Pricing Synthetic CDOs Based on Exponential Approximations to the Payoff Function

Bachelier Congress Toronto, Canada June 24, 2010

Ian Iscoe Quantitative Research, Algorithmics, Inc. **Alex Kreinin** Quantitative Research , Algorithmics, Inc.

Ken Jackson Dept. of Computer Science, University of Toronto **Xiaofang Ma** Bank of Montreal, Toronto

- 1. Introduction: brief review of CDO structure & pricing
- 2. Basic problem
- 3. Comparison of approaches: traditional vs EAP
- 4. Application to CDOs
- 5. Pros & Cons
- 6. Source of exponential approximation

1.2 Synthetic CDO: Structure summary for pricing

General assumptions

- Constant fair spread rate, s ;
- Fixed premium times after today
- \bullet Deterministic discount factors, d_i , corresponding to
- Credit events occur only "at" each premium date;
- Static underlying pool.

Notation

- $\mathcal{L}_i^{(n)} := \text{loss on } k\text{th name}, \text{ up to time}$
- $\mathcal{L}_i := \sum_{k=1}^n \mathcal{L}_i^{(n)}$: pool's cumulative losses up to time
- ℓ : attachment point of the tranche;
- u : detachment point of the tranche;
- $S:=u-\ell{:}\;$ thickness of the tranche;

•
$$
L_i = \min{(S, (\mathcal{L}_i - \ell)^+)}:
$$
 tranche loss up to time t_i .

1.3 CDO tranche payoff function

1.4 Synthetic CDO: Pricing equations

Swap Equations

$$
\text{PV}[\text{Default leg}] = \sum_{i=1}^{n} \mathbf{E}[(L_i - L_{i-1})d_i]
$$
\n
$$
\text{PV}[\text{Premium leg}] = s \sum_{i=1}^{n} \mathbf{E}[(S - L_i)(t_i - t_{i-1})d_i]
$$

s from setting: PV[Default leg] = PV[Premium leg]

Value to protection seller = $PV[Premium$ leg] - $PV[Default$ leg]

1.4 Synthetic CDO: Pricing equations

Swap Equations

$$
\text{PV}[\text{Default leg}] = \sum_{i=1}^{n} \mathbf{E}[(L_i - L_{i-1})d_i] = \sum_{i=1}^{n} (\mathbf{E}[L_i] - \mathbf{E}[L_{i-1}])d_i
$$
\n
$$
\text{PV}[\text{Premium leg}] = s \sum_{i=1}^{n} \mathbf{E}[(S - L_i)(t_i - t_{i-1})d_i] = s \sum_{i=1}^{n} (S - \mathbf{E}[L_i])(t_i - t_{i-1})d_i]
$$

s from setting: PV[Default leg] = PV[Premium leg]

Value to protection seller = $PV[Premium$ leg] - $PV[Default$ leg]

1.4 Synthetic CDO: Pricing equations

Swap Equations

$$
\text{PV}[\text{Default leg}] = \sum_{i=1}^{n} \mathbf{E}[(L_i - L_{i-1})d_i] = \sum_{i=1}^{n} (\mathbf{E}[L_i] - \mathbf{E}[L_{i-1}])d_i
$$
\n
$$
\text{PV}[\text{Premium leg}] = s \sum_{i=1}^{n} \mathbf{E}[(S - L_i)(t_i - t_{i-1})d_i] = s \sum_{i=1}^{n} (S - \mathbf{E}[L_i])(t_i - t_{i-1})d_i]
$$

s from setting: PV[Default leg] = PV[Premium leg] Value to protection seller = $PV[Premium$ leg] - $PV[Default$ leg]

Essential Calculation

$$
\mathbf{E}[L_i] \equiv \mathbf{E}[f(\mathcal{L}_i)] \equiv \mathbf{E}\bigg[f\bigg(\sum_{k=1}^K \mathcal{L}_i^{(k)}\bigg)\bigg]
$$

where

$$
f(z) = f(z; \ell, u) = \min(u - \ell, (z - \ell)^+)
$$

• **Setting:** conditional independence framework; i.e.,

• family of non-negative r.v.'s Z_k **which are conditionally independent,** conditional on some auxiliary r.v. (possibly vectorial), $\mathcal M$, with distribution $\Phi(M).$

■ payoff function
$$
f
$$
, evaluated on $Z := \sum_{k=1}^K Z_k$.

• **Setting:** conditional independence framework; i.e.,

• family of non-negative r.v.'s Z_k **which are conditionally independent,** conditional on some auxiliary r.v. (possibly vectorial), $\mathcal M$, with distribution $\Phi(M).$

- \bullet payoff function f , evaluated on $Z := \, \sum Z_k \,$.
- **Essential numerical aspect:** Efficient and accurate evaluation of

$$
\mathbf{E}_M[f(Z)] = \mathbf{E}[f(Z) | \mathcal{M} = M] \tag{1}
$$

leading to an evaluation of

$$
\mathbf{E}[f(Z)] = \int \! \mathbf{E}_M[f(Z)] \, d \Phi(M).
$$

3.1 Comparison of approaches

- Two types of approaches
- Each addresses conditional expectation (1) differently
- \bullet Final integration (over M) is the same for both types

3.1 Comparison of approaches

- Two types of approaches
- Each addresses conditional expectation (1) differently
- \bullet Final integration (over M) is the same for both types

Traditional approach

- 1. Compute the conditional distribution Ψ_M of Z , conditional on $\mathcal M,$ using either FFT, recursion, or some approximation method.
- Compute the conditional expectation ${\bf E}_M[f(Z)]$: 2. $\mathbf{E}_M[f(Z)] = \int f(z) d\Psi_M(z)$
- 3. $\,$ (Integrate the conditional expectation over $M.$)

3.2 Comparison of approaches (cont'd)

EAP approach

- 1. Approximate the non-smooth function $f\,$ by a finite sum of exponentials.
- 2. Approximate the conditional expectation $\mathbf{E}_M[f(Z)]$ via explicit^{*} evaluation of
- 3. $\,$ (Integrate the conditional expectation over $M.$)

EAP approach

- 1. Approximate the non-smooth function $f\,$ by a finite sum of exponentials.
- 2. Approximate the conditional expectation $\mathbf{E}_M[f(Z)]$ via explicit^{*} evaluation of
- 3.(Integrate the conditional expectation over M .)
- 2. (reprise) Details: $f(z) \approx \sum_{n=1}^{N} w_n \exp(c_n z) \Longrightarrow$ $\mathbf{E}_M[f(Z)] \approx \sum_{n=1}^{N} w_n \mathbf{E}_M[\exp(c_n Z)]$ $= \sum_{n=1}^{N} w_n \mathbf{E}_M \left[\prod_{k=1}^{K} \exp(c_n Z_k) \right] = \sum_{n=1}^{N} w_n \prod_{k=1}^{K} \mathbf{E}_M [\exp(c_n Z_k)].$

4.1 EAP applied to CDO: Reduction of payoff function to hockey-stick function

For CDO,

$$
f(z) = f(z; \ell, u) = u\big[1 - h\big(\frac{z}{u}\big)\big] - \ell\big[1 - h\big(\frac{z}{\ell}\big)\big],
$$

 $h(x) = 1 - x$ if $x \le 1$, 0 otherwise. ("Hockey-stick function") where

4.2 EAP applied to CDO (recap)

Suppose

$$
h(x) \approx \sum_{n=1}^{N} \omega_n \exp(\gamma_n x),
$$

where ω_n and γ_n are (in general) complex numbers.

Then

 ${\bf E}_M[f(Z)]$ $\approx (u - \ell) - u \sum_{n=1}^{N} \omega_n \prod_{k=1}^{N} \mathbf{E}_M \left[\exp \left(\frac{\gamma_n}{u} Z_k \right) \right] + \ell \sum_{n=1}^{N} \omega_n \prod_{k=1}^{N} \mathbf{E}_M \left[\exp \left(\frac{\gamma_n}{\ell} Z_k \right) \right]$

Note: Only $\mathbf{E}_M |\text{exp}(cZ_k)|$ of individual names are computed, where

4.3 EAP applied to CDO: Hockey-stick function's parameters

EAP approach reduces to the uniform approximation problem:

$$
h(x) \approx \sum_{n=1}^{N} \omega_n \exp(\gamma_n x),
$$

where ω_n and γ_n are complex numbers. E.g., with *N* = 25:

Parameters γ_n and ω_n for the 25-term approximation.

4.4 Plots of two approximations to h

Left panel: 5-term exponential approximation; Right panel: 49-term exponential approximation

The maximum absolute error in the approximation is roughly proportional to $1/N$:

5. Pros and cons of EAP approach

Pros

- Faster than traditional approach for:
	- \triangleright single tranches
	- \triangleright very heterogeneous pools
	- ¾ large pools
- **Ex.** EAP-50: 10 x faster for first 4 tranches of one real CDO with 140-name, very heterogeneous* pool (*LGD varied from LGD_{min} to LGD_{max} = $7 \times$ LGD_{min})
- Quite accurate (e.g., with 50 exp terms, spreads observed correct to within 1 bp; for all but highest tranche: $< 0.5\%$ rel error)
- No rounding of losses, as in many versions of the traditional approach
- EA can be calculated once, stored, then used for many pools
- Sensitivities (e.g., of spreads to PDs) are easily incorporated

Cons

- Slower than traditional approach for:
	- \triangleright multiple tranches (> 3)
	- ¾ highest tranche (requires very large number [~200] of exp terms)
	- \triangleright very homogeneous pools

6.1 Source of Exponential Approximation

Revised notation

- $M: 2M + 1 = \#$ points in partition of $[0,1]: \{\frac{k}{2M}: 0 \le k \le 2M\}$
- h : any continuous function on $[0,1]$
- $h_k := h\left(\frac{k}{2M}\right)$

Discretisation

For
$$
h(x) \approx \sum_{n=1}^{N} \omega_n \exp(\gamma_n x)
$$
, set $\zeta_n = \exp(\gamma_n/2M)$.

Consider discretised problem:

$$
h_k = \sum_{n=1}^{N} \omega_n \zeta_n^k, \quad 0 \le k \le 2M, \qquad \text{(equality!)}
$$

where

6.2 Source of EA (cont'd)

Gaspard de Prony (~1795)

3. Set $\{\zeta_1, \zeta_2, \ldots, \zeta_N\}$ to be roots of some polynomial equation

$$
\sum_{k=0}^{N} q_k \zeta^k = 0
$$

4. Solve for $\omega_1, \omega_2, \ldots, \omega_N$ as solution to linear equations

$$
h_k = \sum_{n=1}^{N} \omega_n \zeta_n^k, \quad 0 \le k \le N - 1. \quad (*)
$$

Required (*) also holds (by induction) for $N \le k \le 2M$.

© 2010 Algorithmics Incorporated. All rights reserved. 25

6.2 Source of EA (cont'd)

Gaspard de Prony (~1795)

- 1. Form $(M+1) \times (M+1)$ Hankel matrix $H: H_{kn} = h_{k+n}$.
- 2. Find $(M + 1)$ -vector q s.t. $Hq = 0$, with $q_N = -1$; $q_n = 0$, $n \ge N$. This is a recurrence relation of length N for h_k :

$$
h_{N+k} = \sum_{m=0}^{N-1} q_m h_{k+m}.
$$

3. Set $\{\zeta_1, \zeta_2, \ldots, \zeta_N\}$ to be roots of polynomial equation

$$
\sum_{k=0}^{N} q_k \zeta^k = 0.
$$

4. Solve for $\omega_1, \omega_2, \ldots, \omega_N$ as solution to linear equations

$$
h_k = \sum_{n=1}^{N} \omega_n \zeta_n^k, \quad 0 \le k \le N - 1. \quad (*)
$$

Then $(*)$ also holds (by induction) for $N \leq k \leq 2M$.

© 2010 Algorithmics Incorporated. All rights reserved. 26

6.3 Source of EA (cont'd)

Shortcomings

- Numerical nullspace of H is usually very large \rightarrow numerical instability.
- System $(*)$ can be extremely ill-conditioned.

Beylkin & Monzón (2005)

Replace equation $Hq = 0$ with $Hu = \sigma \bar{u}$ where $\sigma \equiv \sigma_N > 0$ and is small (entailing N large). It turns out that error of approximation

$$
\max_{k} \left| h_k - \sum_{n=1}^{N} \omega_n \zeta_n^k \right|
$$

is controlled by the smallest positive σ_N .

6.4 Source of EA (cont'd)

Beylkin-Monzón Algorithm for hockey-stick function $(N \mapsto N + 1 \equiv \mathcal{N}, M = \mathcal{N})$

- 1. Input ϵ as given accuracy.
- 2. Find the smallest $\mathcal N$ such that $\mathcal N \geq \frac{1}{4\epsilon}$.
- 3. Compute the spectral decomposition of the matrix \mathcal{H}_N : $\mathcal{H}_\mathcal{N} = U \Lambda U^T$. Let $u = (u_0, u_1, \ldots, u_{\mathcal{N}-1})^T$ be the last column of U . $(|\lambda| \downarrow$ down diag(Λ))
- 4. Find all roots $\zeta_1, \zeta_2, \ldots, \zeta_{\mathcal{N}-1}$ of the polynomial equation: $\sum_{m=0}^{\mathcal{N}-1} u_m \zeta^m = 0$.
- 5. Solve (least-squares) linear system, for ω_n : $h_m = \sum_{n=1}^{N-1} \omega_n \zeta_n^m$, $0 \le m \le 2N$.
- 6. Compute γ_n according to $\gamma_n = 2\mathcal{N} \log \zeta_n$.

-
- $\mathcal{H}_{\mathcal{N}} := \left[\begin{array}{cccc} \mathcal{N} & \mathcal{N}-1 & \cdots & 1 \\ \mathcal{N}-1 & \mathcal{N}-2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 1 & 0 & \cdots & 0 \end{array}\right] \quad \bullet \quad \begin{array}{c} \textbf{Remarks:} \\ \bullet \quad h \text{ considered on } [0,2], \text{ rescaled to } [0,1]. \\ \bullet \quad \frac{1}{\mathcal{N}}\mathcal{H}_{\mathcal{N}} \text{ is upper right block of } H; \text{ rest is 0s.} \end{array}$ Algorithmics \mathcal{A}

- 1. G. BEYLKIN and L. MONZÓN, *On approximation of functions by exponential sums*. Applied and Computational Harmonic Analysis, 19 (2005), pp.17-48.
- 2. I. ISCOE, K. JACKSON, A. KREININ, and X. MA, *On exponential approximatons to the hockey-stick function*. Applied Numerical Mathematics (submitted; revised). <http://www.cs.toronto.edu/pub/reports/na/IJKM.paper2.revised.pdf>
- 3. I. ISCOE, K. JACKSON, A. KREININ, and X. MA, *Pricing synthetic CDOs based on exponential approximations to the payoff function*. Journal of Computational Finance (submitted; in revision). <http://www.cs.toronto.edu/pub/reports/na/IJKM.paper3.pdf>
- 4. K. JACKSON, A. KREININ, and X. MA, *Loss distribution evaluation for synthetic CDOs*. [http://www.cs.toronto.edu/pub/reports/na/JKM.paper1.pdf](http://www.cs.toronto.edu/pub/reports/na/IJKM.paper2.revised.pdf)

