The Continuous-Time Principal-Agent Problem with Moral Hazard and Recursive Preferences

$\mathsf{Mark}\ \mathsf{Schroder}^1, \ \mathsf{Sumit}\ \mathsf{Sinha}^2$ and $\mathsf{Shlomo}\ \mathsf{Levental}^3$

May 2010

¹ Mark Schroder, Department of Finance, Michigan State University.

²Sumit Sinha , Department of Statistics and Probability, Michigan State University. ³Shlomo Levental, Department of Statistics and Probability, Michigan State University. 4 日下 Ω

- Schattler, H., and J. Sung (1993)
- Cvitanic,J., X. Wan, and J. Zhang (2008)
- Schroder, M., and C. Skiadas (2003, 2005)
- P. Briand and F. Confortola (2008)

- Extends existing results to recursive preferences for agent and principal
- Special cases: time-additive utility, stochastic differentiable utility, differences in beliefs, robust control and multiple-prior formulations,
- Characterize general solution as FBSDE system
- Solution simplifies considerably with translation-invariant (generalized exponential utility) and scale-invariant (homothetic) preferences.
- Solution reduces to Riccati ODE system for quadratic penalties and affine-type state variable dynamics.

 Ω

- All uncertainty is generated by d-dimensional standard Brownian motion B over the finite time horizon $[0, T]$.
- \bullet The set of *consumption plans* is the extended convex set $\mathcal{C} \subset \mathcal{L}_2(\mathbb{R})$. For any $c \in \mathcal{C}$, we interpret c_t as a consumption rate for $t < \mathcal{T}$, and c_T as lump-sum terminal consumption.

Definition

X, a collection of stochastic processes is extended convex if $\forall x_1, x_2 \in X$ there is a process $\delta = \delta(\omega, t; x_1, x_2) > 0$ s.t.

$$
\alpha x_1 + (1-\alpha)x_2 \in X
$$

for each $\alpha(\omega, t)$ that satisfies $-\delta \leq \alpha \leq 1+\delta$.

- The set of *effort plans* is $\mathcal{E} = \{e \in \mathcal{L}_2(\mathsf{E}); e_t \in E_t \ ; \ \forall 0 \leq t \leq \mathcal{T}\}$ with $e_{\mathcal{T}} = 0$ (no lump-sum terminal effort), where $E_t \subset \mathbf{E} \subset \mathbb{R}^d$,
- The impact of agent effort is modelled as a change of probability measure.
- Define the probability measure P^e corresponding to effort e , so by Girsanov's Theorem $dB_t^e = dB_t - e_t dt$ is standard Brownian motion under P^e .

つへへ

The agent's utility $\mathit{U}\left(c,e\right)$ is part of the pair $\left(U,\Sigma^{U}\right)$ assumed to uniquely satisfy the BSDE

$$
dU_t = -F\left(t, c_t, e_t, U_t, \Sigma_t^U\right)dt + \Sigma_t^{U'}dB_t^e, \quad U_T = F\left(T, c_T\right). \tag{1}
$$

The principal's utility $V\left(c,e\right) \;$ is part of the pair $\left(V,\Sigma^{V}\right)$ assumed to uniquely satisfy the BSDE

$$
dV_t = -G\left(t, c_t, V_t, \Sigma_t^V\right)dt + \Sigma_t^{V\prime}dB_t^e, \quad V_T = G(T, c_T), \quad (2)
$$

Remark: $c \in \mathcal{C}$ is admissible for the agent if $U_0(c) \geqslant K$ (participation constraint)

つへへ

Given any $c \in \mathcal{C}$, the agent chooses effort to maximize his her utility:

$$
U_0(c)=\sup_{e\in\mathcal{E}}U_0(c,e).
$$

Letting $e(c)$ denote the optimal agent effort level induced by consumption process c , the principal's problem is:

$$
\sup_{c\in\mathcal{C}}V_0(c,e(c))
$$
 subject to $U_0(c)\geq K$.

Theorem

Fix some $c \in \mathcal{C}$ and suppose integrability Conditions holds. Then $e \in \mathcal{E}$ is optimal if and only if for any $\tilde{e} \in \mathcal{E}$

$$
F\left(c_t, e_t, U_t, \Sigma_t^U\right) + \Sigma_t^{U\prime} e_t \geq F\left(c_t, \tilde{e}_t, U_t, \Sigma_t^U\right) + \Sigma_t^{U\prime} \tilde{e}_t, \quad t \in [0, T)
$$
\n(3)

4 0 8

where $U_t=U_t\left(\epsilon,e\right)$ and $\Sigma _t^U=\Sigma _t^U\left(\epsilon,e\right)$ solve the BSDE $(1).$ $(1).$ $(1).$

Proof.

The proof is mainly the use of Comparison Theorem for BSDEs.

If the solution is interior, then (3) (3) (3) is equivalent to

$$
-F_e\left(t, c_t, e_t, U_t, \Sigma_t^U\right) = \Sigma_t^U.
$$

We will assume that above equation can be inverted to get optimal effort $e_t = I(\omega, t, c, U, \Sigma^U)$.

 \leftarrow \Box

つへへ

Using $e_t = I\left(\omega, \, t, \, c, \, U, \Sigma^U\right)$, the principal's problem is

$$
\sup_{c \in C} V_0(c) \text{ subject to } U_0(c) \geq K \tag{4}
$$

where $(\,U, \Sigma^{U},\,V, \Sigma^{V})\,$ satisfy the BSDE system

$$
dU_t = -\bar{F}\left(t, c_t, U_t, \Sigma_t^U\right)dt + \Sigma_t^{U'}dB_t, \quad U_T = F(T, c_T),
$$
\n
$$
dV_t = -\bar{G}\left(t, c_t, V_t, \Sigma_t^V, U_t, \Sigma_t^U\right)dt + \Sigma_t^{V'}dB_t, \quad V_T = G(T, c_T),
$$
\n(5)

with modified aggregators.

 Ω

Definition

Let $v : \mathcal{C} \to \mathbb{R}$ be a functional. For any $c \in \mathcal{C}$, the process $\pi \in \mathcal{L}_2(\mathbb{R})$ is a supergradient density of *ν* at c if

$$
\nu(c+h)-\nu(c)\leq E\left[\int_0^T \pi_t'h_tdt+\pi_T'h_T\right], \quad \forall \ h \text{ such that } c+h\in \mathcal{C},
$$

and $\pi \in \mathcal{L}_2(\mathbb{R})$ is a *gradient density* at c if

$$
E\left[\int_0^T \pi'_t h_t dt + \pi'_T h_T\right] = \lim_{\alpha \downarrow 0} \frac{\nu(c + \alpha h) - \nu(c)}{\alpha} \quad \forall \ h \text{ s.t. } c + \alpha h \in \mathcal{C}.
$$

つひい

The computation of *π*, the densities above, require the following \mathbb{R}^2 -valued adjoint process $\varepsilon_t = (\varepsilon_t^V, \varepsilon_t^U)'$, with some initial value $\varepsilon_0 \in \mathbb{R}^2$ and dynamics

$$
d\varepsilon_t = \begin{pmatrix} \bar{G}_V(t) & 0 \\ \bar{G}_U(t) & \bar{F}_U(t) \end{pmatrix} \varepsilon_t dt + \begin{pmatrix} \bar{G}_{\Sigma^V}(t)' dB_t & 0 \\ \bar{G}_{\Sigma^U}(t)' dB_t & \bar{F}_{\Sigma}(t)' dB_t \end{pmatrix} \varepsilon_t.
$$
 (6)

Lemma

Suppose $c \in \mathcal{C}$ and that ε satisfies (6) (6) (6) with initial value $\varepsilon_0 \in \mathbb{R}_+^2$.

- Under certain Integrability Condition $\{[\bar{G}_c(t), \bar{F}_c(t)]\varepsilon_t; t \in [0, T]\}$ is a utility gradient of $[V_0(c), U_0(c)] \varepsilon_0$ at c.
- Under Integrability Condition (different from the previous part) $\{[\bar{G}_{c}\left(t\right),\bar{F}_{c}\left(t\right)]\,\varepsilon_{t};\;\;t\in[0,\,T]\}$ is a utility supergradient of $[V_0(c),U_0(c)]\varepsilon_0$ at c.

Proof.

One of the methods to prove the above lemma is to use derivatives of the solution of BSDE. A result in this direction can be found in Briand and Confortola(2006).

4 D F

Theorem

Let $c \in \mathcal{C}$, $(U, \Sigma^U, V, \Sigma^V)$ solve the BSDE system (5) (5) (5) , let ε be the adjoint process. Assume appropriate integrability condition holds. Then c solves the principal's problem iff there is some $\kappa \in \mathbb{R}_+$ such that

$$
\varepsilon_{0} = (1, \kappa)', \quad [\bar{G}_{c}(t), \bar{F}_{c}(t)] \varepsilon_{t} = 0, \quad t \in [0, T], \quad (\text{7})
$$
\n
$$
\kappa \{ U_{0}(c) - K \} = 0.
$$

つへへ

Proof.

The proof is based on a version of Kuhn-Tucker Theorem.

Principal Optimality

Define

$$
\lambda_t = -\frac{\bar{G}_c(t, c_t, V_t, \Sigma_t^V, U_t, \Sigma_t^U)}{\bar{F}_c(t, c_t, U_t, \Sigma_t^U)}, \quad t < T, \quad \lambda_T = -\frac{\bar{G}_c(T, c_T)}{\bar{F}_c(T, c_T)}, \quad (8)
$$

Under the FOCs [\(7\)](#page-13-0) we have

$$
\lambda_t = \frac{\varepsilon_t^U}{\varepsilon_t^V},\tag{9}
$$

where $\varepsilon_0 = (1, \kappa)'$ for some $\kappa \geq 0$. From [\(9\)](#page-14-0) we get by Ito's Lemma:

$$
d\lambda_{t} = \left\{ \lambda_{t} \bar{F}_{U} \left(t \right) - \lambda_{t} \bar{G}_{V} \left(t \right) + \bar{G}_{U} \left(t \right) - \bar{G}_{\Sigma V}' \Sigma_{t}^{\lambda} \right\} dt + \Sigma_{t}^{\lambda t} dB_{t}, \quad (10)
$$
\nwhere $\Sigma_{t}^{\lambda} = \lambda_{t} \left\{ \bar{F}_{\Sigma} \left(t \right) - \bar{G}_{\Sigma V} \right\} + \bar{G}_{\Sigma^{U}} \left(t \right).$

We will assume that ([8](#page-14-1)) can be inverted to present consumption as $c_t = \phi\left(\lambda_t, V_t, \Sigma_t^V, U_t, \Sigma_t^U\right)$:

The first-order conditions for the problem is a FBSDE system for $(U, \Sigma^U, V, \Sigma_t^V, \lambda)$:

$$
dU_t = -\bar{F}(t, c_t, U_t, \Sigma_t^U) dt + \Sigma_t^U dB_t, U_T = F(T, c_T),
$$

\n
$$
dV_t = -\bar{G}(t, c_t, V_t, \Sigma_t^V, U_t, \Sigma_t^U) dt + \Sigma_t^{V'} dB_t, V_T = G(T, c_T)
$$

\n
$$
d\lambda_t = \left\{ \lambda_t \bar{F}_U(t) - \lambda_t \bar{G}_V(t) + \bar{G}_U(t) - \bar{G}_{\Sigma}^{\prime} \Sigma_t^{\lambda} \right\} dt + \Sigma_t^{\lambda \prime} dB_t,
$$

\nwhere $\Sigma_t^{\lambda} = \lambda_t \left\{ \bar{F}_{\Sigma}(t) - \bar{G}_{\Sigma} \nu \right\} + \bar{G}_{\Sigma} \nu(t), \lambda_0 = \kappa \ge 0,$
\n
$$
U_0 \ge K, \kappa (U_0 - K) = 0,
$$

\n
$$
c_t = \phi(t, \lambda_t, V_t, \Sigma_t^V, U_t, \Sigma_t^U), c_T = \phi(t, \lambda_T).
$$

メロト メ都 トメ ヨ トメ ヨ

 298

造

Another approach to solving Principal's problem

The function $J: \Omega \times [0,\, T] \times {\mathbf C} \times {\mathbf E} \times {\mathbb R} \to {\mathbb R}^d$ is well-defined implicitly by

$$
e = I(\omega, t, c, U, J(\omega, t, c, e, U)), \quad e \in E.
$$
 (11)

- With this invertibility condition, the agent's optimal effort $e_t = I\left(t, c_t, U_t, \Sigma^U_t\right)$ is equivalent to $\Sigma^U_t = J\left(t, c_t, e_t, U_t\right)$.
- Substituting $\Sigma_t^U=J\left(t, c_t, e_t, U_t\right)$ into agent's utility function and assuming that participation constraint is binding we get:

$$
dU_t = -\left\{ F(t, c_t, e_t, U_t, J(t)) + J(t)' e_t \right\} dt + J(t)' dB_t, \quad U_0 = K.
$$
\n(12)

The lump-sum terminal consumption implied by effort plan e is

$$
c_{\mathcal{T}} = F^{-1}(T, U_T), \qquad (13)
$$

The principal's problem is equivalent to choosing e and $\{c_t; t \in [0, T)\}$ to maximize V_0 (c, e) subject to the initial value of the agent utility (now a forward equation) satisfying the participation constraint:

$$
\sup_{c,e\in\mathcal{C}\times\mathcal{E}} V_0(c,e) \text{ subject to}
$$
\n
$$
dU_t = -\{F(t,c_t,e_t,U_t,J(t))\} dt + J(t)' dB_t^e, \quad U_0 = K,
$$
\n
$$
dV_t = -G\left(t,c_t,V_t,\Sigma_t^V\right) dt + \Sigma_t^{V'} dB_t^e, \quad V_T = G\left(T, F^{-1}\left(T, U_T\right)\right)
$$

 Ω

Lemma

Under Integrability conditions the principal's optimality conditions are equivalent to

$$
0 = G_c(t) + \lambda_t F_c(t) + J_c(t)' \left\{ \lambda_t F_{\Sigma}(t) - \lambda_t G_{\Sigma V}(t) - \Sigma_t^{\lambda} \right\}, (14)
$$

\n
$$
0 = \Sigma_t^V + J_e(t)' \left\{ \lambda_t F_{\Sigma}(t) - \lambda_t G_{\Sigma V}(t) - \Sigma_t^{\lambda} \right\}.
$$

and

$$
d\lambda_t = \left\{ \lambda_t F_U(t) - \lambda_t G_V(t) - J_U(t)' \left[\Sigma_t^{\lambda} - \lambda_t F_{\Sigma}(t) + \lambda_t G_{\Sigma^V}(t) \right] - G_{\Sigma}^{\prime} \Sigma_t^{\lambda} \right\} dt + \Sigma_t^{\lambda \prime} dB_t^e, \qquad \lambda_T = -\frac{G_c (T, F^{-1} (T, U_T))}{F_c (T, F^{-1} (T, U_T))}.
$$

Proof.

The prove is based on the fact $e = I(\omega, t, c, U, J(\omega, t, c, e, U))$ and the previous principal optimality conditions(See [\(8\)](#page-14-1) and [\(10\)](#page-14-2)).

Example (Cvitanic, Wan & Zhang, 2008)

Suppose there is no intermediate consumption and the penalty for agent effort is quadratic:

$$
F(t, c, e, \Sigma) = -\frac{1}{2}qe'e, \quad G(t, c, V, \Sigma) = 0, \quad t < T,
$$

$$
F(T, c_T) = f(c_T), \quad G(T, c_T) = g(X_T - c_T),
$$

for some $q > 0$ and cash-flow X_T .

Agent optimality implies $\Sigma_t^{\,U} = J\left(t,e_t\right) = q e_t$, and

$$
d\lambda_t = \Sigma_t^{\lambda t} dB_t^e, \quad \lambda_T = \frac{g'(X_T - c_T)}{f'(c_T)}.
$$

 \leftarrow \Box

Example Contd.

The principal's optimality condition reduces to $\Sigma_t^V = q \Sigma_t^\lambda$ which implies the key simplification $dV_t = q d\lambda_t$. So for some constant β

$$
V_t - q\lambda_t = \beta \quad \forall t \in [0, T]
$$

$$
\beta = g(X_T - c_T) - q\left(\frac{g'(X_T - c_T)}{f'(c_T)}\right)
$$
(15)

4 ロ ▶ 4 旬

which can be used to solve implicitly for c_T as a function of β and X_{τ} .

• To solve for *β*, observe that $u_t = \exp(U_t/q)$ is a Martingale (By Ito Lemma, $du_t = u_t e_t' d B_t$). Since $u_0 = e^{K}$)

$$
\exp(K) = E(u_T) = E \exp\left(\frac{f(c_T)}{q}\right).
$$

 \bullet The martingale representation theorem gives the optimal effort e.

The agent's and principal's aggregators are of the form

$$
F(\omega, t, c, e, U, \Sigma) = f(\omega, t, \frac{c}{\gamma U} - U, e, \Sigma), \quad F(T, c) = \frac{c}{\gamma U},
$$

$$
G(\omega, t, c, V, \Sigma) = g(\omega, t, \frac{X(\omega, t) - c}{\gamma V} - V, \Sigma),
$$

$$
G(\omega, T, c) = \frac{X(\omega, T) - c}{\gamma V},
$$

for some constants γ^U , $\gamma^V \in \mathbb{R}_{++}$ and some functions $f:\Omega\times[0,\,T]\times\mathbb{R}^{1+2d}\rightarrow\mathbb{R}$ and $g:\Omega\times[0,\,T]\times\mathbb{R}^{1+d}\rightarrow\mathbb{R},$ which we refer to as absolute aggregators. $X(\omega, t)$ is the cashflow process.

Lemma

Under the TI preferences, at the optimum (c, e) , $\lambda_t = \frac{\gamma^0}{\gamma^0}$ $\frac{\gamma}{\gamma^V}, \quad t \in [0, T]$.

We demonstrate an example with TI preferences with quadratic volatility and effort penalties , where we get explicit expression for optimal (c, e) .

$$
f\left(\omega, t, x^U, e, \Sigma\right) = h^U\left(\omega, t, x^U\right) + p^U\left(\omega, t\right)'\Sigma
$$
\n
$$
-\frac{1}{2}q^U\left(\omega, t\right)\Sigma'\Sigma - \frac{1}{2}q^e\left(\omega, t\right)e'e,
$$
\n
$$
g\left(\omega, t, x^V, \Sigma\right) = h^V\left(\omega, t, x^V\right) + p^V\left(\omega, t\right)'\Sigma - \frac{1}{2}q^V\left(\omega, t\right)\Sigma'\Sigma
$$
\n(16)

where $x^U_t = c_t/\gamma^U - U_t$, $x^U_t = \frac{X_t - c_t}{\gamma^V} - V_t$,and q^e , q^U , $q^V \in \mathcal{L}\left(\mathbb{R}_+\right)$ represent the effort and risk-aversion penalties, and $p^U, p^V \in \mathcal{L}\left(\mathbb{R}^d\right)$ can be interpreted as differences in beliefs of the agent and principal from the true probability measure 4 0 8 Ω Mark Schroder, Sumit Sinha and Shlomo Levental () May 2010 23 / 27

Let

$$
w_t = \frac{1 + \lambda q_t^e q_t^V}{1 + \lambda q_t^e q_t^V + q_t^e q_t^U},
$$
\n(17)

then $J(t,e_t)=q_t^ee_t$ and the optimal effort satisfies

$$
e_t = \frac{w_t}{\lambda q_t^e} \Sigma_t^Y + \frac{1 - w_t}{q_t^e q_t^U} \left(p_t^U - p_t^V \right).
$$
 (18)

 200

and optimal $x^U_t = \phi\left(t, \frac{X_t}{\gamma^V} - Y_t\right)$, which we get from Principal's optimality equation.

Translation Invariant Example Contd.

Define
$$
Y_t = V_t + \lambda U_t
$$

\nThe BSDE for Y is
\n
$$
dY_t = -\left\{ H\left(t, \frac{X_t}{\gamma V} - Y_t\right) + \mu_t^Y + p_t^{Y/\Sigma_t^Y} - \frac{1}{2} q_t^Y \Sigma_t^{Y/\Sigma_t^Y} \right\} dt + \Sigma_t^{Y\prime} dB_t
$$
\n
$$
Y_T = \frac{X_T}{\gamma V}
$$
\n(19)

where

$$
H(\omega, t, x) = h^{V}(\omega, t, -\lambda \phi(\omega, t, x) + x) + \lambda h^{U}(\omega, t, \phi(\omega, t, x)),
$$

\n
$$
\mu_{t}^{Y} = \frac{1}{2} \frac{\lambda (1 - w_{t})}{q_{t}^{U}} \left\| p_{t}^{U} - p_{t}^{V} \right\|^{2},
$$

\n
$$
p_{t}^{Y} = w_{t} p_{t}^{U} + (1 - w_{t}) p_{t}^{V},
$$

\n
$$
q_{t}^{Y} = \frac{1}{\lambda} \left(q_{t}^{U} w_{t} - \frac{1}{q_{t}^{e}} \right),
$$

 q_t^e

 \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow

λ

Translation Invariant Example Contd.

In the case of constant q^e , q^U and q^V , we can rearrange (19) (19) (19) to obtain an expression for Σ_t^{Y} 'd B_t , and substitute into FSDE for U . The terminal consumption is given by

$$
c_{\mathcal{T}} = wX_{\mathcal{T}} + \gamma^{U}(1-w)\left(K - \int_{0}^{T} h^{U}(t, x_{t}^{U}) dt\right)
$$

$$
-\gamma^{V} w \left(V_{0} - \int_{0}^{T} h^{V}(t, x_{t}^{V}) dt\right) +
$$

$$
\frac{1}{2}\gamma^{U} \frac{w (1-w)}{\lambda^{2} q^{e}} \int_{0}^{T} \left\|\Sigma_{t}^{Y}\right\|^{2} dt - \gamma^{V} \frac{w (1-w)}{q^{U} q^{e}} \int_{0}^{T} \left(p_{t}^{U} - p_{t}^{V}\right)^{\prime} \Sigma_{t}^{Y} dt
$$

$$
+ \frac{\gamma^{U}}{2} \left(\frac{1-w}{q^{U}}\right) \int_{0}^{T} \left(\left\|p_{t}^{V}\right\|^{2} - \left\|p_{t}^{U}\right\|^{2} - \left(\frac{1-w}{q^{e} q^{U}}\right) \left\|p_{t}^{U} - p_{t}^{V}\right\|^{2}\right) dt
$$

$$
+ \gamma^{U} \frac{1-w}{q^{U}} \int_{0}^{T} \left(p_{t}^{U} - p_{t}^{V}\right)^{\prime} dB_{t}.
$$

THANK YOU The working paper is available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1573246.

す唐★。

4 0 8

 Ω