pools

Ex. EAP-50: 10 x faster for first 4 tranches of one real CDO with 140-name,
very heterogeneous* pool  (*LGD varied from LGDmin to LGDmax = 7 × LGDmin) 

• Quite accurate (e.g., with 50 exp terms, spreads observed correct to within 1 bp; 
for all but highest tranche: < 0.5% rel error)

• No rounding of losses, as in many versions of the traditional approach
• EA can be calculated once, stored, then used for many pools
• Sensitivities (e.g., of spreads to PDs) are easily incorporated

Cons
• Slower than traditional approach for:

multiple tranches (> 3)
highest tranche (requires very large number [~200] of exp terms)
very homogeneous pools
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6.1 Source of Exponential Approximation

Discretisation

For                                              set

Consider discretised problem:

where 

Revised notation

(equality!)
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6.2 Source of EA (cont’d)

Gaspard de Prony (~1795)
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6.2 Source of EA (cont’d)

Gaspard de Prony (~1795)
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6.3 Source of EA (cont’d)

Beylkin & Monzón (2005)

Shortcomings
• Numerical nullspace of      is usually very large → numerical instability.

• System       can be extremely ill-conditioned.
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6.4 Source of EA (cont’d)

Beylkin-Monzón  Algorithm for hockey-stick function

Remarks:
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