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Introduction 

As observed in the market, the empirical distributions of equity log-returns are skewed and heavy-tailed. 
In addition, equity prices exhibit jumps, stochastic volatility clustering, and autocorrelation in the squared 
returns. All these properties of the stock dynamics considered in the risk neutral measure result in the 
“smiles” and “smirks” of the corresponding implied volatility surfaces. 
Presented paper elaborates a special case of the Multi-Factor Affine Extended Heston model with 
displaced stochastic volatility and stochastic interest rates correlated with the underlyings developed in 
Levin (2008, 2009). This diffusion model belongs to a broad affine jump-diffusion class of models within 
a general framework of Duffie, Pan and Singleton (2000). A system of SDE’s considered in the 
presentation has one common stochastic variance described by the CIR process. Multiple stocks have 
different average volatilities and correlations with this stochastic variance providing different levels and 
“smirks” of the individual implied volatility surfaces. The Quasi-Elliptical Heston model is extended in 
the affine way by different Gaussian displacements in the stock stochastic variance. They allow for 
different levels of “smiles” in the implied volatilities and for correlations between stock log-returns and 
stochastic Hull-White interest rates and equity continuous dividend yields. 
Similar “quasi-elliptical” construction for multi-factor models have been considered in Levin and 
Tchernitser (2003), Leoni and Schoutens (2008) for jump-stochastic volatility, and in many articles on 
stochastic time change models (e.g., Carr and Wu (2004)). A time-dependent mean reversion level for the 
Heston stochastic variance is considered for better fit into the term structure of the ATM implied 
volatilities and variance swap prices. Time-dependent parameters in Heston model were considered, for 
example, in Mikhailov and Nogel (2003) and Zhu and Zhang (2007) (for VIX). This paper assumes only 
mean reversion level is time-dependent (piece-wise constant) and other parameters are constant in order 
to preserve analytical tractability for the European option prices and multivariate characteristic function.  
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General Affine Diffusion models 
A diffusion model considered in this presentation belongs to a broad affine jump-diffusion class of 
models within a general framework of Duffie, Pan and Singleton (2000).  
Suppose the risk neutral dynamics of the state variables X(t) under the equivalent martingale measure Q 
is defined by the following Markovian process 

dWtXdttXttdX ))(())(,()( σµ +=  
Here the drift and covariance matrix are affine in state variables: 

xKtKxt 10 )(),( +=µ , 
NRtK ∈)(0 , 

NxNRK ∈1 ;  

xHHxx T
10)()( +=σσ , 

NxNRtH ∈)(0 , 
NxNxNRH ∈1  

Vector NRtW ∈)(  is a standard Q-Brownian motion with independent components. Coefficient )(0 tK  is 
time-dependent (including equations for the stochastic variances) to provide consistency with the interest 
rate dynamics and allow for the exact fit into initial equity forward price curves and variance swap price 
term structures. Coefficients 1K , 0H , and  1H  are constant to ensure analytical tractability of the model. 

According to Dai and Singleton (2000), it is sufficient for the affinity of the diffusions with affine drifts 
that the volatility matrix )(Xσ  is of the following canonical form: 
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Here Σ  is a constant matrix in NxNR  and )(Xv j  are affine functions with constant coefficients, 

XXv jjj ⋅+= λχ)( ,   Rj ∈χ ,   
N

j R∈λ .  

Cheridito, Filipovic and Kimmel (2007) and Collin-Dufresne, Goldstein and Jones (2008) suggest more 
general canonical form with the number of Wiener processes possibly greater than the number of state 
variables, constant matrix )( MNR NxM ≤∈Σ , and 0≥k Gaussian and kM − square root 
components: 
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We use the latter canonical form with square root processes only for the stochastic variances.  
Example of non-affine multi-factor extension of the Heston model with Hull-White interest rate: 

rrrr dWdtrdr σθκ +−= )(  

VVV dWVdtVdV ηθκ +−= )(  

SdWVdtVrdX +−= )5.0(  
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Main results for Affine Diffusion models 

The “extended transform” from the Duffie, Pan and Singleton (2000) paper can be presented in a more 
natural for the Heston model form of a “discounted characteristic function” 

⎟
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⎛ ⎟

⎠
⎞⎜

⎝
⎛ −= ∫ t

X iuT 

t St
TedsXrEtTXu F)(exp),,,( δϕ  

that combines together a definition of the “discounted characteristic function” and regular multivariate 
characteristic function using a flag 1=δ  and 0=δ  correspondingly. 

Under the same technical regularity conditions as in Duffie, Pan and Singleton (2000):  

=),,,( tTXu tϕ tXuBuAe ⋅+ ),(),( ττ
 

Here tT −=τ , and for a fixed NCu∈  the vector-function ),()( uBB ττ =  and the function 
),()( uAA ττ =  satisfy the following complex-valued ODEs: 
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2
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2
1)()()()( 000 τττττδρτ BHBBTKTA T+−+−−=&  

  0)0( =A  

Where 0ρ  and 1ρ  describe the affine function of the domestic short interest rate tXttr 10 )()( ρρ +=  
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Pricing of European options 

 

Let )(, yG ba  denote the price of a security that pays TXae ⋅
 at time T  in the event that yXb T ≤⋅  for any 

real number y  and any a  and b  in nR . 

)(, yG ba  has the following representation via the discounted characteristic function ),,,( tTXu tϕ : 
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Then a plain-vanilla European call option ++ −=− )()( KeKS TbX
T with expiration time  T  and strike  K  

has a price at time  t defined by the following formula:  
 

),,;ln(),,;ln( ,0, tTXKGKtTXKGC bbb −−−= −−  

As the call option is in the money when KbXT ln−≤−  and in that case pays TT XbX Kee ⋅− 0  where b is a 
vector with j -th element equal to one and all other elements equal to zero.
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The choice of a particular model in our paper is based on the following requirements we want to satisfy: 

1. The model should be affine, i.e. with multiplication of Σ  in the diffusion part by iV   by columns.  
An affine model results in closed-form European option prices and effective parameter calibration. 

2. We restrict the model to one-factor stochastic variance for each stock for simple and stable 
calibration (otherwise the pairwise correlations between different stochastic variances and 
stochastic variances and stock log-returns need to be calibrated as well).  

3. We require stochastic interest rates and dividend yields correlated with the equity prices. 
4.  We use Hull-White model for the interest rates and continuous dividend yields. Stochastic dividend 

yields ensure more realistic dynamics for the equity forward price curves. 
5. We need to capture different “smirks” and “smiles” of the implied volatility surfaces. 
6. The model should allow for accurate fit into the ATM implied volatility and variance swap price 

term structures. 
There are two ways to satisfy conditions 1-2: 

- One can take different independent Heston stochastic variances for different stocks. Then, to have 
one variance in each row (see point 2 above) the correlations between stock prices should be zero, 
which is unrealistic (Bergomi (2008) considered a two-factor stochastic variance with many more 
parameters for calibration). 

- One can select one common stochastic variance corresponding to general market activity and 
preserve the correlations between stock prices.  

We consider the latter approach called “quasi-elliptical model”. Finally, we utilize Gaussian 
displacements in the SV to correlate stock prices with Gaussian interest rates and dividend yields. 
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Multi-Factor Affine Extended Heston Model with Displaced Stochastic Variance and 
Stochastic Interest Rates and Dividend Yields 

A globally affine system of stochastic differential equations for one common “normalized” Heston 
stochastic variance ,1),( ≥dtV  stock log-prices djtStX jj ,...,1),(ln)( == ,  interest rate )(tr , dividend 

yields )(tq j , dj ,...,1= , and integrated stochastic variance ∫=
t

V dssVtI
0

)()(  (for variance swaps) is 

defined as follows: 
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Here 0)0( VV = ,  djSdX jj ,...,1),0(ln)0( == , where 
r
la , 

q
jla  and 

S
jla  define historical 

correlations between r , jq and jX , lja  define correlations between iX  and jX , and 
V
j0ρ  are 

correlations between )(tV  and jX . 

To summarize, matrix A  is from the decomposition of the constant correlation matrix TAAR =  with 
the pair-wise historical correlations djljl ,...,1,, =ρ , for the basket constituents, interest rate and 
dividend yields as well as the calibrated risk neutral correlations djj ,...,1,0 =ρ , between the stochastic 
variance )(tV  and equity prices.  
 
The stochastic variance )(tV  is normalized to 1 on average and represents a “common stochastic 
activity” of the market. Function ( )),(1),,(),...,,(),,0()( 112121211 ∞≡= −−−− mmmmm ttttttt θθθθθ  is time-
dependent (piece-wise constant) mean reversion level for the stochastic variance (also used in the 
Gaussian displacements for consistency with the limiting Black-Scholes case),  djj ,...,1,0 =>σ , are 
the stock average total volatilities,  κ  and η  are constant mean reversion speed and volatility for the 
stochastic variance, )(tr  and )(tq j  are stochastic  risk free rate and equity dividend yields, 
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Multi-Factor Affine Extended Heston Model with Displaced Stochastic Variance 

The first special case of the general model is the case with deterministic interest rates and dividend 
yields. We will call this case the “Extended Heston Model with Displaced SV”.  A globally affine system 
of SDEs for one common “normalized” Heston stochastic variance )(tV  and 1≥d  stock log-prices 

djtStX jj ,...,1),(ln)( == ,  is as follows: 

VdtdI v =  

0))(( dWVdtVtdV ηθκ +−=  

( )

⎟
⎠

⎞
⎜
⎝

⎛
−+++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−−=

∑∑
==

d

l

H
lljj

HV
j

d

l

G
lljjj

jj
j

jj

dWaVdWVdW at

dt VttqtrdX

1

2
00

1

22
2

)1()(

)~1()(~
2

)()(

ωρθωσ

ωθω
σ

 

0)0( VV = , djSdX jj ,...,1),0(ln)0( ==  



  

S. Byelkina and A. Levin    Implementation and Calibration of Extended Affine Heston Model for Basket Options and Volatility Derivatives. 6th BFS Congress.  14

 
Multi-Factor Affine Extended Quasi-Elliptical Heston Model 

 

The second special case analyzed in this paper is a so-called Quasi-Elliptical Multi-Factor model with 
Displaced Stochastic Variance for zero Gaussian displacements. We will call this case the “Extended 
Quasi-Elliptical Heston Model”.  The name comes from the fact that a multivariate distribution of stock 
returns is “quasi-elliptical” for zero correlations j0ρ  between )(tV  and )(tX j . 
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Price of a European option in the Extended Heston Model with Displaced SV 

A closed-form pricing formula for European call option on stock )(tS j  with strike jK , maturity T  and 
payoff +− ))(( jj KTS  is as follows: 
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)()( jjj

j
jj PtTTreKP

tTTq
etStCall −−−

−−
=  

Here ))(,,,),(( tVtTKtSPP jj
n
j

n
j = , 2,1=n , are two Fourier transforms for nbn −= 2 , tT −=τ :  

[ ]{ }
dx

xi
tV  bixB  bixA   Tq(r(T)KtS x i 

 P jn
H

n
GH

jjjn
j ∫

∞ −+−+−+
+=

0

2
0 )(),(),())()/)(ln(exp

Re1
2
1 στττ

π

),(),(),( uAuAuA HGGH τττ += ,          ))()((~
2

),(
1

1
11

2
2

∑
+

=
−+− −+−=

M

l
lllMjjj

jG uiu uA ττθω
σ

τ  

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−−
−−

−−−⋅=
−

−
=

+−∑
1)()(

1)()(ln2)())()((),(
1

1
1

12
l

l

ll

M

l
lM

H

udeuG

udeuG uduuA τ

τ
ττςθ

η
κτ   

1)()(

1)(

2
)()(),(0

−−
−−

⋅
−

= τ

τ

γ
ςτ udeuG

udeuduuB H
,       )()(

)()()(
udu
uduuG

+
−

=
ς
ς

 

)(4)()( 2 uuud ξγς −= ,     uiu jj ρσηκς −=)( ,     )1()~1(
2
1)( 2 −−= uiuiu jωξ ,   

22

2
1

jσηγ = ,   lMl tT −−=τ ,   1,...,1 −= Ml ,   00 =τ ,   tTM −== ττ  ( ))( ,1 MM ttT −∈  



  

S. Byelkina and A. Levin    Implementation and Calibration of Extended Affine Heston Model for Basket Options and Volatility Derivatives. 6th BFS Congress.  16

Price of a variance swap in the Extended Heston Model with Displaced SV 
 
The variance swap is a forward contract on the realized annualized variance: 
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Here N  is the notional amount of the swap, A  is the annualization factor and 
var
jK  is the strike price. 

The drift term in the above payoff may or may not appear. The price of the variance swap in continuous 
time is defined as: 
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The corresponding variance swap price formula 
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Heston model price formula (see, for example, Gatheral (2006)): 
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Geometric Average Basket Option Price in the Extended Quasi-Elliptical Heston Model 
The affine model allows for a closed-form pricing formula for a Geometric Average Basket (GAB) 
European option with the payoff of the form: 
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Parameter Calibration 
For the model calibration, we consider one set of parameters, )(,,,0 tV θηκ  for the normalized common 
stochastic variance and different parameters jσ , j0ρ , jω~ for each basket component )(tS j .  
The calibration is achieved by solving an optimization problem of the weighted least squares fit into the 
market implied volatilities and, where available, the variance swap prices (e.g., VIX Term Structure): 
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Tikhonov regularization was implemented to improve stability of calibration.  
 

Test 1 (Fig. 1). Joint fit into the S&P 500 implied volatilities and VIX Term Structure significantly 
improves the variance swap term structure approximation without affecting the quality of the implied 
volatility approximation.  The S&P 500 &VIX joint calibration with time dependent )(tθ  decreased 
RMSE for VIX Term Structure by 50% over constantθ . The calibrated Heston parameters and RMSE 
are presented below ( )(tθ  is on Fig. 1):  

340.0,721.0,448.1,786.3,044.00 =−==== σρηκV , RMSE=0.015, Relative RMSE=0.049. 

Test 2 (Fig. 2a-2c,Table 1) compares the calibration of Modified Quasi-Elliptical Heston model and 
Affine Extended Heston Model with Displaced Stochastic Variance for a basket of stocks (HD, MON,& 
MSFT). The use of displacements jω~  decreased the objective functional by 17% and improved the 
stability of )(tθ . 
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SPX Implied Volatility Calibration. 1 M to Maturity
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SPX Implied Volatility Calibration. 3 M to Maturity
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SPX Implied Volatility Calibration. 7 M to Maturity
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SPX Implied Volatility Calibration. 25 M to Maturity
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VIX Term Structure Approximation
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Fig. 1. Calibration to S&P 500 Implied Volatilities with and without Fitting into VIX Term Structure 
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HD Implied Volatility Calibration. 1 M to Maturity
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HD Implied Volatility. 2 M to Maturity
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HD Implied Volatility Calibration. 5 M to Maturity
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HD Implied Volatility Calibration. 10 M to Maturity
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Figure 2a. Basket Calibration Results for Affine Extended Heston Model for Home Depot 
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MON Implied Volatility. 1 M to Maturity
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MON Implied Volatility. 4 M to Maturity
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MON Implied Volatility. 7 M to Maturity
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MON Implied Volatility. 10 M to Maturity
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MON Implied Volatility. 22 M to Maturity
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Figure 2b. Basket Calibration Results for Affine Extended Heston Model for Monsanto 
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Figure 2c. Basket Calibration Results for Affine Extended Heston Model for Microsoft 
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MSFT Implied Volatility. 1 M to Maturity
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MSFT Implied Volatility. 4 M to Maturity
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MSFT Implied Volatility. 10 M to Maturity
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Calibration Results for the USD Basket of HD, MON and MSFT 
 

Calibrated parameters 
Modified Quasi-Elliptical 
Heston model with time 

dependent Theta(t) 

Affine Extended Heston model with 
time dependent Theta(t) and 

displacements 
V0 0.966 1.335

Kappa 10.163 7.639
Eta 9.989 9.975

Rho HD -0.573 -0.621
Rho MON -0.223 -0.251
Rho MSFT -0.494 -0.534
Sigma HD 0.245 0.253

Sigma MON 0.315 0.320
Sigma MSFT 0.270 0.276

Displacement for HD 0.000 0.400
Displacement for MON 0.000 0.107
Displacement for MSFT 0.000 0.401

Theta 1 M 1.324 0.533
Theta 2 M 0.405 0.740
Theta 4 M 1.178 1.010
Theta 5 M 1.245 1.272
Theta 3 Y 1.000 1.000

Final min functional 0.818 0.678
RMSE 0.025 0.024

Relative RMSE 0.081 0.076
 

Table 1. Comparison of calibration results for USD basket with and without Gaussian displacements 
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Basket Pricing and Calibration Results 
 

Test 3 demonstrates the multi-factor model calibration and pricing results for an arithmetic basket option 
+−∑ )( KX

j
jjβ of ETF’s (XFN, XEG, XMA, and XIT) representing four major sub-indices (98.5%) of 

the Toronto Stock Exchange Index.  The index itself is represented by the ETF with the ticker XIU.  The 
quality of calibration was tested by comparison of the market prices for the XIU European call options 
for various maturities (considered as options on the basket) with the simulated basket option prices (using 
fixed historical equity correlations and model calibrated parameters).  The Monte Carlo simulation was 
based on the methods from Andersen (2008). On average, the absolute difference in the theoretical and 
market basket option prices was 5.2%.  Then, the historical equity correlations were adjusted to better fit 
into the index option prices.  The obtained “implied” equity correlations were higher than the historical.  
 

Basket Component  Name 
Market 
price 

Basket 
weight 

XIU 15.42 0.00%
XFN 18.07 33.72%
XEG 16.40 31.17%
XMA 15.97 22.32%

XIT 5.77 11.30%
      

Table 2. XIU basket composition and weights 
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Historical correlations XFN XEG XMA XIT 
XFN 1.000 0.642 0.262 0.592
XEG 0.642 1.000 0.693 0.406
XMA 0.262 0.693 1.000 0.224
XIT 0.592 0.406 0.224 1.000

Implied correlations XFN XEG XMA XIT 
XFN 1.000 0.756 0.3971 0.6747
XEG 0.756 1.000 0.7943 0.5656
XMA 0.397 0.794 1.0000 0.3679
XIT 0.675 0.566 0.368 1.000

Table 3. Implied versus historical equity correlations for the basket of ETF’s 
 
 

Historical correlations, 
constant theta 

Historical correlations with 
term structure of theta 

Implied correlations 
with constant theta 

Implied correlations with 
term structure of theta 

5.22% 2.10% 1.65% 1.30% 

Table 4. Abs. average error for the XIU Index European option price vs. Basket option price 
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Test 4 compares closed form price with Monte Carlo simulated price for Geometric Average Basket 
option.  
 

The test focus is to verify the analytical expression for the Geometric Average Basket option in the 
Extended Quasi-Elliptical Heston and use the obtained analytical solution as a control variate in pricing 
of the Arithmetic Average Basket option. The approach is to test homogeneous basket first with the same 
weights and initial stock prices, but different correlations. After that, the obtained analytical price for the 
Geometric Average Basket option is used as a control variate for the homogeneous Arithmetic Average 
Basket option.  

The optimal coefficient *b  that minimizes the variance of the nYY ,...,1  outputs from n replications of a 
simulation given another output nXX ,...,1  with the known expectation ][XE  is as follows (Glasserman, 
2004) 

][
],[*

XVar
YXCovb XY

X

Y == ρ
σ
σ

 

The ratio of the variance of the optimally controlled estimator to that of the uncontrolled estimator is  

21
][

])][(*[
XYYVar

XEXbYVar ρ−=
−−

 

Where X  and Y  are sample means.  
 The test results demonstrate significant improvement in the accuracy, achieving the average variance 
ratio of 0.075 (for 34.1*=b ). For the non-homogeneous basket of ETF’s (XFN, XEG, XMA, and XIT), 
the results are not as good as for the case of homogeneous basket, but still satisfactory (resulting in the 
average variance ratio of 0.289 for 5.1*=b ). 
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Geometric Average Basket Option Analytical price for homogeneous basket
Option 
Maturity, y.  ITM ATM OTM 

0.1452 1.2222 0.5683 0.1614
0.3178 1.4207 0.8018 0.3555
0.5671 1.6200 1.0380 0.5859

 
Option 
Maturity, 
y.  100K simulations 1M simulations 
  ITM ATM OTM ITM ATM OTM 

Geomteric Basket Average Option, MC QE Price 
0.1452 1.2242 0.5686 0.1609 1.2230 0.5687 0.1619
0.3178 1.4246 0.8041 0.3578 1.4222 0.8031 0.3566
0.5671 1.6224 1.0398 0.5870 1.6209 1.0392 0.5872

Arithmetic Basket Average Option, MC QE Price 
0.1452 1.2487 0.5850 0.1686 1.2473 0.5850 0.1696
0.3178 1.4735 0.8404 0.3806 1.4707 0.8392 0.3795
0.5671 1.7064 1.1060 0.6352 1.7044 1.1053 0.6354
Arithmetic Basket Average Option with Geometric Basket Average as control variate 

0.1452 1.2463 0.5845 0.1690 1.2460 0.5844 0.1690
0.3178 1.4681 0.8373 0.3780 1.4678 0.8371 0.3780
0.5671 1.6999 1.1016 0.6326 1.6995 1.1016 0.6327
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Geometric Average Basket Option Analytical price for non-
homogeneous basket 

Option 
Maturity, y.  ITM ATM OTM 

0.1452 0.7619 0.1415 0.0473
0.3178 1.0408 0.3585 0.1950
0.5671 1.2828 0.6015 0.4059

 
Option 
Maturity, 
y.  100K simulations 1M simulations 
  ITM ATM OTM ITM ATM OTM 

Geomteric Basket Average Option, MC QE Price 
0.1452 0.7634 0.1415 0.0473 0.7625 0.1421 0.0478
0.3178 1.0431 0.3606 0.1969 1.0420 0.3597 0.1960
0.5671 1.2847 0.6024 0.4069 1.2837 0.6027 0.4072

Arithmetic Basket Average Option, MC QE Price 
0.1452 1.6037 0.6365 0.3620 1.6010 0.6357 0.3619
0.3178 1.8995 0.9714 0.6758 1.8965 0.9704 0.6751
0.5671 2.1521 1.2774 0.9837 2.1498 1.2766 0.9838
Arithmetic Basket Average Option with Geometric Basket Average as control variate 

0.1452 1.6020 0.6364 0.3620 1.6001 0.6350 0.3614
0.3178 1.8961 0.9690 0.6737 1.8942 0.9690 0.6739
0.5671 2.1470 1.2751 0.9816 2.1457 1.2738 0.9815

 


