

Martino Grasselli, University of Padova and ESILV

6th World Congress of the Bachelier Finance Society Toronto, June 22-26, 2010

Joint work with **J. da Fonseca**

Outline of the presentation:

- 1. On the calibration of the Heston (1993) model: common pitfalls
- 2. Calibration of single asset multi-dimensional stochastic volatility models
- 3. Calibration of multi-asset multi-dimensional stochastic volatility models
- 4. Price approximations

On the calibration of the Heston (1993) model

$$
\frac{dS_t}{S_t} = \sqrt{v_t} dW_t^1
$$

\n
$$
dv_t = \kappa(\theta - v_t) dt + \sigma \sqrt{v_t} dW_t^2
$$

\n
$$
dW_t^1 dW_t^2 = \rho dt
$$

Analytic and Financial properties

• Characteristic function of the asset returns

$$
\mathbb{E}_t\left[e^{i\omega\log(S_{t+\tau})}\right] = e^{A(\tau)v_t + B(\tau)\log(S_t) + C(\tau)}
$$

- $A(\tau)$ solves a Riccati ODE: explicit solution!
- Quasi closed form option prices via Fast Fourier Transform (Carr and Madan 1999)
- Sensitivity analysis, vol of vol asymptotic expansion..
- Each parameter has a clear financial interpretation

Quoting vanilla options

The implied volatility σ_{imp} is the quantity such that

$$
\underbrace{C_{mkt}(t, T, S_t, K)}_{\text{market price}} = \underbrace{c_{bs}(t, T, S_t, K, \sigma_{imp}^2(T - t))}_{\text{price in the Black&Scholes model}} \tag{1}
$$

price in the Black&Scholes model

The Smiles

DAX 28/08/2008

Important facts

and

above $T - t > 0.1$ the smiles are similar

The choice of the Criterium: pitfall of the price LSE

Calibration of vanilla options (OTM), maturities available

$$
\min \frac{1}{N} \sum_{i=1}^{N} (C_{model}(t, T_i, K_i) - C_{mkt}(t, T_i, K_i))^2
$$
 (2)

- short term options have small (if no) impact on the solution
- the calibration seems to be good
- poor fit of short term options

What is the problem?

short term options have small time value w.r.t long term options

The volatility LSE

$$
\min \frac{1}{N} \sum_{i=1}^{N} (\sigma_{imp}^{model}(t, T_i, K_i) - \sigma_{imp}^{mkt}(t, T_i, K_i))^2
$$

- more weight on short term options
- adding jumps does not help because jumps impact the very short part of the smile

Calibration tests (Vol norm)

calibration date: 28/08/08

Maturities 0.06= 19/09, 0.13= 17/10 .. 4.31

• to fit the short term skew a low correlation is needed.

Why extending the Heston model?

- The dynamics of the implied volatility surface (vanilla options) and the Variance Swap curve are driven by several factors
- On the FX market the skew is stochastic
- We have a term structure of skew: short term skew \neq long term skew

Double-Heston model

(Christoffensen, Heston, Jacobs 2007)

$$
\frac{dS_t}{S_t} = \sqrt{v_t^1} dZ_t^1 + \sqrt{v_t^2} dZ_t^2
$$

\n
$$
dv_t^1 = \kappa^1 (\theta^1 - v_t^1) dt + \sigma^1 \sqrt{v_t^1} dW_t^1
$$

\n
$$
dv_t^2 = \kappa^2 (\theta^2 - v_t^2) dt + \sigma^2 \sqrt{v_t^2} dW_t^2
$$

\n
$$
dZ_t^1 dW_t^1 = \rho^1 dt
$$

\n
$$
dZ_t^2 dW_t^2 = \rho^2 dt
$$

but

$$
\underbrace{dZ_t^1 dZ_t^2 = dW_t^1 dW_t^2 = dZ_t^1 dW_t^2 = dZ_t^2 dW_t^1 = 0}_{AFFINITY}
$$

Recall the Duffie-Filipovic-Schachermayer (2003)'s condition

If $X_t = (X_t^1, X_t^2)^\top$ is a vector affine square root process (thus positive):

$$
d\left(\begin{array}{c} X_t^1 \\ X_t^2 \end{array}\right) = ...dt + \left(\begin{array}{cc} \times & \mathbf{0} \\ \mathbf{0} & \times \end{array}\right)d\left(\begin{array}{c} W_t^1 \\ W_t^2 \end{array}\right)
$$

We have strong constraints on the diffusion

⇓

Strong constraints on the correlation!!

⇓

We can not correlate $v_t^{\bf 1}$ $\frac{1}{t}$ and v_t^2 t^2 in the Double-Heston

Main question

Is it possible to find an AFFINE model allowing for nontrivial correlation among factors?

⇓

Yes, choose a suitable State Space Domain!

Wishart multi-dim Stochastic Vol

- Bru (1991).
- Gourieroux and Sufana (2004).
- Extended by Da Fonseca, Grasselli and Tebaldi (2008)

$$
\frac{dS_t}{S_t} = rdt + Tr\left[\sqrt{\Sigma_t}dZ_t\right]
$$

- $d\Sigma_t = (\beta Q^\top Q + M\Sigma_t + \Sigma_t M^\top)dt +$ √ $\overline{\Sigma_t} dW_t Q + Q^\top dW_t^\top$ √ $\overline{\Sigma_t}$
- Z_t = Matrix Brownian Motion correlated with W_t (Matrix Brownian Motion)
- $Vol(S_t) = Tr[\Sigma_t]$ linear combination of the Wishart elements
- $d\Sigma_t = (\beta Q^\top Q + M\Sigma_t + \Sigma_t M^\top)dt +$ √ $\overline{\Sigma_t}dW_tQ+Q^\top dW_t^\top$ √ $\overline{\Sigma_t}$
- $\Omega \Omega^{\top} = \beta Q^{\top} Q$ with β large enough (Gindikin's condition)
- M negative definite \Leftrightarrow mean reverting behavior
- Σ_t SYMMETRIC MATRIX SQUARE ROOT PROCESS $(n \times n)$
- \bullet Q vol-of-vol.
- $(W_t; t \geq 0)$ is a matrix Brownian motion $(n \times n)$

Correlation in the Wishart model

- $R \in M_n$ (identified up to a rotation) completely describes the correlation structure:

$$
Z_t = W_t R^{\top} + B_t \sqrt{\mathbb{I} - R R^{\top}}
$$

= Matrix Brownian motion!

- This choice is compatible with affinity of the model!!
- Other (few) choices are possible but harder to manage.

• The Wishart Affine model is solvable. That is, the conditional characteristic function can be written as:

 $\mathbb{E}_t e^{i\omega\log(S_{t+\tau})} = e^{Tr[A(\tau)\Sigma_t]+B(\tau)\log(S_t)+C(\tau)}$

• $A(\tau)$ solves a Riccati ODE that can be linearized! (Grasselli and Tebaldi 2008)

Stochastic correlation between stock returns and vol

$$
Corr_t \left(dln(S), dVol \left(ln(S) \right) \right) = \rho_t = \frac{2Tr\left[\Sigma_t RQ \right]}{\sqrt{Tr\left[\Sigma_t \right]}\sqrt{Tr\left[\Sigma_t Q^\top Q \right]}}
$$

- Stochastic correlation between the stock and its volatility
- Multi-dimensional correlation/volatility SHOULD allow for more complex skew effects

Calibration single-asset stochastic volatility models:

- the Wishart/BiHeston perform better than Heston model (not surprising!)
- the Wishart model performs slightly better than BiHeston model but numerical the cost is higher

What about adding jumps?

- Jumps do not change significantly the parameters of the BiHeston
- Improve the very short term fit (less than 3 weeks)
- No conflict with diffuse part

A Closer look at the σ_{imp} **for short time**

Using perturbation method (vol of vol) as in Benabid, Bensusan, El Karoui (2009) we can prove that for ($T - t \sim 0$) as a function of the forward moneyness m_f

$$
\sigma_{imp}^2 \sim \text{Tr}[\Sigma_t] + \frac{\text{Tr}[RQ\Sigma_t]}{\text{Tr}[\Sigma_t]} m_f
$$

A Double-Heston model would lead to

$$
\sigma_{imp}^2 \sim v_1 + v_2 + \left(\frac{v_1 \rho_1 \sigma_1 + v_2 \rho_2 \sigma_2}{v_1 + v_2}\right) \frac{m_f}{2}
$$

- Σ_{12} controls the slope of the skew and $\Sigma_{11} + \Sigma_{22}$ controls the level of the smile (as far as RQ is non diagonal).
- in the Double-Heston the factors impact both level and skew!

Conclusions

- as far as we are interest with vanilla options the BiHeston and Wishart performs equally
- but the Wishart allows a better management of the *implied* volatility risks
- the numerical cost of the Wishart model is much more important. How to speed up the pricing process?
- if the calibrated model will be used to price a derivative which is sensitive to the slope of the skew then the Wishart model is of interest
- the selected model depends on
	- **–** the complexity of the smile to be calibrated
	- **–** the sensitivity of the derivative to be priced with the calibrated model
- it raises the problem of how to aggregate the ratios from different models

Numerical results for price approximations

The Multi-asset model

How to build a multi asset framework:

- Consistent with the smile in vanilla options
- With a general correlation structure
- Analytic as much as possible

Using Heston's model

$$
dS_t^1 = S_t^1 r dt + S_t^1 \sqrt{V_t^1} dZ_t^1
$$

\n
$$
dV_t^1 = \kappa_1 (\theta_1 - V_t^1) dt + \sigma_1 \sqrt{V_t^1} dW_t^1
$$

\n
$$
dS_t^2 = S_t^2 r dt + S_t^2 \sqrt{V_t^2} dZ_t^2
$$

\n
$$
dV_t^2 = \kappa_2 (\theta_2 - V_t^2) dt + \sigma_2 \sqrt{V_t^2} dW_t^2
$$

 $dZ^1dZ^2 = 0 \Leftrightarrow$ Affinity of the model

⇓ $dS^{\mathbf{1}}$ $\overline{S^1}$ dS^2 $rac{dS^2}{S^2} = 0$

The Wishart Affine Stochastic Correlation model

Da Fonseca, Grasselli and Tebaldi (RDR-2007):

The model:
$$
S_t = (S_t^1, ..., S_t^n)^\top
$$
 and $\Sigma_t \in M_{(n,n)}$
\n
$$
dS_t = diag[S_t] \left(\mu dt + \sqrt{\Sigma_t} dZ_t \right)
$$
\n
$$
d\Sigma_t = \left(\Omega \Omega^\top + M \Sigma_t + \Sigma_t M^\top \right) dt + \sqrt{\Sigma_t} dW_t Q + Q^\top (dW_t)^\top \sqrt{\Sigma_t}
$$

 dZ_t is a vector BM (n,1) and dW_t is a matrix BM (n,n):

$$
\frac{dS^i}{S^i}\frac{dS^j}{S^j} = \Sigma^{ij}dt
$$

How to correlate dZ and dW ?

In Da Fonseca, Grasselli and Tebaldi (RDR-2007):

Affinity of the infinitesimal generator

$$
\mathcal{D}_{t} = dW_t \rho + \sqrt{1 - \rho^{\top} \rho} dB_t
$$

where ρ is a vector (n,1) and dB is a vector BM(n,1).

- only n parameters to specify the skew
- parsimoniuous model
- Characteristic function has an exponential affine form, it involves the computation of the exponential of a matrix.

Pricing plain vanilla options on single assets

- In the WASC model, the single assets evolve according to a Hestonlike dynamics.
- Assets' returns and volatilities are partially correlated:

$$
Corr_t\left(Noise(Y^1), Noise(Vol(S^1))\right) = \frac{Q_{11}\rho_1 + Q_{21}\rho_2}{\sqrt{Q_{11}^2 + Q_{21}^2}}
$$

- Vol-Of-Vol
$$
(S_1)
$$
 = $2\sqrt{Q_{11}^2 + Q_{21}^2}$

- Skew in the implied volatility is related with the correlation, cross-asset effects appear(systematic vs specific dependence)

Calibration results in the multi-asset model

- we calibrate a stochastic correlation model using only vanilla options!
- vanilla options are basket products

A closer look at σ_{imp} for short time

We can prove

$$
\sigma_{imp}^{Dax} = \Sigma_t^{11} + (\rho_1 Q_{11} + \rho_2 Q_{21}) m_f + m_f^2 \left[\frac{4(Q_{11}^2 + Q_{21}^2) - 7(\rho_1 Q_{11} + \rho_2 Q_{21})^2}{6\Sigma_t^{11}} \right]
$$

Recall for Heston we have

$$
\sigma_{imp}^2 = v + \sigma_{2}^{\rho} m_f + \frac{\sigma^2 m_f^2 (4 - 7\rho^2)}{24v}
$$

- the expansions for the smile are similar
- the same problem as for Heston: we have a concave relation! those asymptotics can not be used to build a starting point for the calibration!
- at first order ρ and σ appear as a product \rightarrow identification problem (same for Wasc)
- this aggregation of parameters allows to understand the parameter values

A competitor

$$
ds_1(t) = s_1(t)(\sqrt{v_1(t)}dw_1(t) + \sqrt{v_0(t)}dw_0(t))
$$

\n
$$
ds_2(t) = s_2(t)(\sqrt{v_2(t)}dw_2(t) + \sqrt{v_0(t)}dw_0(t))
$$

\n
$$
dv_1(t) = \kappa_1(\theta_1 - v_1(t))dt + \sigma_1\sqrt{v_1(t)}(\rho_1dw_1(t) + \sqrt{1 - \rho_1^2}d\tilde{w}_1(t))
$$

\n
$$
dv_2(t) = \kappa_2(\theta_2 - v_2(t))dt + \sigma_2\sqrt{v_2(t)}(\rho_2dw_2(t) + \sqrt{1 - \rho_2^2}d\tilde{w}_2(t))
$$

\n
$$
dv_0(t) = \kappa_0(\theta_0 - v_0(t))dt + \sigma_0\sqrt{v_0(t)}(\rho_0dw_0(t) + \sqrt{1 - \rho_0^2}d\tilde{w}_0(t))
$$

- this model allows stochastic correlation and is more tractable (the CF is computationally less complicated than the Wasc).
- in this model we have a factor model for the covariance matrix whereas for the Wasc model the covariance matrix is the factor, might be of interest when dealing with estimation

Conclusions

- we build a model which is tractable
- this model allows for stochastic volatilities and stochastic correlation
- we provide some results on calibration using single underlying options with the consequence that vanilla options are basket products.

some open problems

- building estimation strategy, for the Wasc see Da Fonseca, Grasselli, Ielpo (2009).
- how to increase the dimension of the model and still be able to estimate it
- how to aggregate the risks of different models: Heston, BiHeston, Wishart, Wasc and others...

Thanks for your attention!