Contagion and Confusion in Credit Markets

Jeff Hamrick (joint work with M.S. Taqqu)

Rhodes College

June 24, 2010

<ロ> <同> <同> <同> < 同>

_∢ ≣ ≯

The Panic of 2008

Models of Dependence Contagion and Confusion Data and Analysis Conclusions & References

Notions of Contagion Measuring Dependence

What is Contagion?

 There are many definitions of financial contagion (Pericoli & Sbracia 2001).

・ロト ・回ト ・ヨト ・ヨト

æ

Notions of Contagion Measuring Dependence

What is Contagion?

- There are many definitions of financial contagion (Pericoli & Sbracia 2001).
- Qualitatively, we will say that there is contagion from market X (or time series X) to another market Y (or time series Y) if X and Y are *more dependent* during times of crisis than during normal, calmer times.

Notions of Contagion Measuring Dependence

What is Contagion?

- There are many definitions of financial contagion (Pericoli & Sbracia 2001).
- Qualitatively, we will say that there is contagion from market X (or time series X) to another market Y (or time series Y) if X and Y are more dependent during times of crisis than during normal, calmer times.
- Question: How do we measure dependence between two time series?

Notions of Contagion Measuring Dependence

The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ .

・ロト ・回ト ・ヨト ・ヨト

Notions of Contagion Measuring Dependence

The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ .

ρ measures the *linear* dependence between two random variables X and Y.

・ロト ・回ト ・ヨト

Notions of Contagion Measuring Dependence

The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ .

- ρ measures the *linear* dependence between two random variables X and Y.
- ρ (or an analogue) characterizes the joint distribution of X
 and Y if and only if the joint distribution of X and Y is
 elliptical.

Notions of Contagion Measuring Dependence

The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ .

- ρ measures the *linear* dependence between two random variables X and Y.
- ρ (or an analogue) characterizes the joint distribution of X
 and Y if and only if the joint distribution of X and Y is
 elliptical.
- $\blacktriangleright \rho$ is constant.

<ロ> <同> <同> <三>

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

イロト イヨト イヨト イヨト

Linear Models in Finance

Pearson's ρ is especially suitable for linear factor models in finance, i.e., linear regression models.

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

イロト イヨト イヨト イヨト

Linear Models in Finance

Pearson's ρ is especially suitable for linear factor models in finance, i.e., linear regression models.

Example: $Y_t = \alpha + \beta X_t + \epsilon_t$, where

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

イロト イヨト イヨト イヨト

Linear Models in Finance

Pearson's ρ is especially suitable for linear factor models in finance, i.e., linear regression models.

Example: $Y_t = \alpha + \beta X_t + \epsilon_t$, where

- α and β are constants
- ► ϵ_t is a sequence of independent, identically distributed, centered Gaussian random variables with variance σ^2

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

イロト イヨト イヨト イヨト

Linear Models in Finance

Pearson's ρ is especially suitable for linear factor models in finance, i.e., linear regression models.

Example: $Y_t = \alpha + \beta X_t + \epsilon_t$, where

- α and β are constants
- ► ϵ_t is a sequence of independent, identically distributed, centered Gaussian random variables with variance σ^2
- X_t is, for example, the excess returns of the market (S&P 500)
- Y_t is, for example, the returns of Caterpillar stock

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

・ロ・・ (日・・ (日・・ (日・)

æ

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

J. Hamrick Contagion or Confusion?

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

・ロト ・回ト ・ヨト ・ヨト

(1)

æ

Extending the Linear Model

Let

$$m(x) := \mathbb{E}(Y|X = x) = \alpha + \beta x$$

with regression slope $m'(x) = \beta$.

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

Extending the Linear Model

Let

$$m(x) := \mathbb{E}(Y|X = x) = \alpha + \beta x \tag{1}$$

with regression slope $m'(x) = \beta$. It also follows that the regression slope $\beta = \rho \sigma_Y / \sigma_X$ and therefore that

$$\rho = \beta \sigma_X / \sigma_Y. \tag{2}$$

イロト イヨト イヨト イヨト

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

・ロト ・回ト ・ヨト

Extending the Linear Model

From linear regression theory, we know that we can write the variance σ_Y^2 of Y as a sum of the variance explained by the regression (namely, $\beta^2 \sigma_X^2$) and the residual (unexplained) variance σ^2 .

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

Extending the Linear Model

From linear regression theory, we know that we can write the variance σ_Y^2 of Y as a sum of the variance explained by the regression (namely, $\beta^2 \sigma_X^2$) and the residual (unexplained) variance σ^2 . In other words,

$$\sigma_Y^2 = \beta^2 \sigma_X^2 + \sigma^2 \tag{3}$$

・ロト ・回ト ・ヨト

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

Extending the Linear Model

From linear regression theory, we know that we can write the variance σ_Y^2 of Y as a sum of the variance explained by the regression (namely, $\beta^2 \sigma_X^2$) and the residual (unexplained) variance σ^2 . In other words,

$$\sigma_Y^2 = \beta^2 \sigma_X^2 + \sigma^2 \tag{3}$$

・ロト ・回ト ・ヨト

and hence

$$\rho = \sigma_X \beta / (\sigma_X^2 \beta^2 + \sigma^2)^{1/2}.$$
 (4)

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

Extending the Linear Model

We now extend the usual linear regression model

$$Y_t = \alpha + \beta X_t + \epsilon_t \tag{5}$$

イロン イヨン イヨン イヨン

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

Extending the Linear Model

We now extend the usual linear regression model

$$Y_t = \alpha + \beta X_t + \epsilon_t \tag{5}$$

to

$$Y_t = m(X_t) + \sigma(X_t)\epsilon_t \tag{6}$$

・ロト ・回ト ・ヨト ・ヨト

æ

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

Extending the Linear Model

We now extend the usual linear regression model

$$Y_t = \alpha + \beta X_t + \epsilon_t \tag{5}$$

to

$$Y_t = m(X_t) + \sigma(X_t)\epsilon_t \tag{6}$$

Image: A math a math

and the usual correlation coefficient to

$$\rho(x) = \sigma_X \beta(x) / (\sigma_X^2 \beta(x)^2 + \sigma^2(x))^{1/2},$$
(7)

where *m* and σ are smooth real-valued functions.

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

・ロト ・回ト ・ヨト ・ヨト

æ

Extending the Linear Model

We call ρ the local correlation function:

$$\rho(x) = \sigma_X \beta(x) / (\sigma_X^2 \beta(x)^2 + \sigma^2(x))^{1/2}.$$
 (8)

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

・ロト ・回ト ・ヨト ・ヨト

Extending the Linear Model

We call ρ the local correlation function:

$$\rho(x) = \sigma_X \beta(x) / (\sigma_X^2 \beta(x)^2 + \sigma^2(x))^{1/2}.$$
 (8)

- σ_X denotes the unconditional standard deviation of X
- $\beta(x) = m'(x)$ is the slope of the regression function m(x)
- $\sigma^2(x) = \operatorname{Var}(Y|X = x)$ is the scedastic function

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

イロト イヨト イヨト イヨト

A Spatial Definition of Contagion

Let

- X_t be U.S. stock market returns
- Y_t be French stock market returns

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

イロト イヨト イヨト イヨト

A Spatial Definition of Contagion

Let

- X_t be U.S. stock market returns
- Y_t be French stock market returns

Moreover, let

•
$$x_L = F_X^{-1}(0.025)$$
 be a lower quantile of X; and
• $x_M = F_X^{-1}(0.50)$ be a median quantile of X.

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

イロト イヨト イヨト イヨト

A Spatial Definition of Contagion

Let

- X_t be U.S. stock market returns
- Y_t be French stock market returns

Moreover, let

•
$$x_L = F_X^{-1}(0.025)$$
 be a lower quantile of X; and
• $x_M = F_X^{-1}(0.50)$ be a median quantile of X.

Then we say that there is contagion from X to Y if $\rho(x_L) > \rho(x_M)$.

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

イロト イヨト イヨト イヨト

Developing the Hypothesis Test

We state the relevant hypothesis test:

 $\begin{array}{l} H_0: \ \rho(x_L) \leq \rho(x_M) \ (\text{no contagion}) \\ H_1: \ \rho(x_L) > \rho(x_M) \ (\text{contagion}). \end{array} \end{array}$

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

Developing the Hypothesis Test

We state the relevant hypothesis test:

$$\begin{array}{l} H_0: \ \rho(x_L) \leq \rho(x_M) \ (\text{no contagion}) \\ H_1: \ \rho(x_L) > \rho(x_M) \ (\text{contagion}). \end{array} \end{array}$$

which is facilitated by the fact that, under certain limiting conditions,

$$\widehat{\rho}(x) \xrightarrow{D} \mathcal{N}(\rho(x), \widehat{\sigma}_{\widehat{\rho}(x)}).$$
 (9)

イロト イヨト イヨト イヨト

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

イロン イヨン イヨン イヨン

Developing the Hypothesis Test

Additionally, $\hat{\rho}(x_M)$ and $\hat{\rho}(x_L)$ are asymptotically independent, so long as $x_M \neq x_L$.

Linear Models From Linear Models to Nonlinear Models A Definition of Contagion

Developing the Hypothesis Test

- Additionally, $\hat{\rho}(x_M)$ and $\hat{\rho}(x_L)$ are asymptotically independent, so long as $x_M \neq x_L$.
- We obtain, by approximating σ_{ρ̂(x_M)} and σ_{ρ̂(x_L)}, a Studentized test statistic:

$$Z = \frac{\widehat{\rho}(x_L) - \widehat{\rho}(x_M)}{\sqrt{\widehat{\sigma}_{\widehat{\rho}(x_L)}^2 + \widehat{\sigma}_{\widehat{\rho}(x_M)}^2}}$$
(10)

イロン イヨン イヨン イヨン

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

イロン イヨン イヨン イヨン

The Case of the U.S. and France

Take X_t and Y_t to be U.S. and French stock market returns, respectively.

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

イロン イヨン イヨン イヨン

What Might Confusion Be?

• Let $x_M = F_X^{-1}(0.50)$ be a median quantile of X and let x_T be a tail quantile of X_t associated with crisis.

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

イロン イヨン イヨン イヨン

What Might Confusion Be?

• Let $x_M = F_X^{-1}(0.50)$ be a median quantile of X and let x_T be a tail quantile of X_t associated with crisis.

• We say there is *confusion* from X to Y if

- $\rho(x_M) > \rho(x_T)$ and
- $\rho(x_T) = 0.$

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

<ロ> <同> <同> < 同> < 同> < 同>

Intuition for Confusion

J. Hamrick Contagion or Confusion?

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

イロン イヨン イヨン イヨン

æ

A Hypothesis Test For Confusion?

We can execute the hypothesis test

$$H_0: \ \rho(x_T) \ge \rho(x_M)$$
$$H_1: \ \rho(x_T) < \rho(x_M)$$

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

イロト イヨト イヨト イヨト

A Hypothesis Test For Confusion?

We can execute the hypothesis test

$$H_0: \ \rho(x_T) \ge \rho(x_M)$$
$$H_1: \ \rho(x_T) < \rho(x_M)$$

and, separately, determine if a 95% confidence interval around $\hat{\rho}(x_T)$ includes the origin.

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

・ロト ・回ト ・ヨト

A Hypothesis Test For Confusion?

We can execute the hypothesis test

$$H_0: \ \rho(x_T) \ge \rho(x_M)$$
$$H_1: \ \rho(x_T) < \rho(x_M)$$

and, separately, determine if a 95% confidence interval around $\hat{\rho}(x_T)$ includes the origin.

We call this approach the asymptotic approach, because it uses the asymptotic behavior of p̂(x).

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

A Minor Dependence Problem

The events

$$\{\omega \in \Omega : \widehat{\rho}(x_{\mathcal{M}}) > \widehat{\rho}(x_{\mathcal{T}})\}$$
(11)

・ロト ・回ト ・ヨト ・ヨト

æ

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

A Minor Dependence Problem

The events

$$\{\omega \in \Omega : \widehat{\rho}(x_{\mathcal{M}}) > \widehat{\rho}(x_{\mathcal{T}})\}$$
(11)

・ロト ・回ト ・ヨト ・ヨト

æ

and

$$\left\{\omega \in \Omega: 0 \in \left(\widehat{\rho}(x_{\mathcal{T}}) - 1.96\widehat{\sigma}_{\widehat{\rho}(x_{\mathcal{T}})}, \widehat{\rho}(x_{\mathcal{T}}) + 1.96\widehat{\sigma}_{\widehat{\rho}(x_{\mathcal{T}})}\right)\right\} \quad (12)$$

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

A Minor Dependence Problem

The events

$$\{\omega \in \Omega : \widehat{\rho}(x_{\mathcal{M}}) > \widehat{\rho}(x_{\mathcal{T}})\}$$
(11)

・ロト ・回ト ・ヨト ・ヨト

æ

and

$$\left\{\omega \in \Omega: 0 \in \left(\widehat{\rho}(x_{\mathcal{T}}) - 1.96\widehat{\sigma}_{\widehat{\rho}(x_{\mathcal{T}})}, \widehat{\rho}(x_{\mathcal{T}}) + 1.96\widehat{\sigma}_{\widehat{\rho}(x_{\mathcal{T}})}\right)\right\} \quad (12)$$

are dependent.

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

イロト イヨト イヨト イヨト

A Bootstrapping Approach

We take the raw data and create a bootstrap of the data by resampling from the data with replacement n times.

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

イロト イヨト イヨト イヨト

A Bootstrapping Approach

- We take the raw data and create a bootstrap of the data by resampling from the data with replacement *n* times.
- We do this N times. Denote the set of bootstraps by $\{B_1, B_2, ..., B_N\}$, where

$$B_{i} = \{(X_{i,1}, Y_{i,1}), (X_{i,1}, Y_{i,1}), ..., (X_{i,n}, Y_{i,n})\}.$$
 (13)

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

・ロット (四) (日) (日)

A Bootstrapping Approach

- ▶ We take the raw data and create a bootstrap of the data by resampling from the data with replacement *n* times.
- We do this N times. Denote the set of bootstraps by $\{B_1, B_2, ..., B_N\}$, where

$$B_{i} = \{(X_{i,1}, Y_{i,1}), (X_{i,1}, Y_{i,1}), ..., (X_{i,n}, Y_{i,n})\}.$$
 (13)

► For each bootstrap B_i , we ultimately generate estimates $\left(\widehat{\rho}_i(x_M), \widehat{\rho}_i(x_T), \widehat{\sigma}_{i,\widehat{\rho}(x_M)}, \widehat{\sigma}_{i,\widehat{\rho}(x_T)}\right)$ (14)

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

イロン イヨン イヨン イヨン

A Bootstrapping Approach

We count, over all N bootstraps, the number of times in which

$$\widehat{\rho}_{i}(x_{\mathcal{M}}) - 1.96\widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{M}})} > \widehat{\rho}_{i}(x_{\mathcal{T}}) + 1.96\widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{T}})}$$
(15)

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

イロン イヨン イヨン イヨン

A Bootstrapping Approach

We count, over all N bootstraps, the number of times in which

$$\widehat{\rho}_{i}(x_{\mathcal{M}}) - 1.96\widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{M}})} > \widehat{\rho}_{i}(x_{\mathcal{T}}) + 1.96\widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{T}})}$$
(15)

and

$$\widehat{\rho}_{i}(x_{\mathcal{T}}) - 1.96\widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{T}})} < 0 < \widehat{\rho}_{i}(x_{\mathcal{T}}) + 1.96\widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{T}})}.$$
(16)

Example: U.S. and French Equity Markets A Definition of Confusion A Bootstrapping Approach

A Bootstrapping Approach

We count, over all N bootstraps, the number of times in which

$$\widehat{\rho}_{i}(x_{\mathcal{M}}) - 1.96\widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{M}})} > \widehat{\rho}_{i}(x_{\mathcal{T}}) + 1.96\widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{T}})}$$
(15)

and

$$\widehat{\rho}_i(x_T) - 1.96\widehat{\sigma}_{i,\widehat{\rho}(x_T)} < 0 < \widehat{\rho}_i(x_T) + 1.96\widehat{\sigma}_{i,\widehat{\rho}(x_T)}.$$
(16)

We call the proportion of bootstraps satisfying these two conditions an empirical estimate of the *probability of confusion*.

Credit Default Swap Premia

7 Years of Credit Default Swap History

Historical credit default swap premia for Bear Stearns, Ambac, Citigroup, J.P. Morgan Chase, and Freddie Mac.

э

Credit Default Swap Premia

Results

Covariate X is the daily percentage change in Bears Stearns CDS.

Dependent	$\hat{\rho}(x_M)$	$\hat{\rho}(x_U)$	$\hat{\sigma}_{\hat{\rho}(x_M)}$	$\hat{\sigma}_{\hat{\rho}(x_U)}$	$Z_{\hat{\rho}(x_U)-\hat{\rho}(x_M)}$	P(Confusion)
Deutsche Bank (Subordinated)	0.3438	0.2744	0.0378	0.0942	-0.6832	0.005
J.P. Morgan Chase	0.6880	0.5382	0.0213	0.0802	-1.8040	0.059
Fannie Mae	0.4147	0.3044	0.0396	0.1037	-0.9934	0.078
Freddie Mac	0.3978	0.2671	0.0406	0.1075	-1.1375	0.099
Countrywide	0.5956	0.4146	0.0259	0.0858	-2.0314*	0.002
Bank of America	0.5794	0.3793	0.0296	0.1017	-1.8885	0.009
Ambac Assurance	0.3628	0.3900	0.0400	0.0880	0.2818	0.000
Ambac Financial Group	0.3709	0.2797	0.0401	0.1008	-0.8413	0.095
Lehman Brothers	0.8731	0.7204	0.0074	0.0583	-2.5981*	0.000
Citigroup	0.5797	0.4260	0.0296	0.0955	-1.5372	0.001

<ロ> <同> <同> < 同> < 同> < 同> :

æ

Credit Default Swap Premia

Confusion from Countrywide CDS to Ambac CDS?

イロン イヨン イヨン イヨン

There is no evidence of spatial contagion in credit markets.

・ロト ・回ト ・ヨト ・ヨト

æ

- There is no evidence of spatial contagion in credit markets.
- There is limited evidence of a condition stronger than the absence of contagion, which we call *confusion*.

イロト イヨト イヨト イヨト

- There is no evidence of spatial contagion in credit markets.
- There is limited evidence of a condition stronger than the absence of contagion, which we call *confusion*.
- Diversified bond and fixed-income derivative investors do not have to worry about "all correlations going to one" during crises.

・ロト ・回ト ・ヨト

- Hamrick, J. and M.S. Taqqu. "Testing diffusions for stationarity." *Mathematical Methods of Operations Research*, 69:3 (2009), pp. 509-551.
- Fan, J. and I. Gijbels. *Local Polynomial Modelling and Its Applications*, Chapman & Hall.
- Pericola, M. and M. Sbracia. "A Primer on Financial Contagion." J. Econ. Surveys. Vol. 17, No. 17 (2003), pp. 571-608.

<ロ> <同> <同> < 同> < 同> < 同>