K ロ ▶ K 何 ▶ K 日

 Ω

Optimal control of trading algorithms: a general impulse control approach

Bruno Bouchard¹, Ngoc-Minh Dang² and Charles-Albert l ahalle 3

6th World Congress of the Bachelier Finance Society June 24 2010

¹CEREMADE, University Paris Dauphine and CREST-ENSAE, bouchard@ceremade.dauphine.fr

²CEREMADE, University Paris Dauphine and CA Cheuvreux,

dang@ceremade.dauphine.fr

³CA Cheuvreux, clehalle@cheuvreux.com

Ngoc-Minh Dang

Outline

[Introduction](#page-2-0)

[Problem formulation](#page-13-0)

[Control policies](#page-13-0) [Output of trading algorithm and gain/cost function](#page-18-0) [Example: PoV Algorithm](#page-22-0)

[Viscosity characterization](#page-25-0)

[Domain of definition](#page-25-0) [PDE derivation](#page-27-0) [Viscosity characterization](#page-34-0)

[Numerical result](#page-36-0)

[PoV theoretical case](#page-36-0) [PoV real case](#page-43-0)

Ngoc-Minh Dang

Liquidity effect

 \triangleright Buy/sell arbitrary combination of stocks - finite time horizon.

Ngoc-Minh Dang

Liquidity effect

- \triangleright Buy/sell arbitrary combination of stocks finite time horizon.
- \triangleright Auction markets implies a *liquidity effect* (or *market impact/execution costs*): v shares, during δ , from τ generates an over-cost $\eta(\mathbf{v}; \tau, \tau + \delta)$.

Ngoc-Minh Dang

Liquidity effect

- \triangleright Buy/sell arbitrary combination of stocks finite time horizon.
- \triangleright Auction markets implies a *liquidity effect* (or *market impact/execution costs*): v shares, during δ , from τ generates an over-cost $\eta(\mathbf{v}; \tau, \tau + \delta)$.
- \triangleright "Obtained price": $S_{\tau} + \eta(v; \tau, \tau + \delta)$ with

$$
\eta(\mathbf{v}; \tau, \tau + \delta) = \alpha \cdot \underbrace{\psi_{BA}(\tau, \tau + \delta)}_{\text{Bid-Ask spread}} + \kappa \cdot \sigma(\tau, \tau + \delta) \underbrace{\left(\frac{\mathbf{v}}{V(\tau, \tau + \delta)}\right)^{\gamma}}_{\text{asked volume ratio}}.
$$

Ngoc-Minh Dang

Liquidity effect

- \triangleright Buy/sell arbitrary combination of stocks finite time horizon.
- \triangleright Auction markets implies a *liquidity effect* (or *market impact/execution costs*): v shares, during δ , from τ generates an over-cost $\eta(\mathbf{v}; \tau, \tau + \delta)$.
- \triangleright "Obtained price": $S_{\tau} + \eta(v; \tau, \tau + \delta)$ with

$$
\eta(\mathbf{v}; \tau, \tau + \delta) = \alpha \cdot \underbrace{\psi_{BA}(\tau, \tau + \delta)}_{\text{Bid-Ask spread}} + \kappa \cdot \sigma(\tau, \tau + \delta) \underbrace{\left(\frac{\mathbf{v}}{V(\tau, \tau + \delta)}\right)^{\gamma}}_{\text{asked volume ratio}}.
$$

 Ω

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$ \rightarrow \rightarrow $\overline{\rightarrow}$

Fig. Remark: η introduced to take into account quantitatively the aggregated effet on price.

 Ω

Classical approaches

- \triangleright Original framework: a priori discretization of the trading phases [Almgren and Chriss, 2000], taking into account real time analytics came from continuous time models [Almgren, 2009].
- \triangleright Modified framework: inclusion of new effect
	- \triangleright statistical effects [Lehalle, 2008],
	- specific properties of the price diffusion process (mean reverting) [Lehalle, 2009],
	- \triangleright information at an orderbook level [Hewlett, 2007],
	- \triangleright Bayesian estimation of the market trend [Almgren and Lorenz, 2008].

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Ngoc-Minh Dang

New approach

- \blacktriangleright Take into account "slicing" of parent orders into child orders and their interactions with the market microstructure.
- \triangleright Offer the capability to model the market underlying moves via time-continuous models.

 Ω

New approach

- \blacktriangleright Take into account "slicing" of parent orders into child orders and their interactions with the market microstructure.
- \triangleright Offer the capability to model the market underlying moves via time-continuous models.
- \triangleright Algorithmic trading process is the one of switching between those states:
	- \triangleright the passive regime: no slice in market, price formation process will continue to take place without interaction with the controlled order,
	- \triangleright the active regime: parametrized slice in market, duration bounded from below by a constant δ , characteristics of a slice are chosen just before its launch, cannot be modified until it ends.

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Advantages

 \triangleright Able to control the launch of any type of slices, from very simple ones (as in [Almgren and Chriss, 2000]) to the launch of "trading robots" (incorporating Smart Order Routing).

Ngoc-Minh Dang

Advantages

- \triangleright Able to control the launch of any type of slices, from very simple ones (as in [Almgren and Chriss, 2000]) to the launch of "trading robots" (incorporating Smart Order Routing).
- \blacktriangleright Lead to an optimized not-uniformly sampled sequence of simple slices, taking into account the market rhythm.

メロト スタト スミトス

 Ω

Advantages

- \triangleright Able to control the launch of any type of slices, from very simple ones (as in [Almgren and Chriss, 2000]) to the launch of "trading robots" (incorporating Smart Order Routing).
- \blacktriangleright Lead to an optimized not-uniformly sampled sequence of simple slices, taking into account the market rhythm.
- \blacktriangleright Also to control *meta trading algorithms*: optimal launch of sequence of traditional algorithms (the first to proposed this possibility).

イロト イ押ト イヨト イ

 Ω

Advantages

- \triangleright Able to control the launch of any type of slices, from very simple ones (as in [Almgren and Chriss, 2000]) to the launch of "trading robots" (incorporating Smart Order Routing).
- \blacktriangleright Lead to an optimized not-uniformly sampled sequence of simple slices, taking into account the market rhythm.
- \triangleright Also to control *meta trading algorithms*: optimal launch of sequence of traditional algorithms (the first to proposed this possibility).
- \triangleright Continuous-time allows the use of traditional models and tools from quantitative finance.

$$
\blacktriangleright (\tau_i, \mathcal{E}_i, \delta_i)_{i \geq 1} \text{ where:}
$$

Ngoc-Minh Dang

- \blacktriangleright $(\tau_i, \mathcal{E}_i, \delta_i)_{i \geq 1}$ where:
	- \bullet $(\tau_i)_{i>1}$ non-decreasing sequence of stopping times: times order is sent,
	- ► $(\delta_i)_{i>1}$ sequence of $[\underline{\delta}, \infty)$ -valued random variable where $\delta \in (0, T)$: length of the period (latency period).
- $\triangleright \tau_i + \delta_i \leq \tau_{i+1}$ and $(\delta_i > 0 \Rightarrow \tau_i + \delta_i \leq T)$, $i > 1$,

- \blacktriangleright $(\tau_i, \mathcal{E}_i, \delta_i)_{i \geq 1}$ where:
	- \bullet (τ_i)_{i>1} non-decreasing sequence of stopping times: times order is sent,
	- ► $(\mathcal{E}_i)_{i>1}$ sequence of E-valued random variables, E compact subset of \mathbb{R}^d , $d \geq 1$: value of algorithm's parameters,
	- ► $(\delta_i)_{i>1}$ sequence of $[\underline{\delta}, \infty)$ -valued random variable where $\delta \in (0, T)$: length of the period (latency period).
- $\triangleright \tau_i + \delta_i \leq \tau_{i+1}$ and $(\delta_i > 0 \Rightarrow \tau_i + \delta_i \leq T)$, $i > 1$,
- \blacktriangleright $(\delta_i, \mathcal{E}_i)$ is \mathcal{F}_{τ_i} -measurable, $i \geq 1$,

- \blacktriangleright $(\tau_i, \mathcal{E}_i, \delta_i)_{i \geq 1}$ where:
	- \bullet (τ_i)_{i>1} non-decreasing sequence of stopping times: times order is sent,
	- ► $(\mathcal{E}_i)_{i>1}$ sequence of E-valued random variables, E compact subset of \mathbb{R}^d , $d \geq 1$: value of algorithm's parameters,
	- ► $(\delta_i)_{i>1}$ sequence of $[\underline{\delta}, \infty)$ -valued random variable where $\delta \in (0, T)$: length of the period (latency period).
- $\triangleright \tau_i + \delta_i \leq \tau_{i+1}$ and $(\delta_i > 0 \Rightarrow \tau_i + \delta_i \leq T)$, $i > 1$,

$$
\blacktriangleright (\delta_i, \mathcal{E}_i) \text{ is } \mathcal{F}_{\tau_i}\text{-measurable }, i \geq 1 ,
$$

 $\blacktriangleright \nu : t \in [\tau_i, \tau_i + \delta_i) \mapsto \nu_t$: value of the parameter at $t,$ $\nu_t = \varpi \in \mathbb{R}^d \setminus E$ for $t \in A((\tau_i, \delta_i)_{i \geq 1})$, defined as

$$
A((\tau_i,\delta_i)_{i\geq 1}):=\mathbb{R}_+\setminus \left(\bigcup_{i\geq 1}[\tau_i,\tau_i+\delta_i)\right)\ .
$$

メロメメ 倒 メメ ミメメ 毛

Ξ

 Ω

Ngoc-Minh Dang

Ngoc-Minh Dang

Output of trading algorithm and gain/cost function

Dynamics - Objective functional

 \blacktriangleright $(t, x) \in [0, \, \mathcal{T}] \times \mathbb{R}^{d}$, $X_{t, x}^{\nu}$ strong solution of

$$
X_{t,x}^{\nu}(s) = x+1_{s\geq t} \bigg(\int_t^s b(X_{t,x}^{\nu}(r),\nu_r) dr + \int_t^s a(X_{t,x}^{\nu}(r),\nu_r) dW_r + \sum_{i\geq 1} \beta(X_{t,x}^{\nu}(\tau_i^{\nu}-),\mathcal{E}_i^{\nu},\delta_i^{\nu}) \mathbf{1}_{t<\tau_i^{\nu}\leq s} \bigg).
$$

Ngoc-Minh Dang

Output of trading algorithm and gain/cost function

Dynamics - Objective functional

 \blacktriangleright $(t, x) \in [0, \, \mathcal{T}] \times \mathbb{R}^{d}$, $X_{t, x}^{\nu}$ strong solution of

$$
X_{t,x}^{\nu}(s) = x+1_{s\geq t} \bigg(\int_t^s b(X_{t,x}^{\nu}(r), \nu_r) dr + \int_t^s a(X_{t,x}^{\nu}(r), \nu_r) dW_r + \sum_{i\geq 1} \beta(X_{t,x}^{\nu}(\tau_i^{\nu}-), \mathcal{E}_i^{\nu}, \delta_i^{\nu}) 1_{t<\tau_i^{\nu}\leq s} \bigg).
$$

 \triangleright Controller maximizes the functional

$$
\nu\in\mathcal{S}\mapsto \Pi_{t,\mathsf{x}}(\nu)\mathrel{\mathop:}= g(X^\nu_{t,\mathsf{x}}(\mathcal{T}))+\sum_{i\in\mathbb{I}^\nu_{t,\mathcal{T}}} f(X^\nu_{t,\mathsf{x}}(\tau^\nu_i+\delta^\nu_i-),\mathcal{E}^\nu_i)\;,
$$

メロメメ 倒 メメ ミメメ 毛 Ξ Ω

Ngoc-Minh Dang

Output of trading algorithm and gain/cost function

Dynamics - Objective functional

 \blacktriangleright $(t, x) \in [0, \, \mathcal{T}] \times \mathbb{R}^{d}$, $X_{t, x}^{\nu}$ strong solution of

$$
X_{t,x}^{\nu}(s) = x+1_{s\geq t} \bigg(\int_t^s b(X_{t,x}^{\nu}(r), \nu_r) dr + \int_t^s a(X_{t,x}^{\nu}(r), \nu_r) dW_r + \sum_{i\geq 1} \beta(X_{t,x}^{\nu}(\tau_i^{\nu}-), \mathcal{E}_i^{\nu}, \delta_i^{\nu}) 1_{t<\tau_i^{\nu}\leq s} \bigg).
$$

 \triangleright Controller maximizes the functional

$$
\nu\in\mathcal{S}\mapsto \Pi_{t,\mathsf{x}}(\nu)\mathrel{\mathop:}= g(X^\nu_{t,\mathsf{x}}(\mathcal{T}))+\sum_{i\in\mathbb{I}^\nu_{t,\mathcal{T}}} f(X^\nu_{t,\mathsf{x}}(\tau^\nu_i+\delta^\nu_i-),\mathcal{E}^\nu_i)\;,
$$

 \triangleright over the admissible set

$$
\mathcal{S}_{t,\delta,e} := \{ \nu \in \mathcal{S} \; : \; \nu_s = e \text{ for } s \in [t,t+\delta) \text{ and } \Delta_{t+\delta}^{\nu} = 0 \},
$$
\n
$$
(\delta,e) \in \mathbb{R}_+ \times \bar{E} \text{: initial state (remaining latency, parametricity) for all } \delta \in \mathbb{R}^n \text{ and } \delta \in \mathbb{R}^n \text{ for all } \delta \in \mathbb{R}^n \text{ and } \delta \in \mathbb{R}^n \text{ for all } \delta \in \mathbb{R}^n \text{ and } \delta \in \mathbb{R}^n \text{ for all } \delta \in \mathbb{R}^n \text{ and } \delta \in \mathbb{R}^n \text{ for all } \delta \in \mathbb{R}^n \text{ and } \delta \in \mathbb{R}^n \text{ for all } \delta \in \mathbb{R}^n \text{ and } \delta \in \mathbb{R}^n \text{ for all } \delta \in \mathbb{R}^n \text{ for all } \delta \in \mathbb{R}^n \text{ and } \delta \in \mathbb{R}^n \text{ for all } \delta \in \mathbb{R}^n \text{ for all } \delta \in \mathbb{R}^n \text{ and } \delta \in \mathbb{R}^n \text{ for all } \delta \in \
$$

Ngoc-Minh Dang

Value function

- $I \vdash J(t, x; \nu) := \mathbb{E}[\Pi_{t,x}(\nu)]$ is well defined for all $\nu \in S$ and admits at most polynomial growth.
- \triangleright Technical reason related to the DPP, consider only admissible trading strategies $\nu\in\mathcal{S}_{t,\delta,e}$ such that ν is independent on $\mathcal{F}_t,$ denote by $\mathcal{S}^{\mathsf{a}}_{t, \delta, \mathsf{e}}$ (see [Bouchard and Touzi, 2009]).
- \blacktriangleright Value function

$$
V(t,x,\delta,e) := \sup_{\nu \in S^a_{t,\delta,e}} J(t,x;\nu).
$$

 4 ロ) 4 何) 4 ヨ)

 Ω

Ngoc-Minh Dang

[Introduction](#page-2-0) **[Problem formulation](#page-13-0)** [Viscosity characterization](#page-25-0) [Numerical result](#page-36-0)
 Ω 00000 00000 000000 000000 00000

Example: PoV Algorithm

Percent of Volume (PoV) Algorithm

Objective : Buy a quantity Q_0 of one stock S between 0 and $T > 0$ at a rate \mathcal{E}_{i}^{ν} compared to V_{t} (instantaneously traded market volume).

Ngoc-Minh Dang

Example: PoV Algorithm

Percent of Volume (PoV) Algorithm

Objective : Buy a quantity Q_0 of one stock S between 0 and $T > 0$ at a rate \mathcal{E}_{i}^{ν} compared to V_{t} (instantaneously traded market volume). Dynamics of (S, V, Q) :

$$
S_t = S_0 + \int_0^t \mu_S(S_r, V_r) dr + \int_0^t \sigma_S(S_r, V_r) dW_r,
$$

$$
V_t = V_0 + \int_0^t \mu_V(S_r, V_r) dr + \int_0^t \sigma_V(S_r, V_r) dW_r.
$$

Remaining shares $Q_t^{\nu}=Q_0-\int_0^t \nu_s\mathbf{1}_{\nu_s\neq\varpi}V_s ds$.

Ngoc-Minh Dang

Example: PoV Algorithm

Percent of Volume (PoV) Algorithm

Objective : Buy a quantity Q_0 of one stock S between 0 and $T > 0$ at a rate \mathcal{E}_{i}^{ν} compared to V_{t} (instantaneously traded market volume). Dynamics of (S, V, Q) :

$$
S_t = S_0 + \int_0^t \mu_S(S_r, V_r) dr + \int_0^t \sigma_S(S_r, V_r) dW_r,
$$

$$
V_t = V_0 + \int_0^t \mu_V(S_r, V_r) dr + \int_0^t \sigma_V(S_r, V_r) dW_r.
$$

Remaining shares $Q_t^{\nu}=Q_0-\int_0^t \nu_s\mathbf{1}_{\nu_s\neq\varpi}V_s ds$.

$$
\min_{\nu} \mathbb{E}\bigg[\ell\big(\underbrace{0+\int_0^T \tilde{S}_t q(\nu_t) V_t dt}_{\text{running cost}} + \underbrace{(S_T + c(Q_T^{\nu}, S_T, V_T)) (Q_T^{\nu})^+}_{\text{final cost}}\bigg)\bigg]
$$

for ℓ convex[,](#page-25-0) polynomial grow[t](#page-21-0)h, $\tilde{S}_t = S_t + \eta(\nu_t, S_{t}, V_t)$ $\tilde{S}_t = S_t + \eta(\nu_t, S_{t}, V_t)$,

Ngoc-Minh Dang

Domain of definition of V

\blacktriangleright Natural domain

$$
D := \left\{ (t, x, \delta, e) \in [0, T) \times \mathbb{R}^d \times (((0, \infty) \times E) \cup \{(0, \infty)\}) \right\}
$$

$$
: t + \delta \in [\underline{\delta}, T) \text{ or } e = \varpi \right\},
$$

- \triangleright which can be decomposed in two main regions:
	- **Example 1** active region : $\delta > 0$ and $e \neq \varpi$

 $D_{E,>0} := \{(t, x, \delta, e) \in [0, T) \times \mathbb{R}^d \times (0, \infty) \times E : t + \delta \in [\underline{\delta}, T)\}$.

 \leftarrow \Box \rightarrow \rightarrow \leftarrow \Box \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

 Ω

P passive region: $e = \varpi$, and therefore $\delta = 0$ $D_{\varpi} := [0, T) \times \mathbb{R}^d \times \{0, \varpi\}$.

Ngoc-Minh Dang

Domain of definition of V

\blacktriangleright Natural domain

$$
D := \left\{ (t, x, \delta, e) \in [0, T) \times \mathbb{R}^d \times (((0, \infty) \times E) \cup \{(0, \infty)\}) \right\}
$$

$$
: t + \delta \in [\underline{\delta}, T) \text{ or } e = \varpi \right\},
$$

\triangleright and can be completed by boundary regions

► Boundary of active region $\delta \to 0$ and $t + \delta \to T$:

 $D_{E,0}:=[\underline{\delta},\, \mathcal{T})\times\mathbb{R}^d\times\{0\}\times E$, $D_{E,T} := \left\{ (t,x,\delta,e) \in [0,T) \times \mathbb{R}^d \times (0,\infty) \times E \; : \; \underline{\delta} \leq t+\delta = T \right\} \; .$

Ξ

 Ω

$$
\quad \blacktriangleright \text{ Time boundary: } D_{\mathcal{T}} := \{\mathcal{T}\} \times \mathbb{R}^d \times \mathbb{R}_+ \times \overline{E} \ .
$$

 \triangleright Closure of domain $\bar{D} :=$

$$
\big\{(t,x,\delta,e)\in[0,\,T]\times\mathbb{R}^d\times\mathbb{R}_+\times\bar{E}:t+\delta\in[\underline{\delta},\,T)\text{ or } \underbrace{e=\varpi}_{\text{CMEMREUN}}
$$

Special value of V

For $\delta = T - t$ and $e \in E$ (i.e., keep e until maturity):

$$
V(t, x, T - t, e) = V(t, x, e) := \mathbb{E}\left[g(\mathcal{X}_{t,x}^e(T)) + f(\mathcal{X}_{t,x}^e(T), e)\right],
$$

$$
\mathcal{X}_{t,x}^e(s) = x + \int_t^s b(\mathcal{X}_{t,x}^e(r), e) dr + \int_t^s a(\mathcal{X}_{t,x}^e(r), e) dW_r].
$$

Ngoc-Minh Dang

Special value of V

For $\delta = T - t$ and $e \in E$ (i.e., keep e until maturity):

$$
V(t, x, T - t, e) = V(t, x, e) := \mathbb{E}\left[g(\mathcal{X}_{t,x}^e(T)) + f(\mathcal{X}_{t,x}^e(T), e)\right],
$$

$$
\mathcal{X}_{t,x}^e(s) = x + \int_t^s b(\mathcal{X}_{t,x}^e(r), e) dr + \int_t^s a(\mathcal{X}_{t,x}^e(r), e) dW_r\right].
$$

Standard arguments imply that V continuous, and for each $e \in E$, it is a viscosity solution of

 $-\mathcal{L}^e\varphi(t,x)=0$ on $[0,T){\times}\mathbb R^d$, $\varphi(T,x)=g(x){+}f(x,e)$ on $\mathbb R^d$,

 4 ロ \rightarrow 4 \overline{m} \rightarrow \rightarrow Ξ

where the Dynkin operator $\mathcal{L}^e\varphi$ defined for $e\in \bar{\mathcal{E}}$, and a smooth function φ .

Ngoc-Minh Dang

Passive region

Rely on dynamic programming principle: for any $[t, T]$ -valued stopping time ϑ :

$$
V(t, x, \delta, e) = \sup_{\nu \in S_{t, \delta, e}^a} \mathbb{E} \bigg[V(\vartheta, X_{t, x}^{\nu}(\vartheta), \Delta_{\vartheta}^{\nu}, \nu_{\vartheta}) + \sum_{i \in \mathbb{I}_{t, \vartheta}^{\nu}} f(X_{t, x}^{\nu}(\tau_i^{\nu} + \delta_i^{\nu}), \mathcal{E}_i^{\nu}) \bigg] .
$$

► For $(t, x, \delta, e) \in D_{\varpi}$, possible to immediately launch algorithm with new set of parameters $(\delta',e')\in[\underline{\delta},\, \mathcal{T}-t]\times E$. Taking $\vartheta = t: V(t, x, 0, \varpi) \geq M[V](t, x)$,

$$
\mathcal{M}[V](t,x) := \sup_{(\delta',e') \in [\underline{\delta},\mathcal{T}-t] \times E} V(t,x+\beta(x,e',\delta'),\delta',e') \ ,
$$

イロト イ押 トイヨ トイヨト

FUX

 Ω

Ngoc-Minh Dang

Passive region

Rely on dynamic programming principle: for any $[t, T]$ -valued stopping time ϑ :

$$
V(t, x, \delta, e) = \sup_{\nu \in S_{t, \delta, e}^a} \mathbb{E} \bigg[V(\vartheta, X_{t, x}^{\nu}(\vartheta), \Delta_{\vartheta}^{\nu}, \nu_{\vartheta}) + \sum_{i \in \mathbb{I}_{t, \vartheta}^{\nu}} f(X_{t, x}^{\nu}(\tau_i^{\nu} + \delta_i^{\nu}), \mathcal{E}_{i}^{\nu}) \bigg] .
$$

 \triangleright Also able to wait before passing a new order, i.e. choose $\nu = \varpi$ on some time interval $[t, t + \delta')$ with $\delta' > 0$, by arbitrariness of $\vartheta < t + \delta'$:

$$
-\mathcal{L}^{\varpi}V(t,x,0,\varpi)\geq 0.
$$

 \leftarrow \Box \rightarrow \rightarrow \leftarrow \Box \rightarrow \rightarrow \leftarrow \rightarrow \rightarrow

 Ω

Ngoc-Minh Dang

Passive region

Rely on dynamic programming principle: for any $[t, T]$ -valued stopping time ϑ :

$$
V(t, x, \delta, e) = \sup_{\nu \in S_{t, \delta, e}^a} \mathbb{E} \bigg[V(\vartheta, X_{t, x}^{\nu}(\vartheta), \Delta_{\vartheta}^{\nu}, \nu_{\vartheta}) + \sum_{i \in \mathbb{I}_{t, \vartheta}^{\nu}} f(X_{t, x}^{\nu}(\tau_i^{\nu} + \delta_i^{\nu}), \mathcal{E}_{i}^{\nu}) \bigg] .
$$

 \triangleright Dynamic programming principle:

 $\min \{-\mathcal{L}^{\varpi}V(t, x, 0, \varpi) : V(t, x, 0, \varpi) - \mathcal{M}[V](t, x)\} = 0.$

メロトメ 倒 トメ ミトメ ミト

 Ω

Ngoc-Minh Dang

Active region

Rely on dynamic programming principle: for any $[t, T]$ -valued stopping time ϑ :

$$
V(t, x, \delta, e) = \sup_{\nu \in S_{t, \delta, e}^{\partial}} \mathbb{E} \bigg[V(\vartheta, X_{t, x}^{\nu}(\vartheta), \Delta_{\vartheta}^{\nu}, \nu_{\vartheta}) + \sum_{i \in \mathbb{I}_{t, \vartheta}^{\nu}} f(X_{t, x}^{\nu}(\tau_{i}^{\nu} + \delta_{i}^{\nu}), \mathcal{E}_{i}^{\nu}) \bigg] .
$$

For $(t, x, \delta, e) \in D_{E, > 0}$, cannot change the parameter before the end of the initial latency period $\delta > 0$. Choosing ϑ arbitrarily small:

$$
\left(-\mathcal{L}^e + \frac{\partial}{\partial \delta}\right) V(t, x, \delta, e) = 0.
$$

∢ ロ ▶ - ∢ 何 ▶ -∢ ヨ ▶

 Ω

Ngoc-Minh Dang

COF CHEUVREUX

 \mathbf{b} ∍ QQ

メロメメ 倒 メメ ミメメ 毛

PDE derivation

Boundary conditions

 \blacktriangleright Active region:

$$
V(t, x, \delta, e) = V(t, x, 0, \varpi) + f(x, e), \text{ if } (t, x, \delta, e) \in D_{E,0},
$$

$$
V(t, x, \delta, e) = V(t, x, e), \text{ if } (t, x, \delta, e) \in D_{E, \mathcal{T}}.
$$

 \blacktriangleright Terminal condition:

$$
V(t,x,\delta,e)=g(x)+f(x,e), \text{ if } (t,x,\delta,e)\in D_T.
$$

Ngoc-Minh Dang

COF CHEUVREUX

∍

 QQ

K ロト K 倒 ト K ミト K 毛

Viscosity characterization

Viscosity characterization

Define

$$
\left(\begin{array}{cccc} \left(-\mathcal{L}^{e}+\frac{\partial}{\partial\delta}\right)\varphi(\cdot,\delta,e) & \text{on} & D_{E,>0} \; ,\\ \left(\begin{array}{cc} \left(-\mathcal{L}^{e}+\frac{\partial}{\partial\delta}\right)\varphi(\cdot,0,\pi)-f(x,e) & \text{on} & D_{E,>0} \end{array}\right)\end{array}\right)
$$

$$
\mathcal{H}\varphi := \begin{cases}\n\varphi(\cdot,\delta,e) - \varphi(\cdot,0,\varpi) - f(x,e) & \text{on } D_{E,0}, \\
\varphi(\cdot,\delta,e) - \mathcal{V}(\cdot,e) & \text{on } D_{E,T},\n\end{cases}
$$

$$
\left\{\begin{array}{c}\min\left\{-\mathcal{L}^{\varpi}\varphi(\cdot,\delta,e)\ ;\ \varphi(\cdot,\delta,e)-\mathcal{M}[\varphi](\cdot)\right\}\quad\text{on}\quad D_{\varpi}^-\, ,\\ \varphi(\cdot,\delta,e)-g(\cdot)-f(\cdot,e)\quad\quad\text{on}\quad D_{\mathcal{T}}^-\, .\end{array}\right.
$$

Also define for $(t, x, \delta, e) \in \overline{D}$

$$
V^*(t, x, \delta, e) := \limsup_{(t', x', \delta', e') \in D \to (t, x, \delta, e)} V(t', x', \delta', e')
$$

$$
V_*(t, x, \delta, e) := \liminf_{(t', x', \delta', e') \in D \to (t, x, \delta, e)} V(t', x', \delta', e').
$$

Ngoc-Minh Dang

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$ \rightarrow \rightarrow $\overline{\rightarrow}$

 Ω

Viscosity characterization

Viscosity characterization (cont.)

Theorem

The function V_* (resp. V^*) is a vicosity supersolution (resp. subsolution) of $\mathcal{H}\varphi = 0$ on D.

Proof and comparison theorem omitted. What remain to do?

- \triangleright Numerical resolution by finite difference method
- \triangleright Convergence verified similarly in [Barles and Souganidis, 1991].

Ngoc-Minh Dang

PoV theoretical case

Percent of Volume Algorithm - Theoretical case

Parameters:

▶ Duration 7 hours i.e. 420 minutes, $T = \frac{7}{24} \times 252$, discretized in 150 steps, $\delta = 24$ minutes.

Ngoc-Minh Dang

PoV theoretical case

Percent of Volume Algorithm - Theoretical case

Parameters:

- ▶ Duration 7 hours i.e. 420 minutes, $T = 7/(24 \times 252)$, discretized in 150 steps, $\delta = 24$ minutes.
- ► $S_t = S_0 e^{-\frac{1}{2}\sigma^2 t + \sigma W_t}$, where $S_0 := 2.18$ and $\sigma = 68.10^{-4}$ (68 bps, annual volatility of 20%), $(V_t)_{t\leq T}$ deterministic.

Percent of Volume Algorithm - Theoretical case

Parameters:

- ▶ Duration 7 hours i.e. 420 minutes, $T = 7/(24 \times 252)$, discretized in 150 steps, $\delta = 24$ minutes.
- ► $S_t = S_0 e^{-\frac{1}{2}\sigma^2 t + \sigma W_t}$, where $S_0 := 2.18$ and $\sigma = 68.10^{-4}$ (68 bps, annual volatility of 20%), $(V_t)_{t\leq T}$ deterministic.
- ► Impact $\eta(e, v) = 0.03 (e/v)^{1.1}$, final cost $c(q, v) = 0.03 (q/(\nu \Delta t))^{1.1}$.

Ngoc-Minh Dang

メロトメ 倒 トメ ミトメ ミト

 Ω

Percent of Volume Algorithm - Theoretical case

Parameters:

- ▶ Duration 7 hours i.e. 420 minutes, $T = 7/(24 \times 252)$, discretized in 150 steps, $\delta = 24$ minutes.
- ► $S_t = S_0 e^{-\frac{1}{2}\sigma^2 t + \sigma W_t}$, where $S_0 := 2.18$ and $\sigma = 68.10^{-4}$ (68 bps, annual volatility of 20%), $(V_t)_{t\leq T}$ deterministic.
- ► Impact $\eta(e, v) = 0.03 (e/v)^{1.1}$, final cost $c(q, v) = 0.03 (q/(\nu \Delta t))^{1.1}$.
- \triangleright Set of regimes [0, 34], discretized in 30 equidistant steps (maximal impact of approximately 42 bps of the initial stock value S_0).

 Ω

Percent of Volume Algorithm - Theoretical case

Parameters:

- ▶ Duration 7 hours i.e. 420 minutes, $T = 7/(24 \times 252)$, discretized in 150 steps, $\delta = 24$ minutes.
- ► $S_t = S_0 e^{-\frac{1}{2}\sigma^2 t + \sigma W_t}$, where $S_0 := 2.18$ and $\sigma = 68.10^{-4}$ (68 bps, annual volatility of 20%), $(V_t)_{t\leq T}$ deterministic.
- ► Impact $\eta(e, v) = 0.03 (e/v)^{1.1}$, final cost $c(q, v) = 0.03 (q/(\nu \Delta t))^{1.1}$.
- \triangleright Set of regimes [0, 34], discretized in 30 equidistant steps (maximal impact of approximately 42 bps of the initial stock value S_0).
- $\triangleright \ell$ is the identity, simplifies the numerical resolution since linear in y-variable.

メロトメ 倒 トメ ミトメ ミト

 Ω

PoV algorithm - Case flat market volume $V_t \equiv 100$

Ngoc-Minh Dang

 Ω

PoV theoretical case

PoV algorithm - Case U-shaped volume $V_t = 100(1.1 - \sin(\pi t/T))$

Ngoc-Minh Dang

 Ω

PoV real case

Percent of Volume Algorithm - Real case

Volume and volatility estimated from real data (France Telecom Jan. 2008 to Dec. 2008), normalized such that average daily volume $= 2000$.

 $S_0 = 10$, $Q_0 = 50$, maximal rate $E_{max} = 0.1$. Functions: $\eta(e,s,v) = 0.2e^{1.1}, \ c(q,s,v) = 0.3q^+, \ \ell(y) = (y^+)^2$.

Figure: Volume - Volatility - Average [tra](#page-42-0)[din](#page-44-0)[g](#page-42-0) [c](#page-43-0)[ur](#page-44-0)[v](#page-35-0)[e](#page-36-0)[s](#page-42-0)

Ngoc-Minh Dang

PoV real case

Some simulated trajectories

Ngoc-Minh Dang

Thank you for your attention

Ngoc-Minh Dang

量 R. F. Almgren and N. Chriss.

Optimal execution of portfolio transactions. Journal of Risk, 3(2):5–39, 2000.

- 歸 Robert Almgren and Julian Lorenz. Bayesian adaptive trading with a daily cycle. Journal of Trading, 2006.
- 昂

Robert Almgren. Optimal trading in a dynamic market. Technical Report 2, 2009.

Guy Barles and P. E. Souganidis.

Convergence of approximation schemes for fully nonlinear second order equations.

Asymptotic analysis, 4:271–283, 1991.

Bruno Bouchard and Nizar Touzi.

Ngoc-Minh Dang

 Ω

Weak dynamic programming principle for viscosity solutions. Technical report, CEREMADE, 2009.

冨 Patrick Hewlett.

Optimal liquidation against a markovian limit order book. Quantitative Methods in Finance Conference, 2007.

螶 Charle-Albert Lehalle.

Rigorous optimisation of intra day trading. Wilmott Magazine, November 2008.

Charles-Albert Lehalle.

Rigorous strategic trading: Balanced portfolio and mean-reversion.

The Journal of Trading, 4(3):40–46, 2009.

Ngoc-Minh Dang