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Realized Variance

Let S denote a discounted asset, and X its logarithm.

Realized Variance

The annualized realized variance of X over the period [0,T ]
subdivided into n business days 0 = t0 < · · · < tn = T is given by

RVn(T ) =
1

T

n∑
k=1

(
log

Stk

Stk−1

)2

=
1

T

n∑
k=1

(
Xtk − Xtk−1

)2

A considerable number of financial instruments use realized
variance as an underlying: variance swap, volatility swap,
calls/puts on realized variance
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Approximation by Quadratic Variation (1)

Standard pricing approach: substitute annualized quadratic
variation QV (T ) = 1

T [X ,X ]T for realized variance.

RVn(T ) ≈ QV (T )

Quadratic variation is the limit in probability of realized
variance, when T stays fixed and the number of increments n
tends to infinity.
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Approximation by Quadratic Variation (2)

The approximation via quadratic variation works well for
claims with (approximately) linear payoffs: variance swaps,
volatility swaps.

See Bühler [2006], Sepp [2008], Broadie and Jain [2008]

The approximation is not sufficient for claims with non-linear
payoffs like calls/puts and for maturities shorter than 3
months.

See Bühler [2006], Gatheral [2008].
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Bühler’s Example

ATM call in the Heston model. Plot taken from Bühler [2006].

Martin Keller-Ressel Options on Variance



Main Questions

This talk addresses the following questions:

1 How big is the discretization gap between options on
quadratic variation (QV) and realized variance (RV)?

2 How can options on the realized variance be valuated exactly?

We focus on ATM calls, i.e. options with payoff

(RVn(T )− E [RVn(T )])+

where E [RVn(T )] is the swap rate.
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The Discretization Gap

As a proxy for the short-time behavior of options on realized
variance we use

lim
T→0

E
[
(RV1(T )− E [RV1(T )])+

]
;

for options on quadratic variation we use

lim
T→0

E
[
(QV (T )− E [QV (T )])+

]
.

The discretization gap is the difference between the two:

lim
T→0

{
E
[
(RV1(T )− E [RV1(T )])+

]
− E

[
(QV (T )− E [QV (T )])+

]}
.

Note that RV1(T ) is the realized variance over a single business
day, i.e. RV1(T ) = 1

T X 2
T
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Underlying: Lévy process

We assume that the underlying X follows a Lévy process:

X can be characterized by its Lévy triplet (b, σ2,F ), or by its Lévy
exponent

ψ(u) = bu +
σ2

2
u2 +

∫
(eux − 1− uh(x))F (dx).

We also assume that the first two moments of X exist. In this case
X has a decomposition

Xt = bt + σWt + Lt

where L is a centered pure-jump process of finite variance, and W
an independent Brownian motion.
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Results for Lévy processes – Quadratic variation

Theorem (K.-R. and Muhle-Karbe (2010))

For a Lévy process X a call on quadratic variation satisfies

lim
T→0

E
[
(QV (T )− E [QV (T )])+

]
= v2,

where v2 =
∫

x2F (dx).

Note: v2 is the variance of the pure jump component L.
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Results for Lévy processes – Realized variance

Theorem (K.-R. and Muhle-Karbe (2010))

For a Lévy process X a call on realized variance satisfies

lim
T→0

E
[
(RV1(T )− E [RV1(T )])+] = σ2P

(
v2

σ2

)
+ v2Q

(
v2

σ2

)
,

where v2 =
∫

x2F (dx) and P(r) resp. Q(r) are strictly decreasing
resp. increasing functions on [0,∞), given by

P(r) =

√
2(1 + r)

π exp(1 + r)
, and Q(r) = 2Φ(

√
1 + r)− 1,

with Φ(.) denoting the standard normal distribution function.
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Special cases – Pure diffusion

Pure diffusion – no jumps:

lim
T→0

E
[
(QV (T )− E [QV (T )])+

]
= 0

lim
T→0

E
[
(RV1(T )− E [RV1(T )])+

]
=

√
2

πe
σ2 ≈ 0.48σ2

Under mild conditions these results also hold in pure-diffusion
models with stochastic volatility (but without leverage effect).
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Special cases – Pure jump

Pure jump process – no diffusion:

lim
T→0

E
[
(QV (T )− E [QV (T )])+

]
= v2

lim
T→0

E
[
(RV1(T )− E [RV1(T )])+

]
= v2

The discretization gap vanishes completely in pure-jump models!

In true jump-diffusion models the interaction between jump and
diffusion component is surprisingly complex.
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Numerical Confirmation

Numerical results for 2 Lévy-based models with 3 different
parameter sets:

The Kou model is a jump-diffusion model with
double-exponentially distributed jump sizes.

The CGMY model is a pure jump model introduced by Carr,
Geman, Madan and Yor.

We use calibrated parameter sets from Sepp [2008] and Carr
et al. [2005] respectively. For the Kou model we also look at
the effect of reducing the diffusion volatility σ from 0.3 to 0.2.
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Figure: ATM call prices on normalized quadratic variation resp. realized
variance in the Kou model for σ = 0.3. The analytic short-time limits
from the corresponding theorems are 0.0718 resp. 0.0980.
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Figure: ATM call prices on normalized quadratic variation resp. realized
variance in the Kou model for σ = 0.2. The analytic short-time limits
from the corresponding theorems are 0.0706 resp. 0.0773.
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Figure: ATM call prices on normalized quadratic variation resp. realized
variance in the CGMY model. The discretization gap vanishes as
predicted. Go to generalized result
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Numerical Methods

How did we produce the numerical results?

Monte-Carlo simulation can be problematic for Lévy
processes: transition density not known in closed form, jumps
may have infinite arrival rate, etc.. . .

For quadratic variation Fourier-based methods have been
described in the previous talk.

For realized variance we propose analogous methods in [K.-R.
and Muhle-Karbe (2010)].
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Fourier Pricing

Suppose the Laplace transform E
[
e−uX 2

t

]
of the squared Lévy

process is known in the half plane H+ = {u ∈ C : Re(u) ≥ 0}.

Applying the Fourier-pricing approach of Carr & Madan yields:

Fourier Pricing for calls on realized variance

E
[
(RVn(T )− K )+

]
=

= E [RVn(T )]− K +
1

π

∫ α+i∞

α
Re
(

eKu

u2
E
[
exp

(
−uX 2

δ

)]n)
du

where α > 0 and δ = T/n.
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Fourier Pricing: The Laplace transform of X 2
t

Theorem (K.-R. and Muhle-Karbe (2010))

Let Xt be a Lévy process, whose characteristic exponent ψ(u)
satisfies a mild analyticity condition. Let Z be an independent
standard normal random variable. Then

E
[
e−uX 2

t

]
= E

[
etψ(iZ

√
2u)
]

holds for all u in the complex half-plane H+ = {u : Re(u) > 0}.

Replaces the integration with respect to the law of the Lévy
process by an integration with respect to a normal distribution.

The analyticity condition holds e.g. for the Kou and the
Merton model, the NIG, the Variance Gamma and the CGMY
process.
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Summary

In many cases quadratic variation is not a good proxy for
realized variance, when pricing of call/put options on realized
variance is concerned.

The difference in prices is most pronounced in diffusion
models, decreases when jumps are added, and vanishes
completely in pure-jump models.

We have presented methods for exact valuation of options on
realized variance by Fourier methods in the context of
exponential-Lévy models.

Extensions to stochastic volatility models with jumps are work
in progress.
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Thank you for your attention!

For details see:

Keller-Ressel, M. and Muhle-Karbe, J. (2010). Asymptotics and exact
pricing of options on variance. arXiv:1003.5514.
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Generalization of the realized variance result

Theorem (Generalized short-time limit)

For a Lévy process X a call on realized variance satisfies

lim
T→0

E
[
(RVn(T )− kE [RVn(T )])+] =

σ2Pk,n

(
v2

σ2

)
+
(
σ2(k − 1) + v2k

)
Qk,n

(
v2

σ2

)
,

where v2 =
∫

x2F (dx) and Pk,n(r) and Qk,n(r) are given by

Pk,n(r) =
2/n

Γ(n/2)

(
nk(1 + r)

2 exp(k(1 + r))

)n/2

Qk,n(r) = γ0(n/2, nk(1 + r)/2)

with γ0(., .) denoting the regularized incomplete Gamma function.

Back to Numerical Results
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