Control Improvement for Jump-Diffusion Processes with Applications to Finance

Nicole Bäuerle joint work with Ulrich Rieder

Toronto, June 2010

Outline

- Motivation: MDPs
- \triangleright Controlled Jump-Diffusion Processes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

- \triangleright Control Improvement Algorithm
- \blacktriangleright Financial Applications

Motivation: MDPs

Markov Decision Processes

Let (*Xn*) be a controlled Markov process with

- \triangleright state space *S*, action space *A*,
- **F** transition kernel $Q(\cdot|x, a)$.
- Let $f : S \to A$ be a decision rule and
	- \triangleright $\beta \in (0, 1)$ a discount factor,
	- \blacktriangleright $r(x, a)$ a bounded reward function.

Consider the infinite-horizon Markov Decision Problem

$$
J(x) := \sup_{f \in F} J_f(x) = \sup_{f \in F} \mathbb{E}_x \left[\sum_{n=0}^{\infty} \beta^n r(X_n, f(X_n)) \right].
$$

Motivation: MDPs

Notation

$$
\blacktriangleright B:=\{\textbf{\textit{v}}:S\rightarrow\mathbb{R}:\|\textbf{\textit{v}}\|_\infty<\infty\}.
$$

For $v \in B$ and $f : S \rightarrow A$ let

$$
\mathcal{T}_f v(x) := r(x, f(x)) + \beta \int v(x') Q(dx'|x, f(x)).
$$

► *f*^{*} is called *maximizer* of *v* if

$$
\mathcal{T}_{f^*}v=\sup_{f\in F}\mathcal{T}_f v.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

It holds that $J_f = T_f J_f$ and $J = \sup_f T_f J$.

Motivation: MDPs

Howard's Policy Improvement Algorithm

- 1. Choose f_0 arbitrary and set $k = 0$.
- 2. Compute J_{f_k} as solution $v \in B$ of the equation $v = \mathcal{T}_{f_k}v$.
- 3. Compute f_{k+1} as a maximizer of J_{f_k} . Then $J_{f_{k+1}} \geq J_{f_{k}}.$ If $f_{k+1} = f_{k}$ then $J_{f_{k}} = J$ and (f_{k}, f_{k}, \ldots) is optimal. Else set $k := k + 1$ and go to step 2.

Controlled Jump-Diffusion Processes

- $W = (W_1, \ldots, W_m)$ is an *m*-dimensional Brownian motion,
- $N = (N_1, \ldots, N_l)$ are indep. Poisson random measures,
- \triangleright $\nu_i(B) := \mathbb{E} N_i(1, B)$ are the Lévy measures,

$$
\blacktriangleright \widetilde{N}_j(dt,dz_j):=N_j(dt,dz_j)-\nu_j(dz_j)dt.
$$

The *n*-dimensional controlled state process $X = (X_1, \ldots, X_n)$ is

$$
dX_i(t) = \mu_i(t, X_t, \pi_t)dt + \sum_{j=1}^m \sigma_{ij}(t, X_t, \pi_t)dW_j(t) +
$$

+
$$
\sum_{j=1}^l \int \gamma_{ij}(t, X_{t-}, \pi_{t-}, z_j)\tilde{N}_j(dt, dz_j)
$$

Controlled Jump-Diffusion Processes

- ► $\pi = (\pi_t)$ is a càdlàg control process with values in $D \subset \mathbb{R}^d,$
- In the coefficient functions μ, σ, γ are continuous,
- \blacktriangleright *g*, *h* are reward functions.

Consider the problem

$$
J^{\pi}(t,x) := \mathbb{E}_{t,x}\left[\int_t^T g(s,X_s,\pi_s)ds + h(X_T)\right]
$$

$$
J(t,x) = \sup_{\pi} J^{\pi}(t,x).
$$

.

Generator of the state process

$$
\mathcal{A}v(t,x,u) = v_t(t,x) + \sum_{i=1}^n v_{x_i}(t,x) \mu_i(t,x,u) + \n+ \frac{1}{2} \sum_{i,j=1}^n (\sigma \sigma^T)_{ij}(t,x,u) v_{x_ix_j}(t,x) + \n+ \sum_{j=1}^l \int \left(v(t,x+\gamma^{(j)}(t,x,u,z_j)) - v(t,x) - \nabla_x v(t,x) \gamma^{(j)}(t,x,u,z_j) \right) \nu_j(dz_j).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Control Improvement Algorithm

- 1. Suppose π^0 is an admissible control.
- 2. Compute the corresponding value function J^0 and suppose $J^0\in C^{1,2}.$
- 3. Compute $\pi_1(t, x)$ such that it maximizes

$$
u\mapsto g(t,x,u)+\mathcal{A}J^0(t,x,u),\quad u\in D
$$

and suppose that $\pi^1_t := \pi_1(t,X^1_t)$ is an admissible control.

Control Improvement Algorithm

Under some technical conditions it holds:

Theorem

Let
$$
I := \{(t, x) : g(t, x, \pi_1(t, x)) + \mathcal{A}J^0(t, x, \pi_1(t, x)) > 0\}.
$$

KORK ERKER ADAM ADA

a) If
$$
l \neq \emptyset
$$
, then $J^1(t, x) \geq J^0(t, x)$ for all (t, x) and $J^1(t, x) > J^0(t, x)$ for $(t, x) \in I$.

b) If $I = \emptyset$ then π^1 is an optimal control.

Controlled Jump-Diffusion Processes

Limit Considerations

Theorem

Suppose that the following assumptions are satisfied:

(i)
$$
\lim_{k \to \infty} J^k =: J^{\infty} \in C^{1,2}
$$
 and
 $J_t^k \to J_t^{\infty}, J_x^k \to J_x^{\infty}, J_{xx}^k \to J_{xx}^{\infty}$ uniformly.

(ii) μ, σ, γ are bounded.

Let π *be a policy defined by the maximizer of J*[∞] *as in step (b) of the algorithm, then* $J = J^{\infty}$ *and* π *is optimal.*

Application: Portfolio Optimization

Financial Market

 \blacktriangleright The price process (S_t^0) of the riskless bond is given by

$$
S_t^0 := e^{rt},
$$

where $r > 0$ denotes the fixed continuous interest rate.

 \blacktriangleright The price process (S_t) of the risky asset satisfies:

$$
dS_t = S_{t-}(\mu dt + \sigma dW_t + \int_{-1}^{\infty} z \tilde{N}(dt, dz))
$$

KOD KOD KED KED E VOOR

where $\mu \in \mathbb{R}, \sigma > 0$ and $\int_{-1}^{\infty} z\nu(dz) < \infty$.

▶ Øksendal and Sulem (2005)

Application: Portfolio Optimization

Portfolio Optimization

- $U: (0, \infty) \to \mathbb{R}$ is a (strictly increasing, concave) utility function.
- \blacktriangleright (π _t) with π _t \in [0, 1] is the portfolio strategy where π_t = fraction of wealth invested in the stock at time *t*.

The dynamics of the wealth process is

$$
dX_t^{\pi}=X_t^{\pi}\Big(rdt+\pi_t\cdot(\mu-r)dt+\pi_t\sigma dW_t+\pi_{t-}\int_{-1}^{\infty}z\tilde{N}(dt,dz)\Big).
$$

The portfolio problem is

$$
J(t,x):=\sup_{\pi}\mathbb{E}[U(X_T^{\pi})|X_t^{\pi}=x].
$$

When is the "invest all the money in the bond"-strategy optimal?

Theorem

Let $U \in C^2(0,\infty)$ be an arbitrary utility function. The "invest all *the money in the bond"-strategy is optimal if and only if* $\mu < r$.

Proof

Consider
$$
\pi_t \equiv 0
$$
 with $J^{\pi}(t, x) = U(xe^{r(T-t)})$.
\n $\pi^* \equiv 0$ is again a maximum point of $u \mapsto \mathcal{A}J^{\pi}(t, x, u)$ on [0, 1] if and only if

$$
\frac{\partial}{\partial u} \mathcal{A} \mathcal{J}^{\pi}(t,x,u)|_{u=0} = (\mu - r) x \mathcal{J}^{\pi}_x \leq 0.
$$

KO K K Ø K K E K K E K Y S K Y K K K K K

Special Case: Black-Scholes Model

Suppose now we have a Black-Scholes market. In case $\mu > r$, the first improvement of the "invest all the money in the bond"-strategy is given by

$$
\pi_1(t,x) = -\frac{U'(xe^{r(T-t)})}{U''(xe^{r(T-t)})xe^{r(T-t)}} \cdot \frac{(\mu-r)}{\sigma^2}.
$$

It relies on the Arrow-Pratt-Relative-Risk-Aversion Coefficient and the Merton-ratio. When the utility function is the power or logarithmic utility function, the first improvement yields already the optimal investment strategy.

When is a constant fraction optimal?

Suppose ν is concentrated on $(0,\infty)$, i.e. jumps are only upwards and that 2 $\int x\nu({\bm d}{\bm {\mathsf x}})<\mu-r.$ Under these assumptions it holds:

Theorem

The logarithm- and the power-utility are the only utility functions $U \in C^2(0,\infty)$ *with* $U \in C^2$ (up to a multiplicative constant) *where the optimal portfolio invests a constant positive fraction of the wealth in the stock.*

Proof

 J^{π} and $\pi_t \equiv \pi$ are optimal if and only if π is a maximum point of $u \mapsto \mathcal{A}J^{\pi}(t, x, u), u \ge 0$, i.e.

$$
(\mu-r)J^{\pi}_x+J^{\pi}_{xx}\sigma^2x\pi+\int_0^{\infty}\Big(J^{\pi}_x(t,x+\pi x z)z-J^{\pi}_x(t,x)\Big)\nu(dz)=0
$$

and we must have $A J^{\pi}(t, x, \pi) = 0$, i.e.

$$
J_t^{\pi} + (r + (\mu - r)\pi) x J_x^{\pi} + \frac{1}{2} J_{xx}^{\pi} \sigma^2 x^2 \pi^2 + \\ + \int_0^{\infty} (J^{\pi}(t, x + \pi xz) - J^{\pi}(t, x) - J_x^{\pi}(t, x) \pi xz) \nu(dz) = 0.
$$

KORKARA KERKER DAGA

References

- F Bäuerle, N., Rieder, U. (2010) : Control improvement for jump-diffusion processes with applications to finance. Preprint.
- 螶 Bäuerle, N., Rieder, U. (2010) : Markov Decision Processes with Applications to Finance. To appear.
- F. Fleming, W. H., Rishel, R. (1975) : Deterministic and stochastic optimal control. Springer-Verlag.
- 螶 Howard, R. (1960) : Dynamic programming and Markov processes. The Technology Press of M.I.T., Cambridge, Mass.
- 昴 Øksendal, B,,Sulem, A. (2005) : Applied stochastic control of jump diffusions. Springer-Verlag

Thank you very much for your attention!