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Introduction

We develop a new class of multi-name unified credit-equity models that jointly
model the stock prices of multiple firms, as well as their default events,

We construct a multi-dimensional Markov semimartingale by applying a
multivariate subordination of jump-to-default extended constant elasticity
of variance (JDCEV) diffusions.

Each of the stock prices experiences state-dependent jumps with the leverage
effect (arrival rates of large jumps increase as the stock price falls), including the
possibility of a jump to zero (jump to default).

Some of the jumps are idiosyncratic to each firm, while some are either common
to all firms (systematic), or common to a subgroup of firms.

For the two-firm case, we obtain analytical solutions for credit derivatives and
equity derivatives, such as basket options, in terms of eigenfunction expansions
associated with the relevant subordinated semigroups.
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Multi-name Credit-Equity Model Architecture

We model the joint risk-neutral dynamics of stock prices S i
t of n firms under an

EMM Q:

S i
t = 1{t<τi}eρi tX i

T i
t
≡

ȷ

eρi tX i
T i

t
, t < τi

0, t ≥ τi
, i = 1, ..., n.

Independent Diffusions X i .

time-homogeneous, non-negative diffusion processes starting from positive
values X i

0 = S i
0 > 0 (initial stock prices at time zero) and solving

stochastic differential equations:

dX i
t = (µi + ki (X

i
t ))X

i
t dt + σi (X

i
t )X

i
t dB i

t

σi (x) is the state-dependent instantaneous volatility
µi + ki (x) is the state-dependent instantaneous drift, µi ∈ R are constant
parameters
B i are n independent standard Brownian motions.
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T i
t
≡

ȷ

eρi tX i
T i

t
, t < τi

0, t ≥ τi
, i = 1, ..., n.

Multivariate Time Change T .

T is an n-dimensional subordinator: A n-dimensional subordinator is a
Lévy process in Rn

+ = [0,∞)n that is increasing in each of its coordinates.
The (n-dimensional) Laplace transform of a n-dimensional subordinator is
given by (here ui ≥ 0 and ⟨u, v⟩ =

Pn
i=1 uivi ):

E[e−⟨u,Tt⟩] = e−tϕ(u)

The Laplace exponent given by the Lévy-Khintchine formula:

ϕ(u) = ⟨γ, u⟩ +

Z

Rn
+

(1 − e−⟨u,s⟩)ν(ds),

where γ ∈ Rn
+ is the drift and the Lévy measure ν is a σ-finite measure

such that
R

Rn
+
(∥s∥ ∧ 1)ν(ds) < ∞.

Rafael Mendoza McCombs

Default Correlation



. . . . . .

Multi-name Credit-Equity Model Architecture

We model the joint risk-neutral dynamics of stock prices S i
t of n firms under an

EMM Q:

S i
t = 1{t<τi}eρi tX i

T i
t
≡

ȷ

eρi tX i
T i

t
, t < τi

0, t ≥ τi
, i = 1, ..., n.

Multivariate Time Change T .

T is an n-dimensional subordinator: A n-dimensional subordinator is a
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+ is the drift and the Lévy measure ν is a σ-finite measure

such that
R

Rn
+
(∥s∥ ∧ 1)ν(ds) < ∞.

Rafael Mendoza McCombs

Default Correlation



. . . . . .

Multi-name Credit-Equity Model Architecture

We model the joint risk-neutral dynamics of stock prices S i
t of n firms under an

EMM Q:

S i
t = 1{t<τi}eρi tX i

T i
t
≡

ȷ

eρi tX i
T i

t
, t < τi

0, t ≥ τi
, i = 1, ..., n.

Multivariate Time Change T .

T is an n-dimensional subordinator: A n-dimensional subordinator is a
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Multi-name Credit-Equity Model Architecture

We model the joint risk-neutral dynamics of stock prices S i
t of n firms

under an EMM Q:

S i
t = 1{t<τi}e

ρi tX i
T i

t
≡

(

eρi tX i
T i

t
, t < τi

0, t ≥ τi
, i = 1, ..., n.

Default Times τi .

The positive random variable τi models the time of default of the ith firm
on its debt.
The τi are constructed as follows:

...1 Let H i
0 be the first time the diffusion X i reaches zero.

...2 Let Ei be n independent exponential random variables with unit mean
and independent of all X i and T i

...3 Define the X i
t ’s lifetime (we assume that inf{∅} = H0 by convention):

ζi := inf{t ∈ [0, H i
0] :

Z t

0
ki (X

i
u)du ≥ Ei}.

...4 Then, time of default of the ith firm is defined by applying the time
change T i :

τi := inf{t ≥ 0 : T i
t ≥ ζi}.
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Martingale Conditions.

Each single-name stock price process S i is a non-negative martingale under
the EMM Q if and only if,

...1 the constant µi in the drift of X i satisfies the following condition:
Z

[1,∞)
eµi sνi (ds) < ∞,

where νi is the Lévy measure of the one-dimensional subordinator T i

(νi (A) = ν(R+ × ... × A × ...R+) with A in the ith place, for any
Borel set A ⊂ R+ bounded away from zero),

...2 the constant ρi is:
ρi = r − qi + ϕi (−µi ),

where ϕi (u) is the Laplace exponent of T i ,
ϕi (u) = ϕ(0, ..., 0, u, 0, ..., 0) (u is in the ith place)
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Martingale Conditions.

Each single-name stock price process S i is a non-negative martingale under
the EMM Q if and only if,

...1 the constant µi in the drift of X i satisfies the following condition:
Z

[1,∞)
eµi sνi (ds) < ∞,

where νi is the Lévy measure of the one-dimensional subordinator T i

(νi (A) = ν(R+ × ... × A × ...R+) with A in the ith place, for any
Borel set A ⊂ R+ bounded away from zero),

...2 the constant ρi is:
ρi = r − qi + ϕi (−µi ),

where ϕi (u) is the Laplace exponent of T i ,
ϕi (u) = ϕ(0, ..., 0, u, 0, ..., 0) (u is in the ith place)

Rafael Mendoza McCombs

Default Correlation



. . . . . .

Multi-name Credit-Equity Model Architecture

We model the joint risk-neutral dynamics of stock prices S i
t of n firms under an

EMM Q:

S i
t = 1{t<τi}eρi tX i

T i
t
≡

(

eρi tX i
T i

t
, t < τi

0, t ≥ τi

, i = 1, ..., n.

Martingale Conditions.

Each single-name stock price process S i is a non-negative martingale under
the EMM Q if and only if,

...1 the constant µi in the drift of X i satisfies the following condition:
Z

[1,∞)
eµi sνi (ds) < ∞,
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. . . . . .

Credit-Equity Derivatives Pricing

We are interested in pricing contingent claims written on multiple defaultable
stocks.

In particular, the price of a European-style derivative expiring at time t > 0 with
the payoff function f (S1

t , ..., Sn
t ) is given by

e−rtE[f (S1
t , ..., Sn

t )]

Recall: Each of the n firms may default by time t (and its stock may become

worthless) in this model, for each stock either

S i
t > 0 (survival to time t, i.e., τi > t) or,

S i
t = 0 (default by time t, i.e., τi ≤ t).
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. . . . . .

Multivariate Subordination of Multiparameter Semigroups
Thus we are interested on calculating expectations of the form

E
ˆ

1{τ{1,2,...,n}>t}f
`

X 1
T 1

t
, X 2

T 2
t
, ..., X n

T n
t

´˜

= E
ˆ

1{τ1>t} · · · 1{τn>t}f
`

X 1
T 1

t
, X 2

T 2
t
, ..., X n

T n
t

´˜

“

τ{1,...,n}
=
Vn

i=1 τi

”

= E
ˆ

E
ˆ

1{ζ1>T 1
t } · · · 1{ζn>T n

t }f
`

X 1
T 1

t
, X 2

T 2
t
, ..., X n

T n
t

´

˛

˛Tt
˜˜

“

Tt & Xt
are indep.

”

= E
ˆ

E
ˆ

1{ζ1>T 1
t } · · ·E

ˆ

1{ζn>T n
t }f

`

X 1
T 1

t
, X 2

T 2
t
, ..., X n

T n
t

´

˛

˛Tt
˜

· · ·
˛

˛Tt
˜˜

“

Xi
t
′
s

are indep.

”

=

Z

Rn
+

(Psf )
| {z }

Multi−
parameter
Semigroup

πt(ds)
| {z }

Multi−
Subord.
transition

kernel

| {z }

Multivariate Subordination
of

Multiparameter Semigroups

= Pϕ
t f

|{z}

Subordinated
Semigroup

(one − parameter)

.. Multiparameter Semigroups
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. . . . . .

Spectral Decomposition (I)

We assume that all X i are 1D diffusions (symmetric Markov processes) on
(0,∞) such that:

the semigroups P i defined in the Hilbert spaces Hi = L2((0,∞), mi )
endowed with the inner products (f , g)mi =

R

(0,∞) f (x)g(x)mi (x)dx are

symmetric with respect to the speed density m(x), i.e.,

(P i
ti
f , g)mi = (f ,P i

ti
g)mi , ∀ti ≥ 0, & i = 1, ..., n

Then H = L2((0,∞)n, m) is defined on the product space
(0,∞)n = (0,∞) × ... × (0,∞) with the product speed density
m(x) = m1(x1)...mn(xn) and the inner product

(f , g)m =

Z

(0,∞)n
f (x)g(x)m(x)dx

Rafael Mendoza McCombs

Default Correlation



. . . . . .

Spectral Decomposition (I)

We assume that all X i are 1D diffusions (symmetric Markov processes) on
(0,∞) such that:

the semigroups P i defined in the Hilbert spaces Hi = L2((0,∞), mi )
endowed with the inner products (f , g)mi =

R

(0,∞) f (x)g(x)mi (x)dx are

symmetric with respect to the speed density m(x), i.e.,

(P i
ti
f , g)mi = (f ,P i

ti
g)mi , ∀ti ≥ 0, & i = 1, ..., n

Then H = L2((0,∞)n, m) is defined on the product space
(0,∞)n = (0,∞) × ... × (0,∞) with the product speed density
m(x) = m1(x1)...mn(xn) and the inner product

(f , g)m =

Z

(0,∞)n
f (x)g(x)m(x)dx

Rafael Mendoza McCombs

Default Correlation



. . . . . .

Spectral Decomposition (I)

We assume that all X i are 1D diffusions (symmetric Markov processes) on
(0,∞) such that:

the semigroups P i defined in the Hilbert spaces Hi = L2((0,∞), mi )
endowed with the inner products (f , g)mi =

R

(0,∞) f (x)g(x)mi (x)dx are

symmetric with respect to the speed density m(x), i.e.,

(P i
ti
f , g)mi = (f ,P i

ti
g)mi , ∀ti ≥ 0, & i = 1, ..., n

Then H = L2((0,∞)n, m) is defined on the product space
(0,∞)n = (0,∞) × ... × (0,∞) with the product speed density
m(x) = m1(x1)...mn(xn) and the inner product

(f , g)m =

Z

(0,∞)n
f (x)g(x)m(x)dx

Rafael Mendoza McCombs

Default Correlation



. . . . . .

Spectral Decomposition (II)

In the special case when each infinitesimal generator Gi has a purely discrete
spectrum with eigenvalues {−λi

k}
∞
k=1 and the corresponding eigenfunctions

φi
k (xi ),

Giφ
i
k(xi ) = −λi

kφi
k (xi ),

the spectral representation of the multi-parameter semigroup takes the form of
the eigenfunction expansion:

Ptf =
X

k∈Nn

e−⟨λ,t⟩c f
k φk, f ∈ H, t = (t1, ..., tn) ≥ 0,

where
P

k∈Nn =
P∞

k1=1 ...
P∞

kn=1, N = {1, 2, ...},
the eigenvalues and eigenfunctions are

λ = (λ1
k1

, ..., λn
kn

)

φk(x) =
n

Y

i=1

φi
ki

(xi ), xi ∈ (0,∞), x = (x1, ..., xn) ∈ (0,∞)n, k ∈ Nn,

and the expansion coefficients are

c f
k = (f , φk)m, k ∈ Nn.
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Spectral Decomposition of the Subordinated Semigroup Pϕ
t

Consequently, we can obtain the Spectral Decomposition of he Subordinated
Semigroup as follows,

Pϕ
t f = E

ˆ

1{τ{1,2,...,n}>t}f
`

X 1
T 1

t
, X 2

T 2
t
, ..., X n

T n
t

´˜

=
R

Rn
+
Psf πt(ds)

„

Multivariate subordination
of the

n−parameter semigroup

«

=
R

Rn
+

`

P

k∈Nn e−⟨λ,s⟩c f
k φk

´

πt(ds)

„

Spectral representation
of the

n−parameter semigroup

«

=
P

k∈Nn

“

R

Rn
+

e−⟨λ,s⟩πt(ds)
”

c f
k φk

„

Laplace transform
of the

n−dimensional subordinator

«

=
P

k∈Nn e
−ϕ(λ1

k1
,...,λn

kn
)t

c f
k φk

“

Levy − Khintchine
exponent

”

Remark: When n = 1 the modeling framework is reduced to the Credit-Equity
Model of Mendoza-Arriaga et al. (2009).
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. . . . . .

Two Firms Illustration: the JDCEV process

Recall: we model the joint risk-neutral dynamics of stock prices S i
t of 2 firms

under an EMM Q:

S i
t = 1{t<τi}eρi tX i

T i
t
≡

ȷ

eρi tX i
T i

t
, t < τi

0, t ≥ τi
, i = 1, 2

Let X i
t i = 1, 2 be Jump-to-Default Extended Constant Elasticity of Variance

(JDCEV) processes of Carr & Linetsky (2006):

dXt = [µ + k(Xt)]Xt dt + σ(Xt)Xt dBt , X0 = x > 0

σ(X ) = aXβ

CEV Volatility
(Power function of X )

k(X ) = b + c σ2(X )

Killing Rate
(Affine function of Variance)
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σ(X ) = aXβ

CEV Volatility
(Power function of X )

k(X ) = b + c σ2(X )

Killing Rate
(Affine function of Variance)

a > 0 ⇒ volatility scale parameter (fixing ATM volatility)
β < 0 ⇒ volatility elasticity parameter
b ≥ 0 ⇒ constant default intensity
c ≥ 0 ⇒ sensitivity of the default intensity to variance
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dXt = [µ + k(Xt)]Xt dt + σ(Xt)Xt dBt , X0 = x > 0

σ(X ) = aXβ

CEV Volatility
(Power function of X )

k(X ) = b + c σ2(X )

Killing Rate
(Affine function of Variance)

a > 0 ⇒ volatility scale parameter (fixing ATM volatility)
β < 0 ⇒ volatility elasticity parameter
b ≥ 0 ⇒ constant default intensity
c ≥ 0 ⇒ sensitivity of the default intensity to variance

For c = 0 and b = 0 the JDCEV reduces to the standard CEV process
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Recall: we model the joint risk-neutral dynamics of stock prices S i

t of 2 firms
under an EMM Q:
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Killing Rate
(Affine function of Variance)

a > 0 ⇒ volatility scale parameter (fixing ATM volatility)
β < 0 ⇒ volatility elasticity parameter
b ≥ 0 ⇒ constant default intensity
c ≥ 0 ⇒ sensitivity of the default intensity to variance

The model is consistent with:
leverage effect V S ⇓→ σ(S) ⇑
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CEV Volatility
(Power function of X )

k(X ) = b + c σ2(X )

Killing Rate
(Affine function of Variance)

a > 0 ⇒ volatility scale parameter (fixing ATM volatility)
β < 0 ⇒ volatility elasticity parameter
b ≥ 0 ⇒ constant default intensity
c ≥ 0 ⇒ sensitivity of the default intensity to variance

The model is consistent with:
leverage effect V S ⇓→ σ(S) ⇑
stock volatility–credit spreads linkage V σ(S) ⇑↔ k(S) ⇑
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JDCEV Eigenvalues and Eigenfunctions

When mu + b ̸= 0, the spectrum is purely discrete. When mu + b < 0, the
eigenvalues and eigenfunctions are:

λn = ω(n−1)+λ1, φn(x) = A
ν
2

s

(n − 1)!|µ + b|
Γ(ν + n)

x Lν
n−1(Ax−2β), n = 1, 2, ...,

where Lν
n (x) are the generalized Laguerre polynomials.

The principal eigenvalue λ1, A, ν and ω are,

λ1 := |µ|, A :=
|µ + b|
a2|β|

, ν :=
1 + 2c

2|β|
, ω := 2|β(µ + b)|, ,

The speed density is defined as,

m(x) =
2

a2
x2c−2−2βe−Ax−2β
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. . . . . .

Ex. Joint Survival Probability

Then the joint survival probability for two firms by time t > 0 is given by the
eigenfunction expansion (x = (x1, x2) = (S1

0 , S2
0 )):

Q(τ{1,2} > t) = E
h

1{τ{1,2}>t}

i

=
P∞

n1,n2=1 e
−ϕ(λ1

n1
,λ2

n2
)t

c1
n1

c2
n2

φ1
n1

(x1)φ2
n2

(x2)

Similarly, the single-name survival probabilities are given by the eigenfunction
expansions:

Q(τk > t) =
∞

X

n=1

e−ϕk (λk
n )tck

n φk
n(xk), k = 1, 2.
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Similarly, the single-name survival probabilities are given by the eigenfunction
expansions:

Q(τk > t) =
∞

X

n=1

e−ϕk (λk
n )tck

n φk
n(xk), k = 1, 2.

The expansion coefficients are given by:

ck
n = (φn, 1)m =

A

1−2ck
4|βk |

k (1/(2|βk |))n−1 Γ(ck/|βk | + 1)
p

(n − 1)!|µk + bk |Γ(νk + n)
, k = 1, 2, n = 1, 2, ...,

where (z)n = z(z − 1)...(z − n − 1) is the Pochhammer symbol.
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Similarly, the single-name survival probabilities are given by the eigenfunction
expansions:

Q(τk > t) =
∞

X

n=1

e−ϕk (λk
n )tck

n φk
n(xk), k = 1, 2.

ϕ(u, v) is the Laplace exponent of the two-dimensional subordinator
(T 1, T 2)⊤

ϕ1(u) := ϕ(u, 0), and ϕ2(u) := ϕ(0, u) are the Laplace exponents of the
marginal one-dimensional subordinators T k , k ∈ {1, 2}, respectively.
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Ex. Joint Survival Probability
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0 , S2
0 )):

Q(τ{1,2} > t) = E
h

1{τ{1,2}>t}

i
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P∞

n1,n2=1 e
−ϕ(λ1

n1
,λ2

n2
)t

c1
n1

c2
n2

φ1
n1

(x1)φ2
n2

(x2)

Similarly, the single-name survival probabilities are given by the eigenfunction
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∞
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n φk
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Default Correlation

The default correlation has the form:

Corr
`

1{τ1>t}, 1{τ2>t}
´

=
Q(τ{1,2}>t)−Q(τ1>t)Q(τ2>t)
Q2

k=1

√
Q(τk>t)(1−Q(τk>t))

=

P

n∈N2
1

 

e
−ϕ(λ1

n1
,λ2

n2
)t
−e

−
“

ϕ1(λ1
n1

)+ϕ2(λ2
n2

)
”

t
!

cnφn(x)

Q2
k=1

√
Q(τk>t)(1−Q(τk>t))

From this expression we observe that:

it is zero if and only if ϕ(u1, u2) = ϕ(u1, 0) + ϕ(0, u2),,

V That is, the coordinates T 1 and T 2 of the two-dimensional subordinator
are independent.
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Two Firms Basket Put Option .. Basket Option: Analytical Solutions

Consider a basket put option on the portfolio of two stocks with the payoff at
time t

f (S1
t , S2

t ) = (K − w1S
1
t − w2S

2
t )+

We observe six contingent claims:

One basket put that delivers the payoff if and only if both firms survive to
maturity

1{τ{1,2}>t}(K − w1S
1
t + w2S

2
t )+

Two single-name puts that deliver the payoffs if and only if both firms
survive to maturity

1{τ{1,2}>t}(K − wkSk
t )+, k = 1, 2

Two single-name puts that deliver the payoffs if and only if the firm whose
stock the put is written on survives to maturity.

1{τk>t}(K − wkSk
t )+, k = 1, 2

An embedded multi-name credit derivative

K(1{τ{1,2}>t} + 1 − 1{τ1>t} − 1{τ2>t}) = K1{τ1∨τ2≤t}

We obtained explicit analytical solutions for all these claims. .. Solutions
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Numerical Illustration

We consider the two-name defaultable stock model.

For this example the two diffusion processes X are taken to be JDCEV with the
same set of parameters are,

X0 = x a b c q β µ r
50 10 0.01 0.5 0 -1 -0.3 0.05

Table: JDCEV parameter values.

The volatility scale parameter a in the local volatility function σ(x) = axβ is
selected so that σ(50) = 0.2.
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Numerical Illustration

The two-dimensional subordinator T is constructed from three independent
Inverse Gaussian processes subordinators S i

t , i = 1, 2, 3, as follows:

T k
t = Sk

t + S3
t , k = 1, 2.

γ Y η C
S1

t 0 0.5 1 0.7
S2

t 0 0.5 1 0.7
S3

t 0 0.5 0.001 0.025

Table: IG parameter values.

In this specification S1 and S2 are two idiosyncratic components that influence
only the first stock and the second stock, respectively, and

S3
t is the systematic component common to both stocks.

The parameter η is the decay parameter (damping parameter), which controls
large size jumps V S3

t exhibits larger jumps.

Since the drift is zero (γ = 0) then the time changed processes X i
T i

t
are pure

jump processes
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Numerical Illustration: Survival Probability

As the sock price falls, the firm’s survival probability decreases

0 20 40 60 80 100
Sk

0.2

0.4

0.6

0.8

1.0

QHΤk>tL

Figure: Single-name survival probability Q(τ > t) for t = 1 year as a function of the stock price S0 = x.
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Numerical Illustration: Joint Survival Probability & Default Correlation
As the stock prices fall, the joint survival probability also decreases which, in
turn, causes the default correlation to decrease

(a) Joint survival probability. (b) Correlation of default indicators.

Figure: Joint survival probability Q(τ{1,2} > t) and default correlation Corr(1{τ1>t}, 1{τ2>t}) for t = 1 year as

functions of stock prices S1
0 and S2

0 .

When the stock price is relatively high, the default can only be triggered by a
large catastrophic jump to zero V the systematic component S3 governs large
jumps.
When the stock price is low, a smaller jump is enough to trigger default V the
idiosyncratic components S1 and S2 primarily govern small jumps.

Rafael Mendoza McCombs

Default Correlation



. . . . . .

Numerical Illustration: Joint Survival Probability & Default Correlation
As the stock prices fall, the joint survival probability also decreases which, in
turn, causes the default correlation to decrease

(a) Joint survival probability. (b) Correlation of default indicators.

Figure: Joint survival probability Q(τ{1,2} > t) and default correlation Corr(1{τ1>t}, 1{τ2>t}) for t = 1 year as

functions of stock prices S1
0 and S2

0 .

When the stock price is relatively high, the default can only be triggered by a
large catastrophic jump to zero V the systematic component S3 governs large
jumps.

When the stock price is low, a smaller jump is enough to trigger default V the
idiosyncratic components S1 and S2 primarily govern small jumps.

Rafael Mendoza McCombs

Default Correlation



. . . . . .

Numerical Illustration: Joint Survival Probability & Default Correlation
As the stock prices fall, the joint survival probability also decreases which, in
turn, causes the default correlation to decrease

(a) Joint survival probability. (b) Correlation of default indicators.

Figure: Joint survival probability Q(τ{1,2} > t) and default correlation Corr(1{τ1>t}, 1{τ2>t}) for t = 1 year as

functions of stock prices S1
0 and S2

0 .

When the stock price is relatively high, the default can only be triggered by a
large catastrophic jump to zero V the systematic component S3 governs large
jumps.
When the stock price is low, a smaller jump is enough to trigger default V the
idiosyncratic components S1 and S2 primarily govern small jumps.

Rafael Mendoza McCombs

Default Correlation



. . . . . .

Numerical Illustration: Joint Survival Probability & Default Correlation
The price of a European-style basket put option on the equally-weighted
portfolio of two stocks (w1 = w2 = 1) with one year to maturity (t = 1) and
with the strike price K = 100 as a function of the initial stock prices S1

0 and S2
0 .

Figure: Two-name basket put prices for the range of initial stock prices S1
0 and S2

0 from zero to $60 for one year time to
maturity and K = 100.

When both firms are in default, (S1
0 , S2

0 ) = (0, 0), the price of the basket put is
equal to the discounted strike K .
When one of the two firms is in default, the basket put reduces to the
single-name European-style put on the surviving stock with the strike K .
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Conclusion

We propose a modeling framework based on multi-variate subordination of

diffusion processes.

...1 We start with n independent jump-to-default extended diffusions for n
stocks.

...2 Then we time change each one with a coordinate of a n-dimensional
Subordinator

V the result is multi-name credit-equity model with dependent jumps and
jumps-to-default for all stocks.

The dependence among jumps is governed by the Lévy measure of the
n-dimensional subordinator.

The semigroup theory provides powerful analytical and computational tools for
securities pricing.

Thank you!
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The dependence among jumps is governed by the Lévy measure of the
n-dimensional subordinator.

The semigroup theory provides powerful analytical and computational tools for
securities pricing.

Thank you!
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Multiparameter Semigroup
.. Return

If {Pt, t ∈ Rn
+} is a n-parameter strongly continuous semigroup on a Banach

space B, then:

V it is the product of n one-parameter strongly continuous semigroups {P i
t , t ≥ 0}

on B with infinitesimal generators Gi with domains Dom(Gi ) ⊂ B.

That is, for t = (t1, ..., tn) we have:

Pt =
n

Y

i=1

P i
ti

and the semigroup operators P i
ti

commute with each other, ti ≥ 0,
i = 1, ..., n.

In our case, the expectation operators associated with the Markov processes X i

define the corresponding semigroups {P i
ti
, ti ≥ 0},

P i
ti
f (xi ) := Exi [1{ζi >ti}f (X i

ti
)], xi ∈ Ei , ti ≥ 0,

in Banach spaces of bounded Borel measurable functions on Ei .
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Two Firms Basket Put Option .. Return

The embedded multi-name credit derivative with the notional amount equal to
the strike price K and paid at maturity if both firms default

e−rtE[K1{τ1∨τ2≤t}] = e−rtK(1 + Q(τ{1,2} > t) − Q(τ1 > t) − Q(τ2 > t))

where the joint survival probability Q(τ{1,2} > t) and marginal survival
probabilities Q(τk > t), k = 1, 2; were given earlier.

Rafael Mendoza McCombs

Default Correlation



. . . . . .

Two Firms Basket Put Option .. Return

The basket put that delivers the payoff if and only if both firms survive to
maturity

e−rtE
h

1{τ{1,2}>t}(K − w1S1
t + w2S2

t )+
i

= e−r t
P∞

n1,n2=1 e
−ϕ(λ1

n1
,λ2

n2
) t

cn1,n2 (K)
| {z }

φ1
n1

(x1)φ2
n1

(x2)

Where the expansion coefficient cn1,n2 (K) is given by,

cn1,n2 (K) =
“

(K − w1x1 − w2x2)
+, φn(x)

”

m

=

Z

R2
+

(K − w1x1 − w2x2)
+φ1

n1
(x1)φ

2
n2

(x2)m1(x1)m2(x2)dx1dx2

= K
2

Y

k=1

0

@

s

Γ(νk + nk)

Γ(nk)|µk + bk |
2|βk |A

νk
2

+1

k K̃
2ck−2βk
k

Γ(νk + 1)

1

A

×
∞

X

p1,p2=0

(−1)p1+p2 (ν1 + n1)p1
(ν2 + n2)p2

(ν1 + 1)p1
p1! (ν2 + 1)p2

p2!

“

A1K̃
−2β1
1

”p1
d

“

A2K̃
−2β2
2

”p2

×
Γ (2c1 − 2β1(p1 + 1)) Γ (2c2 − 2β2(p2 + 1))

Γ (2c1 − 2β1(p1 + 1) + 2c2 − 2β2(p2 + 1) + 2)
.

where K̃k = e−ρk tK/wk .

Rafael Mendoza McCombs

Default Correlation



. . . . . .

Two Firms Basket Put Option .. Return

The basket put that delivers the payoff if and only if both firms survive to
maturity

e−rtE
h

1{τ{1,2}>t}(K − w1S1
t + w2S2

t )+
i

= e−r t
P∞

n1,n2=1
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Two Firms Basket Put Option .. Return

The single-name put on the stock Sk that delivers the payoff if and only if the
firm survives to maturity:

e−rtE
h

1{τk>t}(K − wkSk
t )+

i

= e−rt
∞

X

n=1

1D Lévy Exp.
z }| {

e−ϕk (λk
n ) t pk

n (K)φk
n(xk),

Where the expansion coefficient pk
n (K) is given as,

pk
n (K) =

“

(K − wkxk)+, φk
n(xk )

”

mk

=

Z

R+

(K − wkxk)+φk
n(xk )mk(xk)dxk

= K

s

Γ(νk + n)

Γ(n)|µk + bk |
A

νk
2

+1

k K̃
2(ck−βk )
k

Γ(νk + 1)
×

(

1

(1 + ck/|βk |)
2F2

“ νk + n, νk + 1 − 1
2|βk |

νk + 1, νk + 2 − 1
2|βk |

;−Ak K̃
−2βk
k

”

−
1

(νk + 1)
1F1

“ νk + n
νk + 2

;−Ak K̃
−2βk
k

”

ff

,

where 1F1 and 2F2 are the Kummer confluent hypergeometric function and the
generalized hypergeometric function, respectively; and K̃k = e−ρk tK/wk .
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Two Firms Basket Put Option .. Return

The single-name put on the stock S1 that delivers the payoff if and only if both
firms survive:

e−rtE
h

1{τ{1,2}>t}(K−w1S
1
t )+

i

= e−rt
∞

X

n1,n2=1

2D Lévy Exp.
z }| {

e
−ϕ(λ1

n1
,λ2

n2
) t

p1
n1

(K)c2
n2

φ1
n1

(x1)φ
2
n2

(x2),

where c2
n are the coefficients of the expansion for the survival probability of the

second stock and,

p1
n(K) are the expansion coefficients for the single-name put on the first stock.
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