American-style options, stochastic volatility, and degenerate parabolic variational inequalities

Panagiota Daskalopoulos¹ Paul Feehan²

¹Department of Mathematics Columbia University

²Department of Mathematics Rutgers University

June 23, 2010 6th World Congress Bachelier Finance Society, Toronto

イロト イ団 トマ ミトマ ミ

 Ω

Overview

[Heston process and degenerate elliptic and parabolic equations](#page-3-0)

イロメ イ母 トラ ミッショント

 Ω

Introduction

- \triangleright Degenerate Markov processes and their associated parabolic PDEs are pervasive in finance.
- \triangleright Degenerate parabolic PDEs give rise to challenging terminal/boundary value problems (European-style options) and terminal/boundary value obstacle problems (American-style options).
- \triangleright What boundary conditions are appropriate or necessary?

Overview

[Heston process and degenerate elliptic and parabolic equations](#page-3-0)

イロメ マ桐 メラミンマチャ

 Ω

Degenerate elliptic and degenerate parabolic partial differential equations

- Research goes back to Kohn and Nirenberg (1965) .
- \triangleright A highly selective list includes Daskalopoulos and her collaborators, Feller, Freidlin, Koch, Kufner, Levendorskii, Opic, Pinsky, Stredulinsky, ...
- \triangleright Although previous research on degenerate elliptic/parabolic PDEs is extensive, more often than not, results often exclude even simple examples of interest in finance (CIR, Heston, etc).
- ▶ Recent research due to Ekstrom and Tysk for CIR PDEs and Laurence and Salsa for solutions of American-style, multi-asset BSM option pricing problems.

Overview [Heston process and degenerate elliptic and parabolic equations](#page-3-0)

イロメ イ母 トラ ミッショント

へのへ

Heston's Stochastic Volatility Process

Heston's asset price process, $S(u) = \exp(X(u))$, is defined by

$$
dX(u) = (r - q - Y(u)/2)) du + \sqrt{Y(u)} dW_1(u), X(t) = x,
$$

\n
$$
dY(u) = \kappa(\theta - Y(u)) du + \sigma \sqrt{Y(u)} dW_2(u), Y(t) = y,
$$

where $(W_1(u), dW_3(u))$ is two-dimensional Brownian motion, $W_2(u) := \rho W_1(u) + \sqrt{1-\rho^2} W_3(u)$, κ, θ, σ are positive constants, $\rho \in (-1,1)$, $r > 0$, $q > 0$, and $Y(u)$ is the variance process.

Overview [Heston process and degenerate elliptic and parabolic equations](#page-3-0)

 $4.11 \times 1.00 \times 1.00 \times 10^{-2}$

 Ω

Degenerate parabolic PDEs and variational inequalities

Option pricing problems for the Heston process lead to

- \triangleright Degenerate parabolic differential equations,
- \triangleright Degenerate parabolic variational inequalities,

for European and American-style option pricing problems, respectively.

Overview [Heston process and degenerate elliptic and parabolic equations](#page-3-0)

メロメ メ御 メメ ミメ メミメ

 $2Q$

Heston parabolic differential equation

If
$$
-\infty \le x_0 < x_1 < \infty
$$
, let $\mathcal{O} := (x_0, x_1) \times (0, \infty)$ and
\n $Q := [0, T) \times \mathcal{O}$. If $\psi : Q \to \mathbb{R}$ is a suitable function, for example,
\n $\psi(t, x, y) = (K - e^x)^+$ or $(e^x - K)^+$, and $r \ge 0$, define
\n $\psi(t, x, y) := e^{-r(T-t)\psi(t, x, y)} \psi(t, x, y) \cdot \psi(t, y, y) = e^{-r(T-t)\psi(t, x, y)} \psi(t, y, y) \cdot \psi(t, y, y)$

$$
u(t,x,y):=e^{-r(T-t)}\mathbb{E}_{\mathbb{Q}}^{t,x,y}\left[\psi(\mathcal{T},X(\mathcal{T}),Y(\mathcal{T}))\right],
$$

then we expect

$$
-u' + Au = 0 \quad \text{on } Q, \quad u(T, \cdot) = \psi(T, \cdot) \quad \text{on } \mathscr{O},
$$

where

$$
-Au:=\frac{y}{2}\left(u_{xx}+2\rho\sigma u_{xy}+\sigma^2 u_{yy}\right)+(r-q-y/2)u_x+\kappa(\theta-y)u_y-ru.
$$

Overview [Heston process and degenerate elliptic and parabolic equations](#page-3-0)

イロメ マ桐 メラミンマチャ

へのへ

Degenerate elliptic or parabolic PDEs

Suppose
$$
(t, x) \in Q = [0, T) \times \mathcal{O}
$$
 and $\mathcal{O} \subset \mathbb{R}^n$, and

$$
-Au(t,x) := \frac{1}{2}\sum_{i,j}a_{ij}(t,x)\frac{\partial^2 u}{\partial x_i \partial x_j}(t,x) + \sum_i b_i(t,x)\frac{\partial u}{\partial x_i}(t,x) - c(t,x)u(t,x).
$$

If $\xi^{\mathcal{T}}A(t,x)\xi\geq\mu(t,x)|\xi|^2, \, \xi\in\mathbb{R}^n,$ where $\mu(x)>0,$ then A is elliptic (parabolic) on Q if $\mu > 0$ on Q, and A is uniformly elliptic (parabolic) on Q if $\mu > \delta$ on Q, for some constant $\delta > 0$. This condition fails for the Heston operator, as $\mu = 0$ along $\{v = 0\}$ component of $\bar{\mathcal{O}}$ and the operator is "degenerate".

[Weighted Sobolev spaces and energy estimates](#page-7-0) [Existence and uniqueness for the elliptic variational inequality](#page-11-0)

 Ω

Weighted Sobolev spaces

Definition

We need a weight function when defining our Sobolev spaces,

$$
\mathfrak{w}(x,y) := \frac{2}{\sigma^2} y^{\beta - 1} e^{-\gamma |x| - \mu y}, \quad \beta = \frac{2\kappa \theta}{\sigma^2}, \mu = \frac{2\kappa}{\sigma^2},
$$

for $(x, y) \in \mathcal{O}$ and a suitable positive constant, γ . Then

$$
H^1(\mathscr{O}, \mathfrak{w}) := \{ u \in L^2(\mathscr{O}, \mathfrak{w}) : (1 + y)^{1/2} u \in L^2(\mathscr{O}, \mathfrak{w}),
$$

and $y^{1/2}Du \in L^2(\mathscr{O}, \mathfrak{w}) \},$

where

$$
||u||_{H^1(\mathscr{O},\mathfrak{w})}^2 := \int_{\mathscr{O}} y\left(u_x^2 + u_y^2\right) \text{ to } dx dy + \int_{\mathscr{O}} (1+y)u^2 \text{ to } dx dy.
$$

[Weighted Sobolev spaces and energy estimates](#page-7-0) [Existence and uniqueness for the elliptic variational inequality](#page-11-0)

イロメ イ母 トラ ミッショント

へのへ

Weighted Sobolev spaces (continued)

Let $H_0^1(\mathscr{O}, \mathfrak{w})$ be the closure in $H^1(\mathscr{O}, \mathfrak{w})$ of $C^1_c(\mathscr{O}) \cap H^1(\mathscr{O}, \mathfrak{w})$. For $i=0,1$, let $H^1_0(\mathscr{O} \cup \Gamma_i,\mathfrak{w})$ be the closure in $H^1(\mathscr{O},\mathfrak{w})$ of $\mathcal{C}^1_{\mathcal{C}}(\mathscr{O} \cup \Gamma_i) \cap H^1(\mathscr{O},\mathfrak{w})$, where

$$
\Gamma_0 = (x_0, x_1) \times \{0\}
$$
 and $\Gamma_1 = \{x_0, x_1\} \times (0, \infty)$,

and $\Gamma_1 = \{x_0\} \times (0, \infty)$ if $x_1 = +\infty$, $\Gamma_1 = \{x_1\} \times (0, \infty)$ if $x_0 = -\infty$, and $\Gamma_1 = \emptyset$ if $x_0 = -\infty$ and $x_1 = +\infty$.

[Weighted Sobolev spaces and energy estimates](#page-7-0) [Existence and uniqueness for the elliptic variational inequality](#page-11-0)

イロメ マ桐 メラミンマチャ

 Ω

Gårding inequality

Proposition

Let q, r, σ , κ , $\theta \in \mathbb{R}$ be constants such that

$$
\beta:=\frac{2\kappa\theta}{\sigma^2}>0,\quad \sigma\neq 0,\quad \text{and}\quad -1<\rho<1.
$$

Then for all $u \in V$ such that $u = 0$ on Γ_1 , where $V = H^1(\mathscr{O}, \mathfrak{w})$,

$$
a(u,u) \geq \frac{1}{2}C_2||u||_V^2 - C_3||(1+y)^{1/2}u||_{L^2(\mathscr{O},\mathfrak{w})}^2.
$$

[Weighted Sobolev spaces and energy estimates](#page-7-0) [Existence and uniqueness for the elliptic variational inequality](#page-11-0)

イロメ イ御メ イヨメ イヨメ

 $2Q$

Continuity estimates

Proposition

Choose

$$
\blacktriangleright \ \beta < 1 \colon \, V = H^1(\mathscr{O},\mathfrak{w}) \ \text{and} \ W = H^1_0(\mathscr{O} \cup \Gamma_1,\mathfrak{w});
$$

$$
\blacktriangleright \beta > 1: V = W = H^1(\mathscr{O}, \mathfrak{w}).
$$

Then

$$
|a(u,v)|\leq C_1||u||_V||v||_W, \quad \forall (u,v)\in V\times W,
$$

where C_1 is a positive constant depending at most on the coefficients $r, q, \kappa, \theta, \rho, \sigma$.

[Weighted Sobolev spaces and energy estimates](#page-7-0) [Existence and uniqueness for the elliptic variational inequality](#page-11-0)

イロメ マ桐 メラミンマチャ

へのへ

Elliptic variational inequality with (nonhomogeneous) Dirichlet boundary conditions

Let $f\in L^2(\mathscr{O},\mathfrak{w})$ and $g,\psi\in H^1(\mathscr{O},\mathfrak{w})$ such that $\psi\leq g$ on $\mathscr{O}.$ For $\beta>1$, find $u\in H^1(\mathscr{O},\mathfrak{w})$ such that

$$
a(u, v - u) \ge (f, v - u)_{L^2(\mathscr{O}, \mathfrak{w})}, \text{ with } u \ge \psi \text{ on } \mathscr{O} \text{ and } u = g \text{ on } \Gamma_1,
$$

$$
\forall v \in H^1(\mathscr{O}, \mathfrak{w}) \text{ with } v \ge \psi \text{ on } \mathscr{O} \text{ and } v = g \text{ on } \Gamma_1,
$$

that is, $u-g, v-g \in H_0^1(\mathscr{O} \cup \Gamma_0, \mathfrak{w}).$ For $\beta < 1$, the statement is identical, except that the Dirichlet conditions are $u = g$ and $v = g$ on Γ , that is, $u - g$, $v - g \in H_0^1(\mathscr{O}, \mathfrak{w})$.

[Weighted Sobolev spaces and energy estimates](#page-7-0) [Existence and uniqueness for the elliptic variational inequality](#page-11-0)

イロメ イ母 トラ ミッショント

 Ω

Existence and uniqueness of solutions to the elliptic variational inequality

Theorem

There exists a unique solution to the elliptic variational inequality for the Heston operator.

[Weighted Sobolev spaces and energy estimates](#page-7-0) [Existence and uniqueness for the elliptic variational inequality](#page-11-0)

イロト イ押 トイモト イモト

 $2Q$

Higher order regularity

Definition Let

$$
H^2(\mathscr{O},\mathfrak{w}) := \{u \in L^2(\mathscr{O},\mathfrak{w}) : (1+y)^{1/2}u, y^{1/2}Du, yD^2u \in L^2(\mathscr{O},\mathfrak{w})\},
$$

where

$$
||u||_{H^{2}(\mathscr{O}, \mathfrak{w})}^{2} := \int_{\mathscr{O}} \left[y^{2} \left(u_{xx}^{2} + 2u_{xy}^{2} + u_{yy}^{2} \right) + y \left(u_{x}^{2} + u_{y}^{2} \right) + (1 + y)u^{2} \right] \mathfrak{w} dxdy.
$$

Let $H^2_{\mathrm{loc}}(\mathscr{O},\mathfrak{w})$ denote the space of functions $u\in H^2(\mathscr{O}',\mathfrak{w})$ for all $\mathscr{O}'\Subset \mathscr{O}$

[Weighted Sobolev spaces and energy estimates](#page-7-0) [Existence and uniqueness for the elliptic variational inequality](#page-11-0)

イロメ イ母 トラ ミッショント

 Ω

H^2 regularity for solutions to the elliptic Heston variational inequality

Theorem

Suppose $\psi(x, y) = (K - e^x)^+$ or $(e^x - K)^+$. If u is the solution to the Heston elliptic variational inequality, then $u \in H^2(\mathscr{O},\mathfrak{w})$.

[Weighted Sobolev spaces and energy estimates](#page-7-0) [Existence and uniqueness for the elliptic variational inequality](#page-11-0)

- オーバー オーバー エー・エー

 Ω

Strong formulation of the elliptic variational inequality

If $u\in H^2(\mathscr{O},\mathfrak{w})$ and $\psi\in H^1(\mathscr{O},\mathfrak{w}),$ then the variational formulation has an equivalent *strong formulation* as a complementarity problem, which is to find $u \in V$ such that

$$
Au - f \geq 0, \quad u - \psi \geq 0, \quad (Au - f)(u - \psi) = 0 \text{ on } \mathscr{O}.
$$

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

 $4.11 \times 1.00 \times 1.00 \times 10^{-2}$

 Ω

Parabolic or evolutionary variational inequalities for the Heston operator

▶ Simple attempts to adapt the argument Bensoussan and Lions (1982) in their proof existence and uniqueness of solutions to the "strong" variational inequality to the Heston operator A fail because the bilinear map defined by A is non-coercive.

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

A change of dependent variable

 \blacktriangleright To circumvent the lack of coerciveness, we employ the change of dependent variable

$$
\tilde{u}(t,x,y)=e^{-\lambda(1+y)(T-t)}u(t,x,y), u\in V, (t,x,y)\in Q,
$$

by analogy with the familiar exponential shift change of dependent variable $\tilde{u} = e^{-\lambda(T-t)}u$.

イロメ イ母 トラ ミッショント

 Ω

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

イロメ イ御メ イヨメ イヨメ

 Ω

A change of dependent variable (continued)

 \triangleright One finds that the *non-coercive* parabolic problem,

$$
-u' + Au = f \text{ on } Q, \quad u(T) = h \text{ on } \mathscr{O}, \quad u = g \text{ on } \Sigma,
$$

is transformed, for $t \in [T - \delta, T]$ and sufficiently small δ , into an equivalent coercive parabolic problem,

$$
-\tilde{u}' + \tilde{A}\tilde{u} = \tilde{f} \text{ on } Q, \quad \tilde{u}(T) = h \text{ on } \mathscr{O}, \quad \tilde{u} = \tilde{g} \text{ on } \Sigma,
$$

An obstacle condition $u > \psi$ is transformed into an equivalent obstacle condition $\tilde{u} \geq \tilde{\psi}$.

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

イロメ イ御メ イヨメ イヨメ

 Ω

A change of dependent variable (continued)

The bilinear form on $V \times V$ (defined by the weight w) associated to the operator $\tilde{A}(t)$ (with suitable boundary conditions) is

$$
\tilde{a}(t; \tilde{u}(t), v) := (\tilde{A}(t)\tilde{u}(t), v)_{L^2(\mathscr{O}, \mathfrak{w})}.
$$
 (1)

We then obtain the key continuity estimate and Gårding inequality for $\tilde{a}(t)$.

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

イロメ マ桐 メラミンマチャ

 Ω

Continuity estimate and Gårding inequality for the transformed Heston operator

Proposition

For a sufficiently large positive constant λ , depending only the coefficients of A, and a sufficiently small positive constant $\delta < T$, depending only on λ and the coefficients of A, the bilinear map $\tilde{a}(t): V \times V \rightarrow \mathbb{R}$ obeys

$$
|\tilde{a}(t; u, v)| \leq C||u||v||v||v|,
$$

$$
\tilde{a}(t; v, v) \geq \frac{\alpha}{2}||v||_V^2,
$$

for all $u, v \in V$ and $t \in [T - \delta, T]$.

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

メロメ メ御 メメ ヨメ メヨメ

 Ω

Change of Sobolev weight and transformation back to original problem

The weight in our previous definition of weighted Sobolev spaces,

$$
\mathfrak{w}(x,y):=\frac{2}{\sigma^2}y^{\beta-1}e^{-\gamma|x|-\mu y},\quad (x,y)\in\mathscr{O},
$$

is replaced, when transforming back from a solution \tilde{u} to a solution *to the original problem, by*

$$
\tilde{\mathfrak{w}}(x,y) := e^{-2\lambda M(1+y)} \mathfrak{w}(x,y)
$$

=
$$
\frac{2}{\sigma^2} y^{\beta-1} e^{-\gamma |x| - \mu y - 2\delta \lambda(1+y)}, \quad (x,y) \in \mathcal{O},
$$

where $M > T$ is a constant.

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

 Ω

Setup for abstract parabolic equations and inequalities

Let V be a reflexive Banach space with dual V' . Denote $\mathscr{V} = L^2(0,\, T; \, V)$, with dual $\mathscr{V}' = L^2(0,\, T; \, V')$. Let H be a Hilbert space. The embeddings

$$
V\hookrightarrow H\cong H'\hookrightarrow V',
$$

are continuous, with $V\subset H$ dense. Let $\mathscr{A}:\mathscr{V}\to\mathscr{V}'$ be a continuous but not necessarily linear map. Typically, $\mathscr{A}(t, v) = \mathscr{A}(t) v(t)$, where $\mathscr{A}(t) : V \to V'$, $t \in [0, T]$. When $\mathscr{A}(t) \in \mathscr{L}(V,V')$, the transformed bilinear form $a(t): V \times V \rightarrow \mathbb{R}$ is $a(t; u, v) := \mathscr{A}(t)u(v), \quad u, v \in V.$

If $u \in D(\mathscr{A}(t)) = \{v \in V : \mathscr{A}(t)v \in H\}$, we write

$$
(A(t)u,v)_H := \mathscr{A}(t)u(v), \quad v \in V.
$$

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

 Ω

Formulations of the Cauchy problem

Proposition (Showalter) Let $u_0 \in H$ and $f \in \mathcal{V}'$. If $u \in \mathcal{V}$, the following are equivalent. 1. (Strong)

$$
-u' + \mathscr{A} u = f \text{ in } \mathscr{V}', \quad u(T) = u_0.
$$

2. (Variational) For each $v\in \mathscr V\cap W^{1,2}(0,\,T;\,H)$ with $v(0)=0,$

$$
\int_0^T [(u, v') + \mathscr{A} u(v) - f(v)] dt - (u_0, v(T))_H = 0.
$$

3. (Weak) For each $v \in V$.

$$
-\frac{d}{dt}(u,v)_H+\mathscr{A} u(v)=f(v) \text{ in } \mathscr{D}^*(0,T), u(T)=u_0.
$$

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

 Ω

Existence and uniqueness for the abstract linear Cauchy problem

Proposition (Showalter)

Assume the operators $\mathscr{A}(t)$ are in $\mathscr{L}(\mathsf{V},\mathsf{V}')$ and that there is a constant $\alpha > 0$ such that

$$
\mathscr{A}(t)v(v) \geq \alpha ||v||^2_V, \quad v \in V, \quad t \in [0, T].
$$

Given $f \in \mathcal{V}'$, $u_0 \in H$, there is a unique solution $u \in \mathcal{V}$, $u' \in \mathcal{V}'$ to

$$
-u' + \mathscr{A} u = f \text{ in } \mathscr{V}', \quad u(T) = u_0.
$$

and u satisfies

$$
||u||_{\mathcal{V}}^2 \leq (1/\alpha)^2 (||f||_{\mathcal{V}'}^2 + ||u_0||_H^2).
$$

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

メロメ メタメ メモメ メモメ

 Ω

Variational inequalities and the penalization method

- \triangleright One may use the penalization method as a stepping stone from existence (and regularity) for non-linear elliptic and parabolic equations to existence and regularity for solutions to elliptic and parabolic variational inequalities.
- \triangleright Existence and uniqueness for the Cauchy problem for the penalized parabolic equation follows from existence and uniqueness results for the non-linear abstract Cauchy problem (Showalter, 1997).

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

イロメ イ御メ イヨメ イヨメ

へのへ

Existence and uniqueness for the abstract Cauchy problem for the *penalized* equation

Proposition

Let $\mathscr{A}(t, \cdot) \in \mathscr{L}(V, V')$, $t \in [0, T]$ obey

- 1. The function $\mathscr{A}(\cdot,\mathsf{v}) : [0,T] \to V'$ is measurable, $\forall \mathsf{v} \in V$.
- 2. There is a positive constant α such that

$$
\mathscr{A}(t,v)(v) \geq \alpha ||v||_V^2, \quad t \in [0,T], v \in V.
$$

Then, given $\psi \in \mathcal{H}$, $f \in \mathcal{V}'$, $u_0 \in H$ with $u_0 \geq \psi(T, \cdot)$, and $\varepsilon>0$, there is a unique solution, $u_\varepsilon\in\mathscr V$, with $u'_\varepsilon\in\mathscr V'$,to

$$
-u'_{\varepsilon} + \mathscr{A} u_{\varepsilon} + \frac{1}{\varepsilon} (\psi - u_{\varepsilon})^+ = f \text{ in } \mathscr{V}', \quad u_{\varepsilon}(\mathcal{T}) = u_0 \text{ in } H.
$$

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

メロメ メタメ メモメ メモメ

 Ω

Strong problem for a parabolic variational inequality

Let $\mathscr{K}\subset\mathscr{V}$ be a convex subset. Given $f\in\mathscr{V}'$ and $u_0\in H$, $u\in\mathscr{V}$ solves the *strong problem* if

$$
u \in \mathcal{K}, u' \in \mathcal{V}'
$$

-
$$
\int_0^T u'(v-u) dt + \mathscr{A} u(v-u) \ge f(v-u), \quad \forall v \in \mathcal{K},
$$

$$
u(T) = u_0.
$$

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

 $4.11 \times 1.00 \times 1.00 \times 10^{-2}$

 Ω

Weak problem for a parabolic variational inequality

Given $f \in \mathscr{V}'$ and $u_0 \in H$, $u \in \mathscr{V}$ solves the weak problem if

 $u \in \mathscr{K}$,

$$
-\int_0^T v'(v-u) dt + \mathscr{A} u(v-u) \ge f(v-u),
$$

 $\forall v \in \mathscr{K}$ with $v' \in \mathscr{V}'$, $v(T) = u_0$.

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

 $4.11 \times 1.00 \times 1.00 \times 10^{-2}$

 Ω

Existence and uniqueness for the *weak* problem for a parabolic variational inequality

Suppose $K(t)$, $t \in [0, T]$, is a non-decreasing family of closed, convex subsets of V containing $u_0 \in H$. Then

$$
\mathscr{K} = \{ v \in \mathscr{V} : v(t) \in K(t) \text{ a.e. } t \in [0, T] \}
$$

is a closed and convex subset of $\mathcal V$. The next theorem is an application of results of Showalter on abstract parabolic variational inequalities in Banach spaces.

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

Existence and uniqueness for the *weak* problem for a parabolic variational inequality (continued)

Theorem (Showalter)

Suppose $\mathscr{A}(t,\cdot)\in \mathscr{L}(V,V')$ are given with $\mathscr{A}(t,v)$ measurable in $t \in [0, T]$, $\forall v \in V$, and

$$
\mathscr{A}(t,v)(v) \geq \alpha ||v||_V^2, \quad \forall v \in V, t \in [0, T],
$$

for some $\alpha > 0$. Suppose $K(t)$, $t \in [0, T]$, is a non-decreasing family of closed, convex subsets of V containing $u_0 \in H$. Then for each $f \in \mathcal{V}'$ there is a unique solution $u \in \mathcal{K}$ to

$$
\int_0^T (-v' + \mathscr{A} u - f)(v - u) dt \ge 0,
$$

\n
$$
\forall v \in \mathscr{K} \text{ with } v' \in \mathscr{V}', v(T) = u_0 \text{ for all } v \in \mathbb{R} \text{ and } v \in \mathbb{R}.
$$

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

メロメ メタメ メモメ メモメ

 Ω

Existence and uniqueness for the *strong* problem for a parabolic variational inequality

- \triangleright Ultimately, we want a classical solution to the familiar "complementarity" formulation of the American-style option pricing problem.
- \triangleright We can obtain such classical solutions by developing a regularity theory for solutions to the weak problem.
- \blacktriangleright It is more direct to adapt the Bensoussan-Lions approach using the Galerkin and penalization methods to establish existence and uniqueness for the strong problem for a parabolic variational inequality.

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

イロメ マ桐 メラミンマチャ

 Ω

Existence and uniqueness for the *strong* problem for a parabolic variational inequality (continued)

Theorem

Suppose $\mathscr{A}(t,\cdot)\in \mathscr{L}(V,V')$ are given with $\mathscr{A}(t,v)$ measurable in $t \in [0, T]$, $\forall v \in V$, and, for some $\alpha > 0$,

$$
\mathscr{A}(t,v)(v) \geq \alpha ||v||^2_V, \quad \forall v \in V, t \in [0, T],
$$

Let $\psi \in W^{1,2}(0,\,T;\,H)$, $\mathscr{K} = \{v \in \mathscr{V} : v \geq \psi\}$, $u_0 \in \mathscr{K}$, and $f \in \mathscr{H}$. Then there is a unique solution $u \in \mathscr{K}$, $u' \in \mathscr{H}$ to

$$
\int_0^T(-u'+\mathscr{A} u-f)(v-u)\,dt\geq 0,\quad \forall v\in\mathscr{K},\quad u(T)=u_0.
$$

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

イロト イ押 トイモト イモト

 Ω

Regularity for solutions to the strong problem for the parabolic Heston variational inequality

Using our weighted Sobolev spaces and estimates, we adapt the Bensoussan-Lions regularity theory to establish

Theorem

In the situation of the existence and uniqueness theorem for the strong problem for a parabolic Heston variational inequality, suppose $\psi(t, x, y) = (e^{x} - K)^{+}$ or $(K - e^{x})^{+}$. Then the solution u is in $L^2(0, T; H^2(\mathscr{O}, \mathfrak{w}))$.

Given this regularity, a solution to the strong problem for the parabolic Heston variational inequality is a solution to the more familiar complementarity form for the Heston variational inequality:

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

Complementarity form of the Heston variational inequality

Theorem

Given $f \in L^2(0, T; L^2(Q, \mathfrak{w}))$, $g \in L^2(0, T; H^2(\mathcal{O}, \mathfrak{w})),$ $u_0(x,y) = \psi(t,x,y) = (e^x - K)^+$ or $(K - e^x)^+$, then there is a unique $u \in L^2(0, T; H^2(\mathscr{O}, \mathfrak{w}))$ solving

$$
-u' + Au \ge f \text{ on } Q,
$$

\n
$$
u \ge \psi \text{ on } Q,
$$

\n
$$
(-u' + Au - f)(u - \psi) = 0 \text{ on } Q,
$$

\n
$$
u = g \text{ on } (\Sigma_0 \cup \Sigma_1) \times [0, T) \text{ (if } 0 < \beta < 1 \text{) or}
$$

\n
$$
= g \text{ on } \Sigma_1 \times [0, T) \text{ (if } \beta \ge 1),
$$

\n
$$
u(T) = \psi \text{ on } \mathcal{O}.
$$

where $g \geq \psi$ on Σ .

 $4.17 \times$

- イート イート イー

へのへ

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 Ω

Current research

- Global $W^{2,p}$ regularity.
- Regularity of the solution u up to the boundary.
- \triangleright Regularity of the free boundary separating the continuation and exercise regions.

REFERENCES

- \triangleright A. Bensoussan and J. L. Lions, Applications of variational inequalities in stochastic control, 1982.
- \triangleright P. Daskalopoulos and R. Hamilton, Regularity of the boundary for the porous medium equation, J. American Mathematical Society 11, 1998, pp. 899–965.

[Change of dependent variable and coercivity](#page-16-0) [Abstract parabolic equations](#page-22-0) [Abstract parabolic variational inequalities](#page-27-0) [Existence and uniqueness for the Heston variational inequality](#page-33-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 Ω

References (continued)

- \triangleright A. Friedman, *Variational principles and free boundary* problems, Wiley, 1982, New York.
- ▶ D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, 1980.
- ▶ P. Jaillet, D. Lamberton, and B. Lapeyre, Variational inequalities and the pricing of American options, Acta Appl. Math. 21 (1990), pp. 263–289.
- \triangleright P. Laurence and S. Salsa, Regularity of the free boundary of an American option on several assets, Comm. Pure Appl. Math. 62, 2009, pp. 969–994.
- ▶ R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1996.