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Setting

Assumptions:

1 r = 0.

2 fixed Martingale measure P.

3 time horizon: [0,T ].

stochastic vol model:

dSt(ω) = St(ω)σ(t, ω)dBt(ω), σ = σ(t, ω)

σ(t, ω) progressively measurable.

local vol:
dS̃t(ω) = S̃t(ω)σ̃(t, S̃t(ω))dBt(ω)

σ = σ(t, s) is deterministic.
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Setting 2

Theorem (Gyöngy, ’86)

Assume S satisfies dSt(ω) = St(ω)σ(t, ω)dBt(ω), σ = σ(t, ω).

There
exists a deterministic σ̃ = σ̃(t, s) so that S̃, given by

dS̃t = S̃t σ̃(t, S̃t) dBt

satisfies law(St) = law(S̃t) for all t ∈ [0,T ].

explicit representation: σ̃2(t, s) = E[σ2(t, ω)|St = s].

Price of European call C = C (t,K ) depends solely on law(St).
=⇒ (St) and (S̃t) generate the same call prices C = C (t,K ).
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Setting 3

Dupire’s formula:

Assume that for s > 0, t ∈ [0,T ] call prices C (t,K ) are known. Define

σ̃2(t, s) = 2
∂tC (t, s)

s2∂KK C (t, s)
.

Then S̃ , dS̃t = S̃t σ̃(t, S̃t)dBt reproduces C (t,K ).
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Tempting: Given call prices from the market (dS = σS dB), set up the
local vol model, use it to price more complicated options.

Question: useful information for the price of exotic options?

we, today: realized variance and options thereon

V =

∫ T

0
σ2(t) dt resp. Ṽ =

∫ T

0
σ̃2(t, S̃(t)) dt

Important observation: E[Ṽ ] = E[V ].
I.e. the variance swap has the same price in stoch. / loc. vol model:

E[Ṽ ] = E
∫ T

0
E
[
E
[
σ2(t, St = s)|s = S̃t

]]
dt

=

∫ T

0
E
[
E
[
σ2(t,St = s)|s = St

]]
dt =

∫ T

0
E[σ2(t)] dt = E[V ].
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M. Beiglböck (Universität Wien) Overprized options in local vol models June 2010 6 / 15



Tempting: Given call prices from the market (dS = σS dB), set up the
local vol model, use it to price more complicated options.

Question: useful information for the price of exotic options?

we, today: realized variance and options thereon

V =

∫ T

0
σ2(t) dt resp. Ṽ =
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∫ T

0
σ̃2(t, S̃(t)) dt

Important observation: E[Ṽ ] = E[V ].
I.e. the variance swap has the same price in stoch. / loc. vol model:
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∫ T

0
σ̃2(t, S̃(t)) dt

Important observation: E[Ṽ ] = E[V ].
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recall: V =
∫ T
0 σ2(t) dt Ṽ =

∫ T
0 σ̃2(t, S̃(t)) dt

Conjecture: E[(V − K )+] ≥ E[(Ṽ − K )+] for all K > 0.
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Excursion: convex – order

µ, µ̃ prob. measures on R,
∫∞
−∞ x dµ(x) =

∫∞
−∞ x d µ̃(x).

µ <c µ̃ :⇐⇒∫
ϕ(x) dµ(x) ≥

∫
ϕ(x) d µ̃(x) for every convex ϕ : R→ R

Tfae:

E[(V − K )+] ≥ E[(Ṽ − K )+] for all K > 0.

E[ϕ(V )] ≥ E[ϕ(Ṽ )] for every convex ϕ : R→ R.
law(V ) <c law(Ṽ ) in the convex order.
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M. Beiglböck (Universität Wien) Overprized options in local vol models June 2010 9 / 15



Excursion: convex – order

µ, µ̃ prob. measures on R,
∫∞
−∞ x dµ(x) =

∫∞
−∞ x d µ̃(x).

µ <c µ̃ :⇐⇒∫
ϕ(x) dµ(x) ≥

∫
ϕ(x) d µ̃(x) for every convex ϕ : R→ R

Tfae:
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law(V ) <c law(Ṽ ) in the convex order.
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Counterexample

Idea: pick a model such that V is <c -minimal, i.e. deterministic.

Example: Black–Scholes “mixing” model on [0, 3]

dSt = StσtdBt , S0 = 1.

Fair coin flip ε = ±1 (independent of B), σ2 = σ2
ε ,

σ2
+(t) :=


2 if t ∈ [0, 1],

3 if t ∈]1, 2],

1 if t ∈]2, 3],

σ2
−(t) :=


2 if t ∈ [0, 1],

1 if t ∈]1, 2],

3 if t ∈]2, 3].

=⇒ V =
∫ 3
0 σ

2(t) dt ≡ 6.
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Counterexample / local vol part: dS̃t = S̃t σ̃(t, S̃t)dBt

Ṽ =
∫ 3
0 σ̃

2(t, S̃t) dt is not deterministic:

(a) σ̃2(t, s) = E[σ2(t)|St = s] (b) (S̃t) has full support.
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M. Beiglböck (Universität Wien) Overprized options in local vol models June 2010 11 / 15



Counterexample / local vol part: dS̃t = S̃t σ̃(t, S̃t)dBt
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→

for yellow paths:
∫ 3
0 σ̃

2(t, S̃t(ω)) dt > 6
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Counterexample

V =
∫ 3
0 σ(t, S̃t) dt ≡ 6, but

Ṽ =
∫ 3
0 σ̃

2(t, S̃t) dt is not deterministic

 ⇒ V 6<c Ṽ

More specific, consider call with strike 6, i.e. f (v) := (v − 6)+:

E[(V − 6)+] = 0 < E[(Ṽ − 6)+].
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M. Beiglböck (Universität Wien) Overprized options in local vol models June 2010 13 / 15



Counterexample

V =
∫ 3
0 σ(t, S̃t) dt ≡ 6, but
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More specific, consider call with strike 6, i.e. f (v) := (v − 6)+:

E[(V − 6)+] = 0
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Some remarks/variations

1 ε can be chosen adapted to σ((Bt))0≤t≤3

=⇒ generalized Black-Scholes-model, in particular complete.

2 σ(., ω) can be chosen in a continuous/smooth way.

3 Using Gyöngy’s result in two dimensions, one obtains a
counterexample of (time-inhomogenous) Markovian structure.
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Conclusion

1 Numerically there is some evidence in favor of

V <c Ṽ :

-) experiments by Hans Bühler in the Heston-model
-) in the above example we find

E[(V − 6)+] = 0, E[(Ṽ − 6)+] ≈ 0.026.

2 Further assumptions are necessary to rigorously prove

V <c Ṽ .
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