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Contribution

Extends existing results to recursive preferences for agent and principal

Special cases: time-additive utility, stochastic di¤erentiable utility,
di¤erences in beliefs, robust control and multiple-prior formulations,

Characterize general solution as FBSDE system

Solution simpli�es considerably with translation-invariant (generalized
exponential utility) and scale-invariant (homothetic) preferences.

Solution reduces to Riccati ODE system for quadratic penalties and
a¢ ne-type state variable dynamics.
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Setup

All uncertainty is generated by d-dimensional standard Brownian
motion B over the �nite time horizon [0,T ].

The set of consumption plans is the extended convex set C � L2(R).
For any c 2 C, we interpret ct as a consumption rate for t < T , and
cT as lump-sum terminal consumption.

De�nition
X , a collection of stochastic processes is extended convex if 8 x1, x2 2 X
there is a process δ = δ(ω, t; x1,x2) > 0 s.t.

αx1 + (1� α)x2 2 X

for each α(ω, t) that satis�es �δ � α � 1+ δ.
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Setup

The set of e¤ort plans is E = fe 2 L2(E); et 2 Et ; 80 � t � Tg
with eT = 0(no lump-sum terminal e¤ort), where Et � E � Rd ,

The impact of agent e¤ort is modelled as a change of probability
measure.

De�ne the probability measure Pe corresponding to e¤ort e , so by
Girsanov�s Theorem dBet = dBt � etdt is standard Brownian motion
under Pe .
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Setup

The agent�s utility U (c , e) is part of the pair
�
U,ΣU

�
assumed to

uniquely satisfy the BSDE

dUt = �F
�
t, ct , et ,Ut ,ΣUt

�
dt + ΣU 0t dB

e
t , UT = F (T , cT ) . (1)

The principal�s utility V (c , e) is part of the pair
�
V ,ΣV

�
assumed

to uniquely satisfy the BSDE

dVt = �G
�
t, ct ,Vt ,ΣVt

�
dt + ΣV 0t dB

e
t , VT = G (T , cT ), (2)

Remark: c 2 C is admissible for the agent if U0(c) > K (participation
constraint)
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Statement of the Problem

Given any c 2 C, the agent chooses e¤ort to maximize hisnher utility:

U0(c) = sup
e2E

U0 (c , e) .

Letting e (c) denote the optimal agent e¤ort level induced by
consumption process c , the principal�s problem is:

sup
c2C

V0 (c , e (c)) subject to U0 (c) � K .
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Agent Optimality

Theorem

Fix some c 2 C and suppose integrability Conditions holds. Then e 2 E is
optimal if and only if for any ẽ 2 E

F
�
ct , et ,Ut ,ΣUt

�
+ ΣU 0t et � F

�
ct , ẽt ,Ut ,ΣUt

�
+ ΣU 0t ẽt , t 2 [0,T )

(3)
where Ut = Ut (c , e) and ΣUt = ΣUt (c , e) solve the BSDE (1).

Proof.

The proof is mainly the use of Comparison Theorem for BSDEs.
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Agent Optimality

If the solution is interior, then (3) is equivalent to

�Fe
�
t, ct , et ,Ut ,ΣUt

�
= ΣUt .

We will assume that above equation can be inverted to get optimal e¤ort
et = I

�
ω, t, c ,U,ΣU

�
.

Mark Schroder, Sumit Sinha and Shlomo Levental () May 2010 9 / 27



Principal Optimality

Using et = I
�
ω, t, c ,U,ΣU

�
, the principal�s problem is

sup
c2C

V0 (c) subject to U0 (c) � K (4)

where
�
U,ΣU ,V ,ΣV

�
satisfy the BSDE system

dUt = �F̄
�
t, ct ,Ut ,ΣUt

�
dt + ΣU 0t dBt , UT = F (T , cT ) , (5)

dVt = �Ḡ
�
t, ct ,Vt ,ΣVt ,Ut ,Σ

U
t

�
dt + ΣV 0t dBt , VT = G (T , cT ) ,

with modi�ed aggregators.
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Gradient and Supergradient density

De�nition
Let ν : C !R be a functional. For any c 2 C, the process π 2 L2(R) is
a supergradient density of ν at c if

ν (c + h)� ν (c) � E
�Z T

0
π0thtdt + π0T hT

�
, 8 h such that c + h 2 C,

and π 2 L2(R) is a gradient density at c if

E
�Z T

0
π0thtdt + π0T hT

�
= lim

α#0

ν (c + αh)� ν (c)
α

8 h s.t. c + αh 2 C .

Mark Schroder, Sumit Sinha and Shlomo Levental () May 2010 11 / 27



Gradient and Supergradient density

The computation of π, the densities above, require the following
R2-valued adjoint process εt =

�
εVt , ε

U
t

�0
, with some initial value ε0 2 R2

and dynamics

dεt =

�
ḠV (t) 0
ḠU (t) F̄U (t)

�
εtdt+

�
ḠΣV (t)

0 dBt 0
ḠΣU (t)

0 dBt F̄Σ (t)
0 dBt

�
εt . (6)
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Gradient and Supergradient density

Lemma

Suppose c 2 C and that ε satis�es (6) with initial value ε0 2 R2
+.

Under certain Integrability Condition f[Ḡc (t) , F̄c (t)] εt ; t 2 [0,T ]g
is a utility gradient of [V0 (c) ,U0 (c)] ε0 at c .

Under Integrability Condition (di¤erent from the previous part)
f[Ḡc (t) , F̄c (t)] εt ; t 2 [0,T ]g is a utility supergradient of
[V0 (c) ,U0 (c)] ε0 at c .

Proof.
One of the methods to prove the above lemma is to use derivatives of the
solution of BSDE. A result in this direction can be found in Briand and
Confortola(2006).
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Principal Optimality

Theorem

Let c 2 C,
�
U,ΣU ,V ,ΣV

�
solve the BSDE system (5) , let ε be the

adjoint process. Assume appropriate integrability condition holds. Then c
solves the principal�s problem i¤ there is some κ 2 R+ such that

ε0 = (1, κ)
0 , [Ḡc (t) , F̄c (t)] εt = 0, t 2 [0,T ] , (7)

κ fU0 (c)�Kg = 0.

Proof.
The proof is based on a version of Kuhn-Tucker Theorem.
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Principal Optimality

De�ne

λt = �
Ḡc
�
t, ct ,Vt ,ΣVt ,Ut ,ΣUt

�
F̄c
�
t, ct ,Ut ,ΣUt

� , t < T , λT = �
Ḡc (T , cT )
F̄c (T , cT )

, (8)

Under the FOCs (7) we have

λt =
εUt
εVt
, (9)

where ε0 = (1, κ)
0 for some κ � 0. From (9) we get by Ito�s Lemma:

dλt =
n

λt F̄U (t)� λt ḠV (t) + ḠU (t)� Ḡ 0ΣV Σλ
t

o
dt + Σλ0

t dBt , (10)

where Σλ
t = λt fF̄Σ (t)� ḠΣV g+ ḠΣU (t) .

We will assume that (8) can be inverted to present consumption as
ct = φ

�
λt ,Vt ,ΣVt ,Ut ,ΣUt

�
:
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Solution

The �rst-order conditions for the problem is a FBSDE system for�
U,ΣU ,V ,ΣVt ,λ

�
:

dUt = �F̄
�
t, ct ,Ut ,ΣUt

�
dt + ΣU 0t dBt , UT = F (T , cT ) ,

dVt = �Ḡ
�
t, ct ,Vt ,ΣVt ,Ut ,Σ

U
t

�
dt + ΣV 0t dBt , VT = G (T , cT )

dλt =
n

λt F̄U (t)� λt ḠV (t) + ḠU (t)� Ḡ 0ΣV Σλ
t

o
dt + Σλ0

t dBt ,

where Σλ
t = λt fF̄Σ (t)� ḠΣV g+ ḠΣU (t) , λ0 = κ � 0,
U0 � K , κ (U0 �K ) = 0,
ct = φ

�
t,λt ,Vt ,ΣVt ,Ut ,Σ

U
t

�
, cT = φ (t,λT ) .
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Another approach to solving Principal�s problem

The function J : Ω� [0,T ]�C� E�R ! Rd is well-de�ned
implicitly by

e = I (ω, t, c ,U, J (ω, t, c , e,U)) , e 2 E. (11)

With this invertibility condition, the agent�s optimal e¤ort
et = I

�
t, ct ,Ut ,ΣUt

�
is equivalent to ΣUt = J (t, ct , et ,Ut ).

Substituting ΣUt = J (t, ct , et ,Ut ) into agent�s utility function and
assuming that participation constraint is binding we get:

dUt = �
�
F (t, ct , et ,Ut , J (t)) + J (t)

0 et
	
dt+ J (t)0 dBt , U0 = K .

(12)
The lump-sum terminal consumption implied by e¤ort plan e is

cT = F
�1 (T ,UT ) , (13)
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The principal�s problem is equivalent to choosing e and fct ; t 2 [0,T )g to
maximize V0 (c , e) subject to the initial value of the agent utility (now a
forward equation) satisfying the participation constraint:

sup
c ,e2C�E

V0 (c , e) subject to

dUt = �fF (t, ct , et ,Ut , J (t))g dt + J (t)0 dBet , U0 = K ,

dVt = �G
�
t, ct ,Vt ,ΣVt

�
dt + ΣV 0t dB

e
t , VT = G

�
T ,F�1 (T ,UT )

�
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Lemma
Under Integrability conditions the principal�s optimality conditions are
equivalent to

0 = Gc (t) + λtFc (t) + Jc (t)
0
n

λtFΣ (t)� λtGΣV (t)� Σλ
t

o
,(14)

0 = ΣVt + Je (t)
0
n

λtFΣ (t)� λtGΣV (t)� Σλ
t

o
.

and

dλt = fλtFU (t)� λtGV (t)� JU (t)0
h
Σλ
t � λtFΣ (t) + λtGΣV (t)

i
�G 0ΣΣλ

t gdt + Σλ0
t dB

e
t , λT = �

Gc
�
T ,F�1 (T ,UT )

�
Fc (T ,F�1 (T ,UT ))

.

Proof.
The prove is based on the fact e = I (ω, t, c ,U, J (ω, t, c , e,U)) and the
previous principal optimality conditions(See (8) and (10)).
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Example (Cvitanic, Wan & Zhang, 2008)
Suppose there is no intermediate consumption and the penalty for agent
e¤ort is quadratic:

F (t, c , e,Σ) = �1
2
qe 0e, G (t, c ,V ,Σ) = 0, t < T ,

F (T , cT ) = f (cT ) , G (T , cT ) = g (XT � cT ) ,

for some q > 0 and cash-�ow XT .

Agent optimality implies ΣUt = J (t, et ) = qet , and

dλt = Σλ0
t dB

e
t , λT =

g 0 (XT � cT )
f 0 (cT )

.
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Example Contd.

The principal�s optimality condition reduces to ΣVt = qΣλ
t which

implies the key simpli�cation dVt = qdλt . So for some constant β

Vt � qλt = β 8t 2 [0,T ]

β = g (XT � cT )� q
�
g 0 (XT � cT )
f 0 (cT )

�
(15)

which can be used to solve implicitly for cT as a function of β and
XT .

To solve for β, observe that ut = exp (Ut/q) is a Martingale (By Ito
Lemma, dut = ute 0tdBt ). Since u0 = e

K )

exp (K ) = E (uT ) = E exp
�
f (cT )
q

�
.

The martingale representation theorem gives the optimal e¤ort e.
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Translation Invariant(TI) Preferences

The agent�s and principal�s aggregators are of the form

F (ω, t, c , e,U,Σ) = f
�

ω, t,
c

γU
� U, e,Σ

�
, F (T , c) =

c
γU
,

G (ω, t, c ,V ,Σ) = g
�

ω, t,
X (ω, t)� c

γV
� V ,Σ

�
,

G (ω,T , c) =
X (ω,T )� c

γV
,

for some constants γU ,γV 2 R++ and some functions
f : Ω� [0,T ]�R1+2d ! R and g : Ω� [0,T ]�R1+d ! R, which we
refer to as absolute aggregators. X (ω, t) is the cash�ow process.
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Translation Invariant Example

Lemma

Under the TI preferences, at the optimum (c , e) , λt =
γU

γV
, t 2 [0,T ] .

We demonstrate an example with TI preferences with quadratic
volatility and e¤ort penalties ,where we get explicit expression for
optimal (c , e).

f
�

ω, t, xU , e,Σ
�
= hU

�
ω, t, xU

�
+ pU (ω, t)0 Σ (16)

�1
2
qU (ω, t)Σ0Σ� 1

2
qe (ω, t) e 0e,

g
�

ω, t, xV ,Σ
�
= hV

�
ω, t, xV

�
+ pV (ω, t)0 Σ� 1

2
qV (ω, t)Σ0Σ

where xUt = ct/γU � Ut , xUt = Xt�ct
γV

� Vt ,and qe , qU , qV 2 L (R+)

represent the e¤ort and risk-aversion penalties, and pU , pV 2 L
�
Rd
�

can be interpreted as di¤erences in beliefs of the agent and principal
from the true probability measure
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Translation Invariant Example Contd.

Let

wt =
1+ λqet q

V
t

1+ λqet q
V
t + q

e
t q
U
t
, (17)

then J (t, et ) = qet et and the optimal e¤ort satis�es

et =
wt

λqet
ΣYt +

1� wt
qet q

U
t

�
pUt � pVt

�
. (18)

and optimal xUt = φ
�
t, Xt

γV
� Yt

�
, which we get from Principal�s

optimality equation.
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Translation Invariant Example Contd.

De�ne Yt = Vt + λUt
The BSDE for Y is

dYt = �
�
H
�
t,
Xt
γV

� Yt
�
+ µYt + p

Y 0
t ΣYt �

1
2
qYt ΣY 0t ΣYt

�
dt + ΣY 0t dBt

(19)

YT =
XT
γV

where

H (ω, t, x) = hV (ω, t,�λφ (ω, t, x) + x) + λhU (ω, t, φ (ω, t, x)) ,

µYt =
1
2

λ (1� wt )
qUt

pUt � pVt 2 ,
pYt = wtpUt + (1� wt ) pVt ,

qYt =
1
λ

�
qUt wt �

1
qet

�
,
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Translation Invariant Example Contd.

In the case of constant qe , qU and qV , we can rearrange (19) to obtain an
expression for ΣY 0t dBt , and substitute into FSDE for U. The terminal
consumption is given by

cT = wXT + γU (1� w)
�
K �

Z T

0
hU
�
t, xUt

�
dt
�

�γVw
�
V0 �

Z T

0
hV
�
t, xVt

�
dt
�
+

1
2

γU
w (1� w)

λ2qe

Z T

0

ΣYt
2 dt � γV

w(1� w)
qUqe

Z T

0

�
pUt � pVt

�0
ΣYt dt

+
γU

2

�
1� w
qU

� Z T

0

�pVt 2 � pUt 2 ��1� wqeqU

�pUt � pVt 2� dt
+γU

1� w
qU

Z T

0

�
pUt � pVt

�0
dBt .
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T HANK YOU
The working paper is available at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1573246.
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