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Introduction
Realized variance

Realized variance of a stock S = S0 exp(X ) for fixings
0 = t0 < . . . < tN = T :

N∑
n=1

log(Stn/Stn−1)2 =
N∑

n=1
(Xtn − Xtn−1)2

Options on variance:
I Variance swap
I Volatility swap
I Puts on variance, variance calls, etc.

Tractable pricing formulas in realistic models?



Introduction
Quadratic variation

For supn=1,...,N |tn − tn−1| → 0:

N∑
n=1

(Xtn − Xtn−1)2 → [X ,X ]T in probability

I Sepp (2008), Broadie & Jain (2008): Typically good
approximation via quadratic variation [X ,X ] for daily fixings

I Exception: Short-dated call options
I Pointed out by Bühler (2006), analyzed in Keller-Ressel &

M-K (2010) ⇒ Next talk!
I Here: Use approximation via quadratic variation [X ,X ]

I What type of structure of X makes this tractable?



Introduction
Literature

For continuous stock prices without leverage:
I Benth et al. (2007): BNS model
I Carr & Lee (2007, 2009), Gatheral & Friz (2005): Model-free

formulas

Models with jumps:
I Carr et al.(2005): Lévy processes
I Sepp (2008), Broadie & Jain (2008): Heston models with

specific compound Poisson jumps
I Carr & Itkin (2009): Options on predictable quadratic

variation 〈X ,X 〉 in time-changed Lévy models

Unifying framework including jumps, stochastic volatility and the
leverage effect?



Introduction
Fourier-Laplace methods

Carr & Madan (1999), Raible (2000): Consider European-style
option (e.g. put, call) with payoff

f (XT ) =

∫ R+i∞

R−i∞
l(z)ezXT dz , R ∈ R

I Price unter risk-neutral measure Q given by

EQ[f (XT )] =

∫ R+i∞

R−i∞
l(z)EQ[ezXT ]dz

I Tractable via numerical quadrature, if Fourier-Laplace
transform EQ[ezXT ] is known, likewise for [X ,X ]

I Flexible model class where this is the case: Affine processes
characterized by Duffie et al. (2003)



Affine Stochastic Volatility Models
Definition

I Affine local characteristics of X and volatility v :

b(v ,X) = β0 + β1v−, c(v ,X) = γ0 + γ1v−,
K (v ,X)(dx) = κ0(dx) + κ1(dx)v−

I Affine conditional Fourier-Laplace transform:

E [ezXT |Ft ] = exp(Ψ0(T − t, z) + Ψ1(T − t, z)vt + zXt),

where Ψ0(t, z) =
∫ T

t ψ0(Ψ1(t, z), z)dt and

∂tΨ1(t, z) = ψ1(Ψ1(t, z), z), Ψ1(0, z) = 0

I Generalized Riccati PIDE with

ψi (z) = β>i z +
1
2z>γiz +

∫
(ezx − 1− zx)κi (dx)



Affine Stochastic Volatility Models
Examples

Includes most models from the option pricing literature:
I Lévy models
I CIR-time-change models (generalized Heston models):

Xt = L∫ t
0 vsds + %(vt − v0) + Drift

dvt = (η − λvt)dt + σ
√

vtdZt

for Lévy process L, Wiener process Z
I OU-time-change models (generalized BNS models):

Xt = L∫ t
0 vsds + %Zt + Drift

dvt = −λvt−dt + dZt

for Lévy process L, subordinator Z



Affine Stochastic Volatility Models
Quadratic variation: Characterization

I Definition:
[X ,X ]t = 〈X c ,X c〉t +

∑
s≤t

∆X 2
s

I Local characteristics:

b[X ,X ] = cX +

∫
x2KX (dx), c [X ,X ] = 0,

K [X ,X ](G) =

∫
1G(x2)KX (dx) ∀G ∈ B2

I Key observation: (v ,X , [X ,X ]) is affine in v !
I Still analytically tractable, characteristic function via

generalized Riccati equations
I Compare (r ,

∫ ·
0 rtdt) in affine short-rate models



Affine Stochastic Volatility Models
Quadratic variation: Characteristic function

Fourier-Laplace transform of [X ,X ]T :
I Need to solve generalized Riccati PIDE
I No quadratic term, since [X ,X ] is of finite variation
I But need to evaluate terms of the form∫

(ezx2 − 1− zx2)KX (dx),

since ∆[X ,X ]t = ∆X 2
t

I In many models of interest, this can be done using special
functions

I Only difference compared to evaluation of stock options
I Then: Swaps via differentiation, options via integration



Affine Stochastic Volatility Models
Quadratic variation: Characteristic function ct’d

Example 1: Generalized Heston model of Carr et al. (2003):

Xt = L∫ t
0 vsds + ρ(vt − v0) + Drift, dvt = (η − λvt)dt + σ

√
vtdZt

for Lévy process L with triplet (bL, cL,KL), Wiener process Z .
Then:

E [ez[X ,X ]T |Ft) = eΨ0(T−t,z)+Ψ1(T−t,z)vt +z[X ,X ]t

I Ψ1(t, z) = 2g(z)(ef (z)t−1)
f (z)−λ+ef (z)t (f (z)+λ)

I Ψ0(t, z) = 2η
σ2 log

(
2f (z)et(f (z)+λ)/2

f (z)−λ+ef (z)t (f (z)+λ)

)
I f (z) =

√
λ2 − 2σ2g(z), g(z) = (σ2ρ2 + cL)z +

∫
(ezx2 − 1)KL(dx)

typically known in terms of special functions



Affine Stochastic Volatility Models
Quadratic variation: Characteristic function ct’d

Example 2: Model of Barndorff-Nielsen & Shephard (2001):

dXt = (Drift)dt +
√vt−dWt + ρdZt , dvt = −λvt−dt + dZt

for compound poisson process Z with rate a and exp(b)-jumps.
Then:

E [ez[X ,X ]T |Ft) = eΨ0(T−t,z)+Ψ1(T−t,z)vt +z[X ,X ]t

I Ψ1(t, z) = 1−e−λt

λ z
I Ψ0(t, z) = ab

2
√
−ρ2z

∫ t
0 U

(
1
2 ,

1
2 ,

(b−Ψ1(s,z))2

−4ρ2z

)
ds − at for

hypergeometric U-function
I One extra dt-integral compared to generalized Heston



Pricing Options on Variance
Variance swaps

I Choose swap rate Kvar such that

EQ([X ,X ]T − Kvar ) = 0

I Differentiation of the characteristic function:

EQ([X ,X ]T |Ft) = [X ,X ]t +∂uΨ0(T−t, 0)+∂uΨ1(T−t, 0)vt

I Variance swap dynamics are (inhomogeneously) affine!
I Opens the door to mean-variance hedging etc.
I Moreover: Explicit formulas for Kvar in concrete models, e.g.,

Kvar =
(

e−λT−1+λT
λ2

)
a
b + 2a%2

b2 T + 1−e−λT

λ v0

for BNS model from above



Pricing Options on Variance
European payoffs f ([X , X ]T )

I Volatility swap: f (x) =
√

x − Kvol , hence

Kvol =
1

2
√
π

∫ ∞
0

1− EQ[e−z[X ,X ]T ]

z3/2
dz

I Put on variance: f (x) = (K − x)+, hence

EQ[(K − x)+] =
1
2πi

∫ R+i∞

R−i∞

e−Kz

z2 EQ[ez[X ,X ]T ]dz , R < 0

I Evaluation via numerical quadrature
I Similar but simpler formulas for 〈X ,X 〉. No special functions,

just one dz-integration
⇒ Good approximation?



Numerical Illustration
Variance and volatility swaps

Above BNS model with calibrated parameters of Schoutens (2003):
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I Considerable difference between quadratic variation [X ,X ]
and its predictable counterpart 〈X ,X 〉



Numerical Illustration
Puts on variance

Above BNS model with calibrated parameters of Schoutens (2003):
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I Again systematic error for approximation of [X ,X ] with 〈X ,X 〉



Summary
Pricing options on variance in affine stochastic volatility models

I Approximation of realized variance by [X ,X ]

I Affine structure of (v ,X ) passed on to (v ,X , [X ,X ])

I Characteristic function via generalized Riccati equations
I Variance swap prices via differentiation, volatility swaps, puts,

calls etc. via numerical quadrature
I Integrands somewhat more involved than for stock options

(special functions!), but still tractable
I Price processes of variance swaps are inhomogeneously affine

For more details:
I Kallsen, J., Muhle-Karbe, J., and M. Voß (2010). Pricing options on variance in

affine stochastic volatility models. Forthcoming in Mathematical Finance.
Available at www.mat.univie.ac.at/∼muhlekarbe
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