Dynamic markov bridges motivated by models of insider trading.

Luciano Campi¹ Umut Cetin² Albina Danilova³

¹ Université Paris Dauphine

²London School of Economics

³London School of Economics

6th World Congress of the Bachelier Finance Society, Toronto, June 24th 2010

K ロ ト K 何 ト K ヨ ト

Models of Insider Trading

Anticipative Integration approach: Biagini and Øksendal (2005), Øksendal (preprint).

4 D F

Models of Insider Trading

- Anticipative Integration approach: Biagini and Øksendal (2005), Øksendal (preprint).
- Enlargements of Filtration approach: Pikovsky and Karatzas (1996); Imkeller, Pontier and Weisz (2000); Imkeller (2002); Ankirchner and Imkeller (2006).

Models of Insider Trading

- Anticipative Integration approach: Biagini and Øksendal (2005), Øksendal (preprint).
- Enlargements of Filtration approach: Pikovsky and Karatzas (1996); Imkeller, Pontier and Weisz (2000); Imkeller (2002); Ankirchner and Imkeller (2006).
- Rational Expectations Equilibrium approach: Back (1992), Back and Pedersen (1998), Wu (1999), Cho (2003), Campi and Çetin (2007)

重

メロトメ 御 トメ 君 トメ 君 ト

2 [Construction of Dynamic Markov Bridge](#page-18-0)

- **•** [Problem Formulation](#page-18-0)
- **[Motivation for the Guess](#page-26-0)**
- **•** [Verification of the Guess](#page-41-0)

化重新润滑脂

4 D F

2 [Construction of Dynamic Markov Bridge](#page-18-0)

- **•** [Problem Formulation](#page-18-0)
- **[Motivation for the Guess](#page-26-0)**
- **•** [Verification of the Guess](#page-41-0)

3 [Equilibrium](#page-52-0)

化重新润滑剂

4 D F

Market structure

Consider a market which consists of a single risky asset and a riskless asset with $r = 0$.

Its price at time is denoted by S_t and $S_1 = f(Z_1)$, where Z_t is given by

$$
Z_t = Z_0 + \int_0^t \sigma(s) a(V(s), Z_s) dB_s^Z,
$$

where B_t^1 is a standard BM, and $V(t) = c + \int_0^t \sigma(s) ds$.

Market structure

Consider a market which consists of a single risky asset and a riskless asset with $r = 0$.

Its price at time is denoted by S_t and $S_1 = f(Z_1)$, where Z_t is given by

$$
Z_t = Z_0 + \int_0^t \sigma(s) a(V(s), Z_s) dB_s^Z,
$$

where B_t^1 is a standard BM, and $V(t) = c + \int_0^t \sigma(s) ds$. Assumptions:

1 *f* is a strictly increasing function.

Market structure

Consider a market which consists of a single risky asset and a riskless asset with $r = 0$.

Its price at time is denoted by S_t and $S_1 = f(Z_1)$, where Z_t is given by

$$
Z_t = Z_0 + \int_0^t \sigma(s) a(V(s), Z_s) dB_s^Z,
$$

where B_t^1 is a standard BM, and $V(t) = c + \int_0^t \sigma(s) ds$. Assumptions:

1 *f* is a strictly increasing function.

•
$$
V(t) > t
$$
 for every $t \in [0, 1)$, $V(1) = 1$, and
 $V(t) - t = O(1 - t)$.

Market structure

Consider a market which consists of a single risky asset and a riskless asset with $r = 0$.

Its price at time is denoted by S_t and $S_1 = f(Z_1)$, where Z_t is given by

$$
Z_t = Z_0 + \int_0^t \sigma(s) a(V(s), Z_s) dB_s^Z,
$$

where B_t^1 is a standard BM, and $V(t) = c + \int_0^t \sigma(s) ds$. Assumptions:

- **1** *f* is a strictly increasing function.
- **2** $V(t) > t$ for every $t \in [0, 1)$, $V(1) = 1$, and $V(t) - t = O(1 - t)$.
- **³** *a*(*t, z*) satisfies a nonlinear PDE:

$$
a_t(t,z)+\frac{a^2(t,z)}{2}a_{zz}(t,z)=0
$$
 (1)

Market participants

There are three types of agents on the market:

Noisy/liquidity traders: their total demand by time *t* is given by standard Brownian motion B_t independent of B^Z , Z_0

Market participants

There are three types of agents on the market:

- Noisy/liquidity traders: their total demand by time *t* is given by standard Brownian motion B_t independent of B^Z , Z_0
- Informed investor: observes $\mathcal{F}_t^I = \mathcal{F}_t^{Z,S}$ $\tilde{t}^{2,3}$ and is risk-neutral, i.e. she solves

$$
\textit{sup}_\theta \mathbb{E}_z[X_1^\theta] = \textit{sup}_\theta \mathbb{E}[(S_1 - S_{1-})\theta_1 + \int_0^1 \theta_{s-} dS_s]
$$

Market participants

There are three types of agents on the market:

- Noisy/liquidity traders: their total demand by time *t* is given by standard Brownian motion B_t independent of B^Z , Z_0
- Informed investor: observes $\mathcal{F}_t^I = \mathcal{F}_t^{Z,S}$ $\tilde{t}^{2,3}$ and is risk-neutral, i.e. she solves

$$
\textit{sup}_\theta \mathbb{E}_z[X_1^\theta] = \textit{sup}_\theta \mathbb{E}[(S_1 - S_{1-})\theta_1 + \int_0^1 \theta_{s-} dS_s]
$$

Market maker: observes $\mathcal{F}_t^M = \mathcal{F}_t^Y$ where $Y_t = \theta_t + B_t$ is the total order process and sets the price according to

$$
H(t, X_t) := S_t = \mathbb{E}[S_1 | \mathcal{F}_t^M]
$$

where X_t X_t is strong solution of $dX_t = w(t,X_t) dY_t, \, X_0 = 0$ $dX_t = w(t,X_t) dY_t, \, X_0 = 0$

Definition of Equilibrium

Definition *A* triplet (*H*[∗], w[∗], θ [∗]) *is said to form an equilibrium if* (*H* ∗ *, w* ∗) *is an admissible pricing rule, θ* ∗ *is an admissible strategy, and the following conditions are satisfied:*

Definition of Equilibrium

Definition *A* triplet (*H*[∗], w[∗], θ [∗]) *is said to form an equilibrium if* (*H* ∗ *, w* ∗) *is an admissible pricing rule, θ* ∗ *is an admissible strategy, and the following conditions are satisfied:*

1 Market efficiency condition: given $θ^*$, (H^*, w^*) is a rational pricing rule.

Definition of Equilibrium

Definition *A* triplet (*H*[∗], w[∗], θ [∗]) *is said to form an equilibrium if* (*H* ∗ *, w* ∗) *is an admissible pricing rule, θ* ∗ *is an admissible strategy, and the following conditions are satisfied:*

- **1** Market efficiency condition: given $θ^*$, (H^*, w^*) is a rational pricing rule.
- **2** Insider optimality condition: given (*H*^{*}, *w*^{*}), *θ*^{*} solves the insider optimization problem:

$$
\mathbb{E}^z [W_1^{\theta^*}]=\sup_{\theta\in\mathcal{A}}\mathbb{E}^z [W_1^{\theta}].
$$

Characterization of Equilibrium

Lemma *If a triplet* (*H*[∗], *w*[∗], θ [∗]), where (*H*[∗], *w*[∗]) *is an admissible pricing rule and θ* ∗ *is an admissible trading strategy, fulfills the following conditions:*

\n- $$
H_t^*(t, x) + \frac{(w^*(t, x))^2}{2} H_{xx}^*(t, x) = 0.
$$
\n- $w_t^*(t, x) + \frac{(w^*(t, x))^2}{2} w_{xx}^*(t, x) = 0.$
\n

3 $Y_t^* = B_t + \theta_t^*$ is a standard BM in its own filtration.

⁴ *H* ∗ (1*, X* ∗ 1) = *f*(*Z*1)*, where X*[∗] *is the solution to* $X_t = \int_0^t w(s, X_s) dY_s^*$ *with* $Y^* = B + \theta^*$.

•
$$
(H^*(t, X_t^*))_{t \in [0,1]}
$$
 is an \mathcal{F}^{Y^*} -martingale.
then it is an equilibrium.

[Problem Formulation](#page-21-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Goal: Given *V*(*t*) satisfying assumption 2, and

$$
Z_t = Z_0 + \int_0^t \sigma(s) a(V(s), Z_s) dB_s^Z,
$$

construct a process X , starting from zero and adapted to $\mathcal{F}^{Z,B}_{t}$ *t* , and measure μ such that:

[Problem Formulation](#page-21-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Goal: Given *V*(*t*) satisfying assumption 2, and

$$
Z_t = Z_0 + \int_0^t \sigma(s) a(V(s), Z_s) dB_s^Z,
$$

construct a process X , starting from zero and adapted to $\mathcal{F}^{Z,B}_{t}$ *t* , and measure μ such that:

 C 1 $\;\mathcal{Y} = (\Omega, \mathcal{F},(\mathcal{F}_t),(\mathcal{X}_t,\mathcal{Z}_t),(\mathcal{P}^{\mathsf{x},\mathsf{z}})_{(\mathsf{x},z)\in \mathbb{R}^2})$ is a Markov process, with an initial distribution given by $\delta_{\bf 0}\otimes \mu.$

[Problem Formulation](#page-21-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Goal: Given *V*(*t*) satisfying assumption 2, and

$$
Z_t = Z_0 + \int_0^t \sigma(s) a(V(s), Z_s) dB_s^Z,
$$

construct a process X , starting from zero and adapted to $\mathcal{F}^{Z,B}_{t}$ *t* , and measure μ such that:

- C 1 $\;\mathcal{Y} = (\Omega, \mathcal{F},(\mathcal{F}_t),(\mathcal{X}_t,\mathcal{Z}_t),(\mathcal{P}^{\mathsf{x},\mathsf{z}})_{(\mathsf{x},z)\in \mathbb{R}^2})$ is a Markov process, with an initial distribution given by $\delta_0 \otimes \mu$.
- C2 $X_1 = Z_1$, Q^z -a.s., where Q^z is the law of (X, Z) with $Z_0 = z$ and $X_0 = 0$.

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Goal: Given *V*(*t*) satisfying assumption 2, and

$$
Z_t = Z_0 + \int_0^t \sigma(s) a(V(s), Z_s) dB_s^Z,
$$

construct a process X , starting from zero and adapted to $\mathcal{F}^{Z,B}_{t}$ *t* , and measure μ such that:

- C 1 $\;\mathcal{Y} = (\Omega, \mathcal{F},(\mathcal{F}_t),(\mathcal{X}_t,\mathcal{Z}_t),(\mathcal{P}^{\mathsf{x},\mathsf{z}})_{(\mathsf{x},z)\in \mathbb{R}^2})$ is a Markov process, with an initial distribution given by $\delta_0 \otimes \mu$.
- C2 $X_1 = Z_1$, Q^z -a.s., where Q^z is the law of (X, Z) with $Z_0 = z$ and $X_0 = 0$.
- C3 X with $X_0 = 0$ is a martingale in its own filtration and $[X, X]_t = \int_0^t a^2(s, X_s) ds.$

э

K ロ K K 御 K K 唐 K K 唐 K …

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Due to Fitzsimmons, Pitman & Yor (1993) (see also Baudoin (2002)), the solution *X* of

$$
dX_t = a(X_t)dB_t + a^2(X_t)\frac{G_x(1-t, X_t, z)}{G(1-t, X_t, z)}dt,
$$

where G is the transition density of $d\xi_t = a(\xi_t)d\beta_t,$ is a Markov process converging to *z* as $t \rightarrow 1$.

э

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Due to Fitzsimmons, Pitman & Yor (1993) (see also Baudoin (2002)), the solution *X* of

$$
dX_t = a(X_t)dB_t + a^2(X_t)\frac{G_x(1-t, X_t, z)}{G(1-t, X_t, z)}dt,
$$

where G is the transition density of $d\xi_t = a(\xi_t)d\beta_t,$ is a Markov process converging to z as $t \to 1$.

 \bullet If Z_1 , independent of *B*, has a density $G(1,0,.)$, then

$$
dX_t = a(X_t)dB_t + a^2(X_t)\frac{G_x(1-t, X_t, Z_1)}{G(1-t, X_t, Z_1)}dt,
$$

gives the process we "want": \mathcal{F}^{χ} -martingale with $\mathcal{X}_1 = \mathcal{Z}_1.$

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Due to Fitzsimmons, Pitman & Yor (1993) (see also Baudoin (2002)), the solution *X* of

$$
dX_t = a(X_t)dB_t + a^2(X_t)\frac{G_x(1-t, X_t, z)}{G(1-t, X_t, z)}dt,
$$

where G is the transition density of $d\xi_t = a(\xi_t)d\beta_t,$ is a Markov process converging to z as $t \to 1$.

 \bullet If Z_1 , independent of *B*, has a density $G(1,0,.)$, then

$$
dX_t = a(X_t)dB_t + a^2(X_t)\frac{G_x(1-t, X_t, Z_1)}{G(1-t, X_t, Z_1)}dt,
$$

gives the process we "want": \mathcal{F}^{χ} -martingale with $\mathcal{X}_1 = \mathcal{Z}_1.$ • Idea: For for $t < 1$, consider $\mu(dz) = \rho(0, x, z)$ and

$$
dX_t = a(t, X_t)dB_t + a^2(t, X_t)\frac{\rho_X(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}dt,
$$

wh[e](#page-25-0)re $\rho(t,x,z)$ $\rho(t,x,z)$ $\rho(t,x,z)$ is conditional density [of](#page-23-0) Z_t [g](#page-21-0)[i](#page-22-0)[v](#page-24-0)e[n](#page-17-0) $X_t.$ $X_t.$ $X_t.$

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Restatement of the Problem:

Let

$$
A(t,x):=\int_0^x\frac{1}{a(t,y)}dy,
$$

and consider $U_t = A(V(t), Z_t)$ and $R_t = A(t, X_t)$. By Itô

$$
dU_t = \sigma(t) d\beta_t + \sigma^2(t) b(V(t), U_t) dt
$$

\n
$$
dR_t = dB_t + \left\{ \frac{p_x(t, R_t, U_t)}{p(t, R_t, U_t)} + b(t, R_t) \right\} dt,
$$

 $\mathsf{where} \; b(t,y) := A_t(t,A^{-1}(t,y)) - \tfrac{1}{2}$ $\frac{1}{2}a_z(t, A^{-1}(t, y)).$ Then $\rho(t, x, z)$ is conditional density of Z_t with respect to \mathcal{F}_t^X iff $\frac{\rho(t,x,z)}{a(t,A^{-1}(V(t),z))}:=\rho(t,A^{-1}(t,x),A^{-1}(V(t),z))$ is conditional density of U_t with respect to $\mathcal{F}^R_t.$

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-33-0) [Verification of the Guess](#page-41-0)

Candidate for conditional density

• We expect:

重

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-33-0) [Verification of the Guess](#page-41-0)

Candidate for conditional density

- We expect:
	- $p(t, x, z)$ to be conditional density of U_t given $R_t = x$,

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-33-0) [Verification of the Guess](#page-41-0)

Candidate for conditional density

- We expect:
	- $p(t, x, z)$ to be conditional density of U_t given $R_t = x$,
	- to have $dR_t = dB_t^X + b(t, R_t)dt$ in its own filtration.

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-33-0) [Verification of the Guess](#page-41-0)

Candidate for conditional density

- We expect:
	- $p(t, x, z)$ to be conditional density of U_t given $R_t = x$,
	- to have $dR_t = dB_t^X + b(t, R_t)dt$ in its own filtration.

• Compare with

$$
dU_t = \sigma(t)dB_t^Z + \sigma^2(t)b(V(t), U_t)dt
$$

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-33-0) [Verification of the Guess](#page-41-0)

Candidate for conditional density

- We expect:
	- $p(t, x, z)$ to be conditional density of U_t given $R_t = x$,
	- to have $dR_t = dB_t^X + b(t, R_t)dt$ in its own filtration.

• Compare with

$$
dU_t = \sigma(t)dB_t^Z + \sigma^2(t)b(V(t), U_t)dt
$$

•
$$
V(t) = c + \int_0^t \sigma^2(u) du
$$

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-33-0) [Verification of the Guess](#page-41-0)

Candidate for conditional density

- We expect:
	- $p(t, x, z)$ to be conditional density of U_t given $R_t = x$,
	- to have $dR_t = dB_t^X + b(t, R_t)dt$ in its own filtration.

• Compare with

$$
dU_t = \sigma(t)dB_t^Z + \sigma^2(t)b(V(t), U_t)dt
$$

•
$$
V(t) = c + \int_0^t \sigma^2(u) du \Rightarrow
$$
 use $X_{V(t)}$ as a proxy for Z_t ?

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-33-0) [Verification of the Guess](#page-41-0)

Candidate for conditional density

- We expect:
	- $p(t, x, z)$ to be conditional density of U_t given $R_t = x$,
	- to have $dR_t = dB_t^X + b(t, R_t)dt$ in its own filtration.

• Compare with

$$
dU_t = \sigma(t)dB_t^Z + \sigma^2(t)b(V(t), U_t)dt
$$

- $V(t) = c + \int_0^t \sigma^2(u) du \Rightarrow$ use $X_{V(t)}$ as a proxy for Z_t ?
- A natural candidate is $p(t, x, z) := \Gamma(t, x; V(t), z)$, where Γ(*t, x*; *s*, *z*) is a transition density for $d\zeta$ *t* = $d\beta$ *t* + $b(t, \zeta$ *t*)*dt*.

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Candidate for conditional density

- We expect:
	- $p(t, x, z)$ to be conditional density of U_t given $R_t = x$,
	- to have $dR_t = dB_t^X + b(t, R_t)dt$ in its own filtration.

• Compare with

$$
dU_t = \sigma(t)dB_t^Z + \sigma^2(t)b(V(t), U_t)dt
$$

- $V(t) = c + \int_0^t \sigma^2(u) du \Rightarrow$ use $X_{V(t)}$ as a proxy for Z_t ?
- A natural candidate is $p(t, x, z) := \Gamma(t, x; V(t), z)$, where Γ(*t, x*; *s*, *z*) is a transition density for $d\zeta$ ^{*t*} = $d\beta$ ^{*t*} + $b(t, \zeta$ ^{*t*})*dt*.

Note: Existence of Γ is equivalent to the existence of the fundamental solution of

$$
w_u(u,z) = \frac{1}{2} w_{zz}(u,z) - (b(u,z)w(u,z))_z.
$$
 (2)

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Is *p* the conditional density?

From general filtering theory we have:

$$
\widehat{f(U_t)} = \widehat{f(U_0)} + \int_0^t \frac{1}{2} \sigma^2(t) \widehat{\delta_s} ds + \int_0^t \widehat{f(U_s)} \widehat{\kappa_s} - \widehat{f(U_s)} \widehat{\kappa_s} dl_s,
$$

where $dl_s=\{dR_s-\widehat{\kappa_s}ds\},$ $\kappa_s:=\frac{\rho_x(s,R_s,U_s)}{\rho(s,R_s,U_s)}+b(s,R_s),$ $\delta_{\bm{s}} = f''(U_{\bm{s}}) + 2f'(U_{\bm{s}})b(\bm{s},U_{\bm{s}})$ and $(\widehat{H_{\bm{s}}})_{\bm{s}\in[0,1)}$ denotes the optional projection of H given $\mathcal{F}^R.$ Let $g_t(\cdot)$ be the conditional density of U_t given $\mathcal{F}^R_t.$ The above suggests that $(g_t(\cdot))_{t\in [0,1)}$ is the weak solution to the SPDE

$$
\begin{array}{l}g_{t}(z) = \Gamma(0,0;c,z) + \int_{0}^{t}\sigma^{2}(s)\left\{-(b(s,z)g_{s}(z))_{z} + \frac{1}{2}(g_{s}(z))_{zz}\right\} ds \\ \quad + \int_{0}^{t}g_{s}(z)\left(\frac{p_{x}(s,R_{s},z)}{p(s,R_{s},z)} - \int_{\mathbb{R}}g_{s}(z)\frac{p_{x}(s,R_{s},z)}{p(s,R_{s},z)}dz\right)dl_{s}. \end{array}
$$

K ロ K K 御 K K 唐 K K 唐 K …

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Is R_t well-defined for all $t \in [0, 1]$?

We have:

$$
dU_t = \sigma(t) d\beta_t + \sigma^2(t) b(t, U_t) dt
$$

\n
$$
dR_t = dB_t + \left\{ \frac{p_x(t, R_t, U_t)}{p(t, R_t, U_t)} + b(t, R_t) \right\} dt,
$$

and $p_x/p + b$ is locally Lipschitz for $t \in [0, T]$ for any $T < 1$

Þ

メロトメ 御 トメ 君 トメ 君 ト

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Is R_t well-defined for all $t \in [0, 1]$?

We have:

$$
dU_t = \sigma(t) d\beta_t + \sigma^2(t) b(t, U_t) dt
$$

\n
$$
dR_t = dB_t + \left\{ \frac{p_x(t, R_t, U_t)}{p(t, R_t, U_t)} + b(t, R_t) \right\} dt,
$$

and $p_x/p + b$ is locally Lipschitz for $t \in [0, T]$ for any $T < 1$ \Rightarrow *R* is the unique strong solution up to an explosion time.

(ロ) (個) (目) (差)

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Is R_t well-defined for all $t \in [0, 1]$?

We have:

$$
dU_t = \sigma(t) d\beta_t + \sigma^2(t) b(t, U_t) dt
$$

\n
$$
dR_t = dB_t + \left\{ \frac{p_x(t, R_t, U_t)}{p(t, R_t, U_t)} + b(t, R_t) \right\} dt,
$$

and $p_x/p + b$ is locally Lipschitz for $t \in [0, T]$ for any $T < 1$ \Rightarrow *R* is the unique strong solution up to an explosion time. \Rightarrow the solution have strong Markov property for any stopping time strictly less than the explosion time.

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Is R_t well-defined for all $t \in [0, 1]$?

We have:

$$
dU_t = \sigma(t) d\beta_t + \sigma^2(t) b(t, U_t) dt
$$

\n
$$
dR_t = dB_t + \left\{ \frac{p_x(t, R_t, U_t)}{p(t, R_t, U_t)} + b(t, R_t) \right\} dt,
$$

and $p_x/p + b$ is locally Lipschitz for $t \in [0, T]$ for any $T < 1$ \Rightarrow *R* is the unique strong solution up to an explosion time. \Rightarrow the solution have strong Markov property for any stopping time strictly less than the explosion time.

 \Rightarrow enough to show that there is no explosion until 1

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Is R_t well-defined for all $t \in [0, 1]$?

We have:

$$
dU_t = \sigma(t) d\beta_t + \sigma^2(t) b(t, U_t) dt
$$

\n
$$
dR_t = dB_t + \left\{ \frac{p_x(t, R_t, U_t)}{p(t, R_t, U_t)} + b(t, R_t) \right\} dt,
$$

and $p_x/p + b$ is locally Lipschitz for $t \in [0, T]$ for any $T < 1$ \Rightarrow *R* is the unique strong solution up to an explosion time. \Rightarrow the solution have strong Markov property for any stopping time strictly less than the explosion time. \Rightarrow enough to show that there is no explosion until 1 Assumption 4 *b*, b_y and b_t are uniformly bounded on [0, 1] $\times \mathbb{R}$,

and *b^y* is Hölder continuous uniformly in *t*.

(ロ) (個) (重) (重)

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Is R_t well-defined for all $t \in [0, 1]$?

We have:

$$
dU_t = \sigma(t) d\beta_t + \sigma^2(t) b(t, U_t) dt
$$

\n
$$
dR_t = dB_t + \left\{ \frac{p_x(t, R_t, U_t)}{p(t, R_t, U_t)} + b(t, R_t) \right\} dt,
$$

and $p_x/p + b$ is locally Lipschitz for $t \in [0, T]$ for any $T < 1$ \Rightarrow *R* is the unique strong solution up to an explosion time. \Rightarrow the solution have strong Markov property for any stopping time strictly less than the explosion time. \Rightarrow enough to show that there is no explosion until 1

Assumption 4 *b*, b_y and b_t are uniformly bounded on [0, 1] $\times \mathbb{R}$, and *b^y* is Hölder continuous uniformly in *t*.

Proposition: *Suppose that Assumptions 2 and 4 hold. Then* Q^{z} (lim_{*t*→1} $R_{t} = U_{1}$) = 1 K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-46-0)

So, is *p* conditional density?

Let P be the set of all probability measures on $\mathcal{B}(\mathbb{R})$. Define

$$
\pi_t f = \mathbb{E}[f(U_t)|\mathcal{F}_t^R].
$$

メロトメ 御 トメ 君 トメ 君 ト

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-46-0)

So, is *p* conditional density?

Let P be the set of all probability measures on $\mathcal{B}(\mathbb{R})$. Define

$$
\pi_t f = \mathbb{E}[f(U_t)|\mathcal{F}_t^R].
$$

Consider the operator

$$
\mathcal{A}_0\phi(t,x)=\frac{\partial\phi}{\partial t}(t,x)+\frac{1}{2}\sigma^2(t)\frac{\partial^2\phi}{\partial x^2}(t,x)+\sigma^2(t)b(t,x)\frac{\partial\phi}{\partial x}(t,x),
$$

the corresponding martingale problem is well-posed

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-46-0)

So, is *p* conditional density?

Let P be the set of all probability measures on $\mathcal{B}(\mathbb{R})$. Define

$$
\pi_t f = \mathbb{E}[f(U_t)|\mathcal{F}_t^R].
$$

Consider the operator

$$
\mathcal{A}_0\phi(t,x)=\frac{\partial\phi}{\partial t}(t,x)+\frac{1}{2}\sigma^2(t)\frac{\partial^2\phi}{\partial x^2}(t,x)+\sigma^2(t)b(t,x)\frac{\partial\phi}{\partial x}(t,x),
$$

the corresponding martingale problem is well-posed \Rightarrow can modify arguments of Kurtz-Ocone (1988) and obtain that

$$
\pi_t f = \pi_0 f + \int_0^t \pi_s(\mathcal{A}_0 f) d\mathbf{s} + \int_0^t \left[\pi_s(\kappa_s f) - \pi_s \kappa_s \pi_s f \right] d \left\{ R_t - \int_0^t \pi_s \kappa_s d\mathbf{s} \right\}
$$

K ロ ト K 何 ト K ヨ ト

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-46-0)

So, is *p* conditional density?

Let P be the set of all probability measures on $\mathcal{B}(\mathbb{R})$. Define

$$
\pi_t f = \mathbb{E}[f(U_t)|\mathcal{F}_t^R].
$$

Consider the operator

$$
\mathcal{A}_0\phi(t,x)=\frac{\partial\phi}{\partial t}(t,x)+\frac{1}{2}\sigma^2(t)\frac{\partial^2\phi}{\partial x^2}(t,x)+\sigma^2(t)b(t,x)\frac{\partial\phi}{\partial x}(t,x),
$$

the corresponding martingale problem is well-posed \Rightarrow can modify arguments of Kurtz-Ocone (1988) and obtain that

$$
\pi_t f = \pi_0 f + \int_0^t \pi_s(\mathcal{A}_0 f) d\mathbf{s} + \int_0^t \left[\pi_s(\kappa_s f) - \pi_s \kappa_s \pi_s f \right] d \left\{ R_t - \int_0^t \pi_s \kappa_s d\mathbf{s} \right\}
$$

has unique solution.

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-46-0)

So, is *p* conditional density?

Let P be the set of all probability measures on $\mathcal{B}(\mathbb{R})$. Define

$$
\pi_t f = \mathbb{E}[f(U_t)|\mathcal{F}_t^R].
$$

Consider the operator

$$
\mathcal{A}_0\phi(t,x)=\frac{\partial\phi}{\partial t}(t,x)+\frac{1}{2}\sigma^2(t)\frac{\partial^2\phi}{\partial x^2}(t,x)+\sigma^2(t)b(t,x)\frac{\partial\phi}{\partial x}(t,x),
$$

the corresponding martingale problem is well-posed \Rightarrow can modify arguments of Kurtz-Ocone (1988) and obtain that

$$
\pi_t f = \pi_0 f + \int_0^t \pi_s(\mathcal{A}_0 f) d\mathbf{s} + \int_0^t \left[\pi_s(\kappa_s f) - \pi_s \kappa_s \pi_s f \right] d \left\{ R_t - \int_0^t \pi_s \kappa_s d\mathbf{s} \right\}
$$

has unique solution. \Rightarrow p is conditional density of U

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

So, is *p* conditional density?

Let P be the set of all probability measures on $\mathcal{B}(\mathbb{R})$. Define

$$
\pi_t f = \mathbb{E}[f(U_t)|\mathcal{F}_t^R].
$$

Consider the operator

$$
\mathcal{A}_0\phi(t,x)=\frac{\partial\phi}{\partial t}(t,x)+\frac{1}{2}\sigma^2(t)\frac{\partial^2\phi}{\partial x^2}(t,x)+\sigma^2(t)b(t,x)\frac{\partial\phi}{\partial x}(t,x),
$$

the corresponding martingale problem is well-posed \Rightarrow can modify arguments of Kurtz-Ocone (1988) and obtain that

$$
\pi_t f = \pi_0 f + \int_0^t \pi_s(\mathcal{A}_0 f) d\mathbf{s} + \int_0^t \left[\pi_s(\kappa_s f) - \pi_s \kappa_s \pi_s f \right] d \left\{ R_t - \int_0^t \pi_s \kappa_s d\mathbf{s} \right\}
$$

has unique solution. \Rightarrow p is conditional density of U $\Rightarrow \rho(t,x,x)=\frac{\rho(t,\mathcal{A}(x,t),\mathcal{A}(z,V(t)))}{\mathsf{a}(t,z)}:=G(t,x,\mathit{V}(t),z)$ is conditional density of *Z*, where *G* is a transition densit[y o](#page-45-0)f *[d](#page-47-0)[η](#page-41-0)[t](#page-46-0)* [=](#page-47-0) *[a](#page-41-0)*[\(](#page-51-0)*[t](#page-52-0)[,](#page-17-0) [η](#page-18-0)t*[\)](#page-51-0)*[d](#page-52-0)[β](#page-0-0)^t* [.](#page-52-0)

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Is *X* a local martingale?

Since

$$
dX_t = a(t, X_t)dB_t + a^2(t, X_t)\frac{\rho_X(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}dt,
$$

重

メロトメ 御 トメ 君 トメ 君 ト

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Is *X* a local martingale?

Since

$$
dX_t = a(t, X_t)dB_t + a^2(t, X_t)\frac{\rho_X(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}dt,
$$

it follows that

$$
dX_t = a(t, X_t)dB_t^X + a^2(t, X_t)\mathbb{E}\left[\frac{\rho_X(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}\Big| \mathcal{F}_t^X\right]dt,
$$

where B^X is an $\mathcal{F}^X\mathrm{-}$ Brownian motion.

Þ

メロトメ 御 トメ 君 トメ 君 ト

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Is *X* a local martingale?

Since

$$
dX_t = a(t, X_t)dB_t + a^2(t, X_t)\frac{\rho_X(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}dt,
$$

it follows that

$$
dX_t = a(t, X_t)dB_t^X + a^2(t, X_t)\mathbb{E}\left[\frac{\rho_x(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}\Big|\mathcal{F}_t^X\right]dt,
$$

where B^X is an \mathcal{F}^X $-$ Brownian motion. However, since $\rho(t, X_t, \cdot) = G(t, X_t; \, V(t), z)$ is the conditional density of $Z_t,$

$$
\mathbb{E}\left[\frac{\rho_{x}(t, X_{t}, Z_{t})}{\rho(t, X_{t}, Z_{t})}\bigg|\mathcal{F}_{t}^{X}\right] = \int_{\mathbb{R}} G_{x}(t, X_{t}; V(t), z) dz = 0
$$

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

Is *X* a local martingale?

Since

$$
dX_t = a(t, X_t)dB_t + a^2(t, X_t)\frac{\rho_X(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}dt,
$$

it follows that

$$
dX_t = a(t, X_t)dB_t^X + a^2(t, X_t)\mathbb{E}\left[\frac{\rho_x(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}\Big|\mathcal{F}_t^X\right]dt,
$$

where B^X is an \mathcal{F}^X $-$ Brownian motion. However, since $\rho(t, X_t, \cdot) = G(t, X_t; \, V(t), z)$ is the conditional density of $Z_t,$

$$
\mathbb{E}\left[\frac{\rho_X(t,X_t,Z_t)}{\rho(t,X_t,Z_t)}\bigg|\mathcal{F}_t^X\right]=\int_{\mathbb{R}}G_X(t,X_t;V(t),z)dz=0
$$

 \Rightarrow X is local martingale

Main Result

Theorem Suppose that Assumptions 2 and 4 hold, and μ (*dz*) = *G*(0, 0; *c*, *z*)*dz*. Let for *t* < 1

$$
dX_t = a(t, X_t)dB_t + a^2(t, X_t)\frac{\rho_X(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}dt,
$$

[Problem Formulation](#page-18-0) [Motivation for the Guess](#page-26-0) [Verification of the Guess](#page-41-0)

where $\rho(t, x, z) := G(t, x; V(t), z)$, on every interval [0, T] with *T <* 1, there exists a unique strong solution to the above SDE with the initial condition $X_0 = 0$. Moreover, the conditions C1-C3 are satisfied.

Theorem *Under Assumptions 1-4, there exists an equilibrium* (*H* ∗ *, w* ∗ *, θ*[∗])*, where*

(i)
$$
H^*(t, x) = \int_{\mathbb{R}} f(y)G(t, x; 1, y) dy
$$
, and $w^*(t, x) = a(t, x)$ for
all $(t, x) \in [0, 1] \times \mathbb{R}$;

(ii) $\theta_t^* = \int_0^t \alpha_s^* ds$ where $\alpha_s^* = a(s, X_s) \frac{\rho_X(s, X_s, Z_s)}{\rho(s, X_s, Z_s)}$ *ρ*(*s,Xs,Zs*) *and the process X is the unique strong solution under* F *^B,^Z of the following SDE:*

$$
dX_t = a(t, X_t)dB_t + a^2(t, X_t)\frac{\rho_x(t, X_t, Z_t)}{\rho(t, X_t, Z_t)}dt, \quad X_0 = 0.
$$

э