Pricing Synthetic CDOs Based on Exponential Approximations to the Payoff Function

Bachelier Congress Toronto, Canada June 24, 2010

Ian Iscoe Quantitative Research, Algorithmics, Inc. Alex Kreinin Quantitative Research , Algorithmics, Inc.

Ken Jackson Dept. of Computer Science, University of Toronto Xiaofang Ma Bank of Montreal, Toronto

- 1. Introduction: brief review of CDO structure & pricing
- 2. Basic problem
- 3. Comparison of approaches: traditional vs EAP
- 4. Application to CDOs
- 5. Pros & Cons
- 6. Source of exponential approximation

1.2 Synthetic CDO: Structure summary for pricing

General assumptions

- Constant fair spread rate, s;
- Fixed premium times after today (t_0) : $0 = t_0 < t_1 < t_2 < \cdots < t_n$;
- Deterministic discount factors, d_i , corresponding to t_i ;
- Credit events occur only "at" each premium date;
- Static underlying pool.

Notation

- $\mathcal{L}_i^{(k)} :=$ loss on *k*th name, up to time t_i ;
- $\mathcal{L}_i := \sum_{k=1}^K \mathcal{L}_i^{(k)}$: pool's cumulative losses up to time t_i ;
- ℓ : attachment point of the tranche;
- *u*: detachment point of the tranche;
- $S := u \ell$: thickness of the tranche;

•
$$L_i = \min{(S, (\mathcal{L}_i - \ell)^+)}$$
: tranche loss up to time t_i .

1.3 CDO tranche payoff function

1.4 Synthetic CDO: Pricing equations

Swap Equations

$$\begin{aligned} \mathsf{PV}[\mathsf{Default} \; \mathsf{leg}] &= \sum_{i=1}^{n} \mathbf{E}[(L_i - L_{i-1})d_i] \\ \mathsf{PV}[\mathsf{Premium} \; \mathsf{leg}] &= s \sum_{i=1}^{n} \mathbf{E}[(S - L_i)(t_i - t_{i-1})d_i] \end{aligned}$$

s from setting: PV[Default leg] = PV[Premium leg]

Value to protection seller = PV[Premium leg] - PV[Default leg]

1.4 Synthetic CDO: Pricing equations

Swap Equations

$$\begin{aligned} \mathsf{PV}[\mathsf{Default} \ \mathsf{leg}] &= \sum_{i=1}^{n} \mathbf{E}[(L_i - L_{i-1})d_i] = \sum_{i=1}^{n} \left(\mathbf{E}[L_i] - \mathbf{E}[L_{i-1}]\right) d_i \\ \mathsf{PV}[\mathsf{Premium} \ \mathsf{leg}] &= s \sum_{i=1}^{n} \mathbf{E}[(S - L_i)(t_i - t_{i-1})d_i] = s \sum_{i=1}^{n} \left(S - \mathbf{E}[L_i]\right)(t_i - t_{i-1})d_i \end{aligned}$$

s from setting: PV[Default leg] = PV[Premium leg]

Value to protection seller = PV[Premium leg] - PV[Default leg]

1.4 Synthetic CDO: Pricing equations

Swap Equations

$$\begin{aligned} \mathsf{PV}[\mathsf{Default} \ \mathsf{leg}] &= \sum_{i=1}^{n} \mathbf{E}[(L_i - L_{i-1})d_i] = \sum_{i=1}^{n} \left(\mathbf{E}[L_i] - \mathbf{E}[L_{i-1}]\right) d_i \\ \mathsf{PV}[\mathsf{Premium} \ \mathsf{leg}] &= s \sum_{i=1}^{n} \mathbf{E}[(S - L_i)(t_i - t_{i-1})d_i] = s \sum_{i=1}^{n} \left(S - \mathbf{E}[L_i]\right)(t_i - t_{i-1})d_i \end{aligned}$$

s from setting: PV[Default leg] = PV[Premium leg]Value to protection seller = PV[Premium leg] - PV[Default leg]

Essential Calculation

$$\mathbf{E}[L_i] \equiv \mathbf{E}[f(\mathcal{L}_i)] \equiv \mathbf{E}\left[f\left(\sum_{k=1}^K \mathcal{L}_i^{(k)}\right)\right]$$

where

$$f(z) = f(z; \ell, u) = \min(u - \ell, (z - \ell)^+)$$

Algorithmics

• Setting: conditional independence framework; i.e.,

• family of non-negative r.v.'s Z_k which are conditionally independent, conditional on some auxiliary r.v. (possibly vectorial), \mathcal{M} , with distribution $\Phi(M)$.

• payoff function
$$f$$
 , evaluated on $Z := \sum_{k=1}^{K} Z_k$.

• Setting: conditional independence framework; i.e.,

• family of non-negative r.v.'s Z_k which are conditionally independent, conditional on some auxiliary r.v. (possibly vectorial), \mathcal{M} , with distribution $\Phi(M)$.

- payoff function f, evaluated on $Z := \sum_{k=1}^{K} Z_k$.
- Essential numerical aspect: Efficient and accurate evaluation of

$$\mathbf{E}_M[f(Z)] = \mathbf{E}[f(Z) \mid \mathcal{M} = M]$$
(1)

leading to an evaluation of

$$\mathbf{E}[f(Z)] = \int \mathbf{E}_M[f(Z)] \, d\Phi(M).$$

3.1 Comparison of approaches

- Two types of approaches
- Each addresses conditional expectation (1) differently
- ${\mbox{\ \bullet}}$ Final integration (over M) is the same for both types

3.1 Comparison of approaches

- Two types of approaches
- Each addresses conditional expectation (1) differently
- ${\mbox{\ \bullet}}$ Final integration (over M) is the same for both types

Traditional approach

- 1. Compute the conditional distribution Ψ_M of Z, conditional on \mathcal{M} , using either FFT, recursion, or some approximation method.
- 2. Compute the conditional expectation $\mathbf{E}_M[f(Z)]$:

$$\mathbf{E}_M[f(Z)] = \int f(z) \, d\Psi_M(z)$$

3. (Integrate the conditional expectation over M.)

EAP approach

- 1. Approximate the non-smooth function f by a finite sum of exponentials.
- 2. Approximate the conditional expectation $\mathbf{E}_M[f(Z)]$ via explicit* evaluation of $\mathbf{E}_M[\exp(cZ_k)]$. (*Assumption!) No Ψ_M is necessary.
- 3. (Integrate the conditional expectation over M.)

EAP approach

- 1. Approximate the non-smooth function f by a finite sum of exponentials.
- 2. Approximate the conditional expectation $\mathbf{E}_M[f(Z)]$ via explicit* evaluation of $\mathbf{E}_M[\exp(cZ_k)]$. (*Assumption!) No Ψ_M is necessary.
- 3. (Integrate the conditional expectation over M.)
- 2. (reprise) Details: $f(z) \approx \sum_{n=1}^{N} w_n \exp(c_n z) \Longrightarrow$ $\mathbf{E}_M[f(Z)] \approx \sum_{n=1}^{N} w_n \mathbf{E}_M[\exp(c_n Z)]$ $= \sum_{n=1}^{N} w_n \mathbf{E}_M\left[\prod_{k=1}^{K} \exp(c_n Z_k)\right] = \sum_{n=1}^{N} w_n \prod_{k=1}^{K} \mathbf{E}_M[\exp(c_n Z_k)].$

Algorithmics

4.1 EAP applied to CDO: Reduction of payoff function to hockey-stick function

For CDO,

$$f(z) = f(z; \ell, u) = u \left[1 - h\left(\frac{z}{u}\right) \right] - \ell \left[1 - h\left(\frac{z}{\ell}\right) \right],$$

where h(x) = 1 - x if $x \le 1$, 0 otherwise. ("Hockey-stick function")

4.2 EAP applied to CDO (recap)

Suppose

$$h(x) \approx \sum_{n=1}^{N} \omega_n \exp(\gamma_n x),$$

where ω_n and γ_n are (in general) complex numbers.

Then

 $\mathbf{E}_{M}[f(Z)] \approx (u-\ell) - u \sum_{n=1}^{N} \omega_{n} \prod_{k=1}^{K} \mathbf{E}_{M} \left[\exp\left(\frac{\gamma_{n}}{u} Z_{k}\right) \right] + \ell \sum_{n=1}^{N} \omega_{n} \prod_{k=1}^{K} \mathbf{E}_{M} \left[\exp\left(\frac{\gamma_{n}}{\ell} Z_{k}\right) \right]$

Note: Only $\mathbf{E}_M[\exp(cZ_k)]$ of individual names are computed, where $c = \frac{\gamma_n}{\ell}$ or $\frac{\gamma_n}{u}$.

4.3 EAP applied to CDO: Hockey-stick function's parameters

EAP approach reduces to the uniform approximation problem:

$$h(x) \approx \sum_{n=1}^{N} \omega_n \exp(\gamma_n x),$$

where ω_n and γ_n are complex numbers. E.g., with N = 25:

Parameters γ_n and ω_n for the 25-term approximation.

4.4 Plots of two approximations to h

Left panel: 5-term exponential approximation; Right panel: 49-term exponential approximation

The maximum absolute error in the approximation is roughly proportional to 1/N:

N	25	50	100	200	400
Max absolute error	6.4e-3	3.2e-3	1.6e-3	8e-4	4e-4

Algorithmics

5. Pros and cons of EAP approach

Pros

- Faster than traditional approach for:
 - ➤ single tranches
 - > very heterogeneous pools
 - ➤ large pools
- **Ex.** EAP-50: 10 x faster for first 4 tranches of one real CDO with 140-name, very heterogeneous* pool (*LGD varied from LGD_{min} to LGD_{max} = 7 × LGD_{min})
- Quite accurate (e.g., with 50 exp terms, spreads observed correct to within 1 bp; for all but highest tranche: < 0.5% rel error)
- No rounding of losses, as in many versions of the traditional approach
- EA can be calculated once, stored, then used for many pools
- Sensitivities (e.g., of spreads to PDs) are easily incorporated

Cons

- Slower than traditional approach for:
 - multiple tranches (> 3)
 - highest tranche (requires very large number [~200] of exp terms)
 - very homogeneous pools

Algorithmics

6.1 Source of Exponential Approximation

Revised notation

- M: 2M + 1 = # points in partition of $[0, 1]: \left\{\frac{k}{2M}: 0 \le k \le 2M\right\}$
- h: any continuous function on [0,1]
- $h_k := h\left(\frac{k}{2M}\right)$

Discretisation

For
$$h(x) \approx \sum_{n=1}^{N} \omega_n \exp(\gamma_n x)$$
, set $\zeta_n = \exp(\gamma_n/2M)$.

Consider discretised problem:

$$h_k = \sum_{n=1}^N \omega_n \zeta_n^k, \quad 0 \le k \le 2M,$$
 (equality!)

where N, ζ_n, ω_n TBD, $1 \le n \le N$.

6.2 Source of EA (cont'd)

Gaspard de Prony (~1795)

3. Set $\{\zeta_1, \zeta_2, \ldots, \zeta_N\}$ to be roots of some polynomial equation

$$\sum_{k=0}^{N} q_k \zeta^k = 0.$$

4. Solve for $\omega_1, \omega_2, \ldots, \omega_N$ as solution to linear equations

$$h_k = \sum_{n=1}^N \omega_n \zeta_n^k, \quad 0 \le k \le N-1. \quad (*)$$

Require (*) also holds (by induction) for $N \le k \le 2M$.

© 2010 Algorithmics Incorporated. All rights reserved.

6.2 Source of EA (cont'd)

Gaspard de Prony (~1795)

- 1. Form $(M+1) \times (M+1)$ Hankel matrix $H: H_{kn} = h_{k+n}$.
- 2. Find (M + 1)-vector q s.t. Hq = 0, with $q_N = -1$; $q_n = 0$, $n \ge N$. This is a recurrence relation of length N for h_k :

$$h_{N+k} = \sum_{m=0}^{N-1} q_m h_{k+m}.$$

3. Set $\{\zeta_1, \zeta_2, \ldots, \zeta_N\}$ to be roots of polynomial equation

$$\sum_{k=0}^{N} q_k \zeta^k = 0.$$

4. Solve for $\omega_1, \omega_2, \ldots, \omega_N$ as solution to linear equations

$$h_k = \sum_{n=1}^N \omega_n \zeta_n^k, \quad 0 \le k \le N - 1. \quad (*)$$

Then (*) also holds (by induction) for $N \leq k \leq 2M$.

© 2010 Algorithmics Incorporated. All rights reserved

6.3 Source of EA (cont'd)

Shortcomings

- Numerical nullspace of H is usually very large \rightarrow numerical instability.
- System (*) can be extremely ill-conditioned.

Beylkin & Monzón (2005)

Replace equation Hq = 0 with $Hu = \sigma \bar{u}$ where $\sigma \equiv \sigma_N > 0$ and is small (entailing N large). It turns out that error of approximation

$$\max_{k} \left| h_k - \sum_{n=1}^N \omega_n \zeta_n^k \right|$$

is controlled by the smallest positive σ_N .

6.4 Source of EA (cont'd)

Beylkin-Monzón Algorithm for hockey-stick function $(N \mapsto N + 1 \equiv \mathcal{N}, M = \mathcal{N})$

- 1. Input ϵ as given accuracy.
- 2. Find the smallest \mathcal{N} such that $\mathcal{N} \geq \frac{1}{4\epsilon}$.
- 3. Compute the spectral decomposition of the matrix \mathcal{H}_N : $\mathcal{H}_N = U\Lambda U^T$. Let $u = (u_0, u_1, \dots, u_{\mathcal{N}-1})^T$ be the last column of U_{\cdot} $(|\lambda| \downarrow \text{down diag}(\Lambda))$
- 4. Find all roots $\zeta_1, \zeta_2, \ldots, \zeta_{\mathcal{N}-1}$ of the polynomial equation: $\sum_{m=0}^{\mathcal{N}-1} u_m \zeta^m = 0$.
- 5. Solve (least-squares) linear system, for ω_n : $h_m = \sum_{n=1}^{N-1} \omega_n \zeta_n^m$, $0 \le m \le 2N$.
- 6. Compute γ_n according to $\gamma_n = 2\mathcal{N}\log\zeta_n$.

- $\mathcal{H}_{\mathcal{N}} := \begin{bmatrix} \mathcal{N} & \mathcal{N} 1 & \cdots & 1 \\ \mathcal{N} 1 & \mathcal{N} 2 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 1 & 0 & \cdots & 0 \end{bmatrix} \xrightarrow{\text{Remarks:}} \bullet h \text{ considered on } [0, 2], \text{ rescaled to } [0, 1].$ $\bullet \frac{1}{\mathcal{N}} \mathcal{H}_{\mathcal{N}} \text{ is upper right block of } H; \text{ rest is 0s.}$ Algorithmics

- 1. G. BEYLKIN and L. MONZÓN, *On approximation of functions by exponential sums*. Applied and Computational Harmonic Analysis, 19 (2005), pp.17-48.
- I. ISCOE, K. JACKSON, A. KREININ, and X. MA, On exponential approximatons to the hockey-stick function. Applied Numerical Mathematics (submitted; revised). <u>http://www.cs.toronto.edu/pub/reports/na/IJKM.paper2.revised.pdf</u>
- I. ISCOE, K. JACKSON, A. KREININ, and X. MA, Pricing synthetic CDOs based on exponential approximations to the payoff function. Journal of Computational Finance (submitted; in revision). <u>http://www.cs.toronto.edu/pub/reports/na/IJKM.paper3.pdf</u>
- 4. K. JACKSON, A. KREININ, and X. MA, Loss distribution evaluation for synthetic CDOs. <u>http://www.cs.toronto.edu/pub/reports/na/JKM.paper1.pdf</u>

Algorithmics