Contagion and Confusion in Credit Markets

Jeff Hamrick (joint work with M.S. Taqqu)

Rhodes College

June 24, 2010

K ロ ト K 倒 ト K 走 ト

- 4 店)

 $2Q$

≣

[The Panic of 2008](#page-1-0)

[Models of Dependence](#page-8-0) [Contagion and Confusion](#page-31-0) [Data and Analysis](#page-47-0) [Conclusions & References](#page-50-0)

[Notions of Contagion](#page-3-0) [Measuring Dependence](#page-4-0)

What is Contagion?

 \blacktriangleright There are many definitions of financial contagion (Pericoli & Sbracia 2001).

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

[Notions of Contagion](#page-3-0) [Measuring Dependence](#page-4-0)

What is Contagion?

- \triangleright There are many definitions of financial contagion (Pericoli & Sbracia 2001).
- \triangleright Qualitatively, we will say that there is contagion from market X (or time series X) to another market Y (or time series Y) if X and Y are *more dependent* during times of crisis than during normal, calmer times.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

つへへ

[Notions of Contagion](#page-1-0) [Measuring Dependence](#page-4-0)

What is Contagion?

- \triangleright There are many definitions of financial contagion (Pericoli & Sbracia 2001).
- \triangleright Qualitatively, we will say that there is contagion from market X (or time series X) to another market Y (or time series Y) if X and Y are *more dependent* during times of crisis than during normal, calmer times.
- \triangleright Question: How do we measure dependence between two time series?

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

へのへ

[Notions of Contagion](#page-1-0) [Measuring Dependence](#page-7-0)

The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ .

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

[Notions of Contagion](#page-1-0) [Measuring Dependence](#page-7-0)

The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ .

 ρ measures the *linear* dependence between two random variables X and Y

K ロ ト K 倒 ト K 走 ト

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

[Notions of Contagion](#page-1-0) [Measuring Dependence](#page-7-0)

The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ .

- ρ measures the *linear* dependence between two random variables X and Y .
- ρ (or an analogue) characterizes the joint distribution of X and Y if and only if the joint distribution of X and Y is elliptical.

∢ ロ ▶ : ⊀ 母 ▶ : ∢ ヨ ▶

つへへ

[Notions of Contagion](#page-1-0) [Measuring Dependence](#page-4-0)

The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ .

- ρ measures the *linear* dependence between two random variables X and Y .
- ρ (or an analogue) characterizes the joint distribution of X and Y if and only if the joint distribution of X and Y is elliptical.
- ρ is constant.

∢ ロ ▶ : ⊀ 母 ▶ : ∢ ヨ ▶

つへへ

[Linear Models](#page-11-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

K ロ ト K 倒 ト K 走 ト

- 4 店)

 $2Q$

扂

Linear Models in Finance

Pearson's ρ is especially suitable for linear factor models in finance, i.e., linear regression models.

[Linear Models](#page-11-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

K ロ ト K 倒 ト K 走 ト

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

 $2Q$

Linear Models in Finance

Pearson's ρ is especially suitable for linear factor models in finance, i.e., linear regression models.

Example: $Y_t = \alpha + \beta X_t + \epsilon_t$, where

[Linear Models](#page-11-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

K ロ ト K 倒 ト K 走 ト

へのへ

Linear Models in Finance

Pearson's ρ is especially suitable for linear factor models in finance, i.e., linear regression models.

Example: $Y_t = \alpha + \beta X_t + \epsilon_t$, where

- \blacktriangleright α and β are constants
- \blacktriangleright ϵ_t is a sequence of independent, identically distributed, centered Gaussian random variables with variance σ^2

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

K ロ ト K 倒 ト K 走 ト

へのへ

Linear Models in Finance

Pearson's ρ is especially suitable for linear factor models in finance, i.e., linear regression models.

Example: $Y_t = \alpha + \beta X_t + \epsilon_t$, where

- \blacktriangleright α and β are constants
- \blacktriangleright ϵ_t is a sequence of independent, identically distributed, centered Gaussian random variables with variance σ^2
- \blacktriangleright X_t is, for example, the excess returns of the market (S&P 500)
- \blacktriangleright Y_t is, for example, the returns of Caterpillar stock

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

メロメメ 御き メミメメ ミト

È

 299

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-15-0) [A Definition of Contagion](#page-24-0)

イロト イ押 トイモト イモト

重

 $2Q$

Extending the Linear Model

Let

$$
m(x) := \mathbb{E}(Y|X=x) = \alpha + \beta x \tag{1}
$$

with regression slope $m'(x) = \beta$.

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

Extending the Linear Model

Let

$$
m(x) := \mathbb{E}(Y|X = x) = \alpha + \beta x \tag{1}
$$

with regression slope $m'(x) = \beta$. It also follows that the regression slope $\beta = \rho \sigma_Y / \sigma_X$ and therefore that

$$
\rho = \beta \sigma_X / \sigma_Y. \tag{2}
$$

メロメ メ御 メメ ミメ メミメ

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

K ロ ト K 倒 ト K 走 ト

へのへ

Extending the Linear Model

From linear regression theory, we know that we can write the variance σ_Y^2 of Y as a sum of the variance explained by the regression (namely, $\beta^2 \sigma_X^2$) and the residual (unexplained) variance σ^2 .

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

Extending the Linear Model

From linear regression theory, we know that we can write the variance σ_Y^2 of Y as a sum of the variance explained by the regression (namely, $\beta^2 \sigma_X^2$) and the residual (unexplained) variance σ^2 . In other words,

$$
\sigma_Y^2 = \beta^2 \sigma_X^2 + \sigma^2 \tag{3}
$$

K ロ ト K 倒 ト K 走 ト

へのへ

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

Extending the Linear Model

From linear regression theory, we know that we can write the variance σ_Y^2 of Y as a sum of the variance explained by the regression (namely, $\beta^2 \sigma_X^2$) and the residual (unexplained) variance σ^2 . In other words,

$$
\sigma_Y^2 = \beta^2 \sigma_X^2 + \sigma^2 \tag{3}
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} -1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

へのへ

and hence

$$
\rho = \sigma_X \beta / (\sigma_X^2 \beta^2 + \sigma^2)^{1/2}.
$$
 (4)

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

Extending the Linear Model

We now extend the usual linear regression model

$$
Y_t = \alpha + \beta X_t + \epsilon_t \tag{5}
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

Extending the Linear Model

We now extend the usual linear regression model

$$
Y_t = \alpha + \beta X_t + \epsilon_t \tag{5}
$$

to

$$
Y_t = m(X_t) + \sigma(X_t)\epsilon_t \tag{6}
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

Extending the Linear Model

We now extend the usual linear regression model

$$
Y_t = \alpha + \beta X_t + \epsilon_t \tag{5}
$$

to

$$
Y_t = m(X_t) + \sigma(X_t)\epsilon_t \tag{6}
$$

K ロ ▶ K 御 ▶ K 舌

 $2Q$

and the usual correlation coefficient to

$$
\rho(x) = \frac{\sigma_X \beta(x)}{(\sigma_X^2 \beta(x)^2 + \sigma^2(x))^{1/2}},
$$
\n(7)

where m and σ are smooth real-valued functions.

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

Extending the Linear Model

We call ρ the local correlation function:

$$
\rho(x) = \frac{\sigma_X \beta(x)}{(\sigma_X^2 \beta(x))^2 + \sigma^2(x)^{1/2}}.
$$
 (8)

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

メロメ メ御 メメ ミメ メミメ

 $2Q$

Extending the Linear Model

We call ρ the local correlation function:

$$
\rho(x) = \frac{\sigma_X \beta(x)}{(\sigma_X^2 \beta(x))^2 + \sigma^2(x)^{1/2}}.
$$
 (8)

- \triangleright σ_X denotes the unconditional standard deviation of X
- \blacktriangleright $\beta(x) = m'(x)$ is the slope of the regression function $m(x)$
- $\triangleright \sigma^2(x) = \text{Var}(Y | X = x)$ is the scedastic function

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-26-0)

K ロ ト K 倒 ト K 走 ト

- 4 店)

 $2Q$

A Spatial Definition of Contagion

Let

- \blacktriangleright X_t be U.S. stock market returns
- \blacktriangleright Y_t be French stock market returns

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-26-0)

K ロ ト K 倒 ト K 走 ト

へのへ

A Spatial Definition of Contagion

Let

- \triangleright X_t be U.S. stock market returns
- \blacktriangleright Y_t be French stock market returns

Moreover, let

- \blacktriangleright $x_L = F_X^{-1}$ $\overline{X}^{-1}(0.025)$ be a lower quantile of X ; and
- \blacktriangleright $x_M = F_X^{-1}$ $\overline{X}^{-1}(0.50)$ be a median quantile of X.

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

メロメ メ御 メメ ミメ メミメ

つへへ

A Spatial Definition of Contagion

Let

- \triangleright X_t be U.S. stock market returns
- \blacktriangleright Y_t be French stock market returns

Moreover, let

$$
\blacktriangleright x_L = F_X^{-1}(0.025)
$$
 be a lower quantile of X; and

 \blacktriangleright $x_M = F_X^{-1}$ $\overline{X}^{-1}(0.50)$ be a median quantile of X.

Then we say that there is contagion from X to Y if $\rho(x_L) > \rho(x_M)$.

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

K ロ ト K 倒 ト K 走 ト

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

 $2Q$

Developing the Hypothesis Test

We state the relevant hypothesis test:

 $H_0: \rho(x_l) \leq \rho(x_M)$ (no contagion) $H_1: \rho(x_I) > \rho(x_M)$ (contagion).

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

Developing the Hypothesis Test

We state the relevant hypothesis test:

$$
H_0: \ \rho(x_L) \leq \rho(x_M) \ \text{(no contain)}
$$
\n
$$
H_1: \ \rho(x_L) > \rho(x_M) \ \text{(contagion)}.
$$

which is facilitated by the fact that, under certain limiting conditions,

$$
\widehat{\rho}(x) \stackrel{D}{\longrightarrow} N(\rho(x), \widehat{\sigma}_{\widehat{\rho}(x)}).
$$
 (9)

K ロ ト K 倒 ト K 走 ト

→ 手

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

メロメ メ御 メメ ミメ メミメ

 $2Q$

Developing the Hypothesis Test

Additionally, $\hat{\rho}(x_M)$ and $\hat{\rho}(x_L)$ are asymptotically independent, so long as $x_M \neq x_L$.

[Linear Models](#page-8-0) [From Linear Models to Nonlinear Models](#page-14-0) [A Definition of Contagion](#page-24-0)

Developing the Hypothesis Test

- Additionally, $\hat{\rho}(x_M)$ and $\hat{\rho}(x_L)$ are asymptotically independent, so long as $x_M \neq x_L$.
- \blacktriangleright We obtain, by approximating $\sigma_{\widehat{\rho}(x_M)}$ and $\sigma_{\widehat{\rho}(x_L)}$, a Studentized test statistics test statistic:

$$
Z = \frac{\widehat{\rho}(x_L) - \widehat{\rho}(x_M)}{\sqrt{\widehat{\sigma}_{\widehat{\rho}(x_L)}^2 + \widehat{\sigma}_{\widehat{\rho}(x_M)}^2}}
$$
(10)

K ロ ト K 倒 ト K 走 ト

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

K ロ ト K 何 ト K ミ ト

(人 語)

重

 $2Q$

The Case of the U.S. and France

Take X_t and Y_t to be U.S. and French stock market returns, respectively.

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-33-0) [A Bootstrapping Approach](#page-38-0)

K ロ ト K 倒 ト K 走 ト

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

 $2Q$

What Might Confusion Be?

 \blacktriangleright Let $x_M = F_X^{-1}$ $\overline{X}^1(0.50)$ be a median quantile of X and let $x_{\mathcal{T}}$ be a tail quantile of X_t associated with crisis.

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

メロメ メ御 メメ ミメ メミメ

つへへ

What Might Confusion Be?

 \blacktriangleright Let $x_M = F_X^{-1}$ $\overline{X}^1(0.50)$ be a median quantile of X and let $x_{\mathcal{T}}$ be a tail quantile of X_t associated with crisis.

 \triangleright We say there is confusion from X to Y if

- $\rho(x_M) > \rho(x_T)$ and
- $\rightharpoonup \rho(x_T) = 0.$

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

K ロ) X d) X X 를) X 를)

重

 $2Q$

Intuition for Confusion

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

A Hypothesis Test For Confusion?

 \triangleright We can execute the hypothesis test

$$
H_0: \rho(x_T) \ge \rho(x_M)
$$

$$
H_1: \rho(x_T) < \rho(x_M)
$$

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

K ロ ト K 倒 ト K 走 ト

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

 $2Q$

A Hypothesis Test For Confusion?

 \triangleright We can execute the hypothesis test

$$
H_0: \rho(x_T) \ge \rho(x_M)
$$

$$
H_1: \rho(x_T) < \rho(x_M)
$$

and, separately, determine if a 95% confidence interval around $\widehat{\rho}(x_{\mathcal{T}})$ includes the origin.

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

K ロ ▶ K 御 ▶ K 舌

へのへ

A Hypothesis Test For Confusion?

 \triangleright We can execute the hypothesis test

$$
H_0: \rho(x_T) \ge \rho(x_M)
$$

$$
H_1: \rho(x_T) < \rho(x_M)
$$

and, separately, determine if a 95% confidence interval around $\widehat{\rho}(x_{\mathcal{T}})$ includes the origin.

 \triangleright We call this approach the asymptotic approach, because it uses the asymptotic behavior of $\hat{\rho}(x)$.

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-40-0)

A Minor Dependence Problem

The events

$$
\{\omega \in \Omega : \widehat{\rho}(x_M) > \widehat{\rho}(x_T)\}\tag{11}
$$

イロト イ押 トイモト イモト

重

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-40-0)

A Minor Dependence Problem

The events

$$
\{\omega \in \Omega : \widehat{\rho}(x_M) > \widehat{\rho}(x_T)\}\tag{11}
$$

イロト イ押 トイモト イモト

重

 $2Q$

and

$$
\left\{\omega \in \Omega : 0 \in \left(\widehat{\rho}(x_{\mathcal{T}}) - 1.96\widehat{\sigma}_{\widehat{\rho}(x_{\mathcal{T}})}, \widehat{\rho}(x_{\mathcal{T}}) + 1.96\widehat{\sigma}_{\widehat{\rho}(x_{\mathcal{T}})}\right)\right\} \quad (12)
$$

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

A Minor Dependence Problem

The events

$$
\{\omega \in \Omega : \widehat{\rho}(x_M) > \widehat{\rho}(x_T)\}\tag{11}
$$

イロメ イ御メ イヨメ イヨメ

重

 $2Q$

and

$$
\left\{\omega \in \Omega : 0 \in \left(\widehat{\rho}(x_{\mathcal{T}}) - 1.96\widehat{\sigma}_{\widehat{\rho}(x_{\mathcal{T}})}, \widehat{\rho}(x_{\mathcal{T}}) + 1.96\widehat{\sigma}_{\widehat{\rho}(x_{\mathcal{T}})}\right)\right\} \quad (12)
$$

are dependent.

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

K ロ ⊁ K 伊 ⊁ K 店

 $2Q$

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

A Bootstrapping Approach

 \triangleright We take the raw data and create a bootstrap of the data by resampling from the data with replacement n times.

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

K ロ ⊁ K 伊 ⊁ K 店

 $2Q$

A Bootstrapping Approach

- \triangleright We take the raw data and create a bootstrap of the data by resampling from the data with replacement n times.
- \triangleright We do this N times. Denote the set of bootstraps by ${B_1, B_2, ..., B_N}$, where

$$
B_i = \{ (X_{i,1}, Y_{i,1}), (X_{i,1}, Y_{i,1}), ..., (X_{i,n}, Y_{i,n}) \}.
$$
 (13)

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

イロメ イ御メ イヨメ イヨメ

 Ω

A Bootstrapping Approach

- \triangleright We take the raw data and create a bootstrap of the data by resampling from the data with replacement n times.
- \triangleright We do this N times. Denote the set of bootstraps by ${B_1, B_2, ..., B_N}$, where

$$
B_i = \{ (X_{i,1}, Y_{i,1}), (X_{i,1}, Y_{i,1}), ..., (X_{i,n}, Y_{i,n}) \}.
$$
 (13)

 \blacktriangleright For each bootstrap B_i , we ultimately generate estimates $\left(\widehat{\rho}_{i}(x_{M}), \widehat{\rho}_{i}(x_{T}), \widehat{\sigma}_{i, \widehat{\rho}(x_{M})}, \widehat{\sigma}_{i, \widehat{\rho}(x_{T})}\right)$ (14)

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

扂

A Bootstrapping Approach

We count, over all N bootstraps, the number of times in which

$$
\widehat{\rho}_i(x_M) - 1.96 \widehat{\sigma}_{i,\widehat{\rho}(x_M)} > \widehat{\rho}_i(x_T) + 1.96 \widehat{\sigma}_{i,\widehat{\rho}(x_T)}
$$
(15)

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

A Bootstrapping Approach

We count, over all N bootstraps, the number of times in which

$$
\widehat{\rho}_i(x_M) - 1.96 \widehat{\sigma}_{i,\widehat{\rho}(x_M)} > \widehat{\rho}_i(x_T) + 1.96 \widehat{\sigma}_{i,\widehat{\rho}(x_T)}
$$
(15)

and

$$
\widehat{\rho}_i(x_{\mathcal{T}}) - 1.96 \widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{T}})} < 0 < \widehat{\rho}_i(x_{\mathcal{T}}) + 1.96 \widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{T}})}.
$$
 (16)

[Example: U.S. and French Equity Markets](#page-31-0) [A Definition of Confusion](#page-32-0) [A Bootstrapping Approach](#page-38-0)

K ロ ト K 倒 ト K 走 ト

 Ω

A Bootstrapping Approach

We count, over all N bootstraps, the number of times in which

$$
\widehat{\rho}_i(x_M) - 1.96 \widehat{\sigma}_{i,\widehat{\rho}(x_M)} > \widehat{\rho}_i(x_T) + 1.96 \widehat{\sigma}_{i,\widehat{\rho}(x_T)}
$$
(15)

and

$$
\widehat{\rho}_i(x_{\mathcal{T}}) - 1.96 \widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{T}})} < 0 < \widehat{\rho}_i(x_{\mathcal{T}}) + 1.96 \widehat{\sigma}_{i,\widehat{\rho}(x_{\mathcal{T}})}.
$$
 (16)

We call the proportion of bootstraps satisfying these two conditions an empirical estimate of the probability of confusion.

[Credit Default Swap Premia](#page-47-0)

7 Years of Credit Default Swap History

Historical credit default swap premia for Bear Stearns, Ambac, Citigroup, J.P. Morgan Chase, and Freddie Mac.

 $2Q$

Ξ

[Credit Default Swap Premia](#page-47-0)

Results

Covariate X is the daily percentage change in Bears Stearns CDS.

メロメ メ都 メメ きょくきょう

È

 299

[Credit Default Swap Premia](#page-47-0)

Confusion from Countrywide CDS to Ambac CDS?

K ロ ト K 何 ト K ミ ト

 $\rightarrow \equiv$

E

 \blacktriangleright There is no evidence of spatial contagion in credit markets.

メロト メタト メミト メミト

重

- \blacktriangleright There is no evidence of spatial contagion in credit markets.
- \blacktriangleright There is limited evidence of a condition stronger than the absence of contagion, which we call confusion.

K ロ ト K 倒 ト K 走 ト

K 로)

- \blacktriangleright There is no evidence of spatial contagion in credit markets.
- \blacktriangleright There is limited evidence of a condition stronger than the absence of contagion, which we call confusion.
- \triangleright Diversified bond and fixed-income derivative investors do not have to worry about "all correlations going to one" during crises.

K ロ ト K 倒 ト K 走 ト

つくい

- 譶 Hamrick, J. and M.S. Taqqu. "Testing diffusions for stationarity." Mathematical Methods of Operations Research, 69:3 (2009), pp. 509-551.
- S. Fan, J. and I. Gijbels. Local Polynomial Modelling and Its Applications, Chapman & Hall.
- 譶 Pericola, M. and M. Sbracia. "A Primer on Financial Contagion." J. Econ. Surveys. Vol. 17, No. 17 (2003), pp. 571-608.

K ロ ト K 倒 ト K 走 ト

つくい