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Outline of the presentation:

1. On the calibration of the Heston (1993) model: common pitfalls

2. Calibration of single asset multi-dimensional stochastic volatility mod-
els

3. Calibration of multi-asset multi-dimensional stochastic volatility models

4. Price approximations



On the calibration of the Heston (1993) model

dSt

St
=
√
vtdW

1
t

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t

dW1
t dW

2
t = ρdt

ρ controls the link between vol and asset returns
⇓

The Skew or Leverage



Analytic and Financial properties

• Characteristic function of the asset returns

Et
[
eiω log(St+τ)

]
= eA(τ)vt+B(τ) log(St)+C(τ)

- A(τ) solves a Riccati ODE: explicit solution!

- Quasi closed form option prices via Fast Fourier Transform (Carr and
Madan 1999)

- Sensitivity analysis, vol of vol asymptotic expansion..

- Each parameter has a clear financial interpretation



Quoting vanilla options

The implied volatility σimp is the quantity such that

Cmkt(t, T, St,K)︸ ︷︷ ︸
market price

= cbs(t, T, St,K, σ
2
imp(T − t))︸ ︷︷ ︸

price in the Black&Scholes model

(1)



The Smiles



DAX 28/08/2008
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Important facts
The skew is controlled by ρ

⇓
Term structure of skews

⇓
We should have different values for ρ

and

above T − t > 0.1 the smiles are similar



The choice of the Criterium: pitfall of the price
LSE

Calibration of vanilla options (OTM), maturities available

min
1

N

N∑
i=1

(Cmodel(t, Ti,Ki)− Cmkt(t, Ti,Ki))2 (2)

error ρ tmin
2.25E-07 -0.7095 0.05
2.06E-07 -0.7001 0.1︸︷︷︸

I don’t take the first maturity



• short term options have small (if no) impact on the solution

• the calibration seems to be good

• poor fit of short term options

What is the problem?

short term options have small time value w.r.t long term options
⇓

small/no impact on the objective



The volatility LSE

min
1

N

N∑
i=1

(σmodelimp (t, Ti,Ki)− σmktimp(t, Ti,Ki))2

• more weight on short term options

• adding jumps does not help because jumps impact the very short part
of the smile



Calibration tests (Vol norm)

error ρ (T − t)min
0.00010773 -0.5562 0.05

4.31E-05 -0.6324 0.1

calibration date: 28/08/08

Maturities 0.06= 19/09, 0.13= 17/10 .. 4.31

• to fit the short term skew a low correlation is needed.



Why extending the Heston model?

• The dynamics of the implied volatility surface (vanilla options) and the
Variance Swap curve are driven by several factors

• On the FX market the skew is stochastic

• We have a term structure of skew: short term skew 6= long term skew



Double-Heston model

(Christoffensen, Heston, Jacobs 2007)
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=
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t dZ
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t dZ
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t dW
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t = dZ1

t dW
2
t = dZ2

t dW
1
t = 0︸ ︷︷ ︸

AFFINITY



Recall the Duffie-Filipovic-Schachermayer (2003)’s condition

If Xt = (X1
t , X

2
t )> is a vector affine square root process (thus positive):

d

(
X1
t

X2
t

)
= ...dt+

(
× 0
0 ×

)
d

(
W1
t

W2
t

)

⇓

We have strong constraints on the diffusion

⇓

Strong constraints on the correlation!!

⇓

We can not correlate v1
t and v2

t in the Double-Heston



Main question

Is it possible to find an AFFINE model allowing for nontrivial correlation
among factors?

⇓

Yes, choose a suitable State Space Domain!



Wishart multi-dim Stochastic Vol

• Bru (1991).

• Gourieroux and Sufana (2004).

• Extended by Da Fonseca, Grasselli and Tebaldi (2008)

dSt

St
= rdt+ Tr

[√
ΣtdZt

]
• dΣt = (βQ>Q+MΣt + ΣtM

>)dt+
√

ΣtdWtQ+Q>dW>t
√

Σt

• Zt = Matrix Brownian Motion correlated with Wt (Matrix Brownian
Motion)

• V ol(St) = Tr [Σt] linear combination of the Wishart elements



• dΣt = (βQ>Q+MΣt + ΣtM
>)dt+

√
ΣtdWtQ+Q>dW>t

√
Σt

• ΩΩ> = βQ>Q with β large enough (Gindikin’s condition)

• M negative definite⇔ mean reverting behavior

• Σt SYMMETRIC MATRIX SQUARE ROOT PROCESS (n× n)

• Q vol-of-vol.

• (Wt; t ≥ 0) is a matrix Brownian motion (n× n)



Correlation in the Wishart model

- R ∈ Mn (identified up to a rotation) completely describes the correla-
tion structure:

Zt = WtR
>+Bt

√
I−RR>

= Matrix Brownian motion!

- This choice is compatible with affinity of the model!!

- Other (few) choices are possible but harder to manage.



• The Wishart Affine model is solvable. That is, the conditional charac-
teristic function can be written as:

Eteiω log(St+τ) = eTr[A(τ)Σt]+B(τ) log(St)+C(τ)

• A(τ) solves a Riccati ODE that can be linearized! (Grasselli and
Tebaldi 2008)



Stochastic correlation between stock returns
and vol

Corrt (dln(S), dV ol (ln(S))) = ρt =
2Tr [ΣtRQ]√

Tr [Σt]
√
Tr

[
ΣtQ

>Q
]

• Stochastic correlation between the stock and its volatility

• Multi-dimensional correlation/volatility SHOULD allow for more com-
plex skew effects



Calibration single-asset stochastic volatility
models:

Model error ρ1(ρ11) ρ2(ρ12) ρ21 ρ22

Heston 0.00010773 -0.556 xxx
BiHeston 7.61E-05 -0.393 -0.866
Wishart 7.19E-05 -0.258 0.017 -0.343 -0.766

• the Wishart/BiHeston perform better than Heston model (not surpris-
ing!)

• the Wishart model performs slightly better than BiHeston model but
numerical the cost is higher



What about adding jumps?

Model error ρ1(ρ11) ρ2(ρ12) ρ21 ρ22

Heston 0.00010773 -0.556 xxx
BiHeston 7.61E-05 -0.393 -0.866
Wishart 7.19E-05 -0.258 0.017 -0.343 -0.766
BiBates 2.82E-05 -0.527 0.814

• Jumps do not change significantly the parameters of the BiHeston

• Improve the very short term fit (less than 3 weeks)

• No conflict with diffuse part



DAX calibration date: 28/08/08
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DAX calibration date: 28/08/08
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A Closer look at the σimp for short time
Using perturbation method (vol of vol) as in Benabid, Bensusan, El Karoui (2009) we can

prove that for (T − t ∼ 0) as a function of the forward moneyness mf

σ2
imp ∼ Tr[Σt] +

Tr[RQΣt]

Tr[Σt]
mf

A Double-Heston model would lead to

σ2
imp ∼ v1 + v2 +

(
v1ρ1σ1 + v2ρ2σ2

v1 + v2

)
mf

2

• Σ12 controls the slope of the skew and Σ11 + Σ22 controls the level of the smile (as
far as RQ is non diagonal).

• in the Double-Heston the factors impact both level and skew!



Conclusions
• as far as we are interest with vanilla options the BiHeston and Wishart performs

equally

• but the Wishart allows a better management of the implied volatility risks

• the numerical cost of the Wishart model is much more important. How to speed up
the pricing process?

• if the calibrated model will be used to price a derivative which is sensitive to the slope
of the skew then the Wishart model is of interest

• the selected model depends on

– the complexity of the smile to be calibrated
– the sensitivity of the derivative to be priced with the calibrated model

• it raises the problem of how to aggregate the ratios from different models



Numerical results for price approximations



Dax 28/08/08 mat 0.06
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The Multi-asset model

How to build a multi asset framework:

- Consistent with the smile in vanilla options

- With a general correlation structure

- Analytic as much as possible



Using Heston’s model

dS1
t = S1

t rdt+ S1
t

√
V 1
t dZ

1
t

dV 1
t = κ1(θ1 − V 1

t )dt+ σ1

√
V 1
t dW

1
t

dS2
t = S2

t rdt+ S2
t

√
V 2
t dZ

2
t

dV 2
t = κ2(θ2 − V 2

t )dt+ σ2

√
V 2
t dW

2
t

dZ1dZ2 = 0⇔Affinity of the model

⇓

dS1

S1
dS2

S2 = 0



The Wishart Affine Stochastic Correlation model

Da Fonseca, Grasselli and Tebaldi (RDR-2007):

The model: St = (S1
t , . . . , S

n
t )> and Σt ∈M(n,n)

dSt = diag[St]
(
µdt+

√
ΣtdZt

)
dΣt =

(
ΩΩ>+MΣt + ΣtM

>
)
dt+

√
ΣtdWtQ+Q> (dWt)

>√Σt

dZt is a vector BM (n,1) and dWt is a matrix BM (n,n):

dSi

Si
dSj

Sj
= Σijdt



How to correlate dZ and dW?

In Da Fonseca, Grasselli and Tebaldi (RDR-2007):

Affinity of the infinitesimal generator
m

dZt = dWtρ+
√

1− ρ>ρdBt

where ρ is a vector (n,1) and dB is a vector BM(n,1).

• only n parameters to specify the skew

• parsimoniuous model

• Characteristic function has an exponential affine form , it involves the computation of
the exponential of a matrix.



Pricing plain vanilla options on single assets

- In the WASC model, the single assets evolve according to a Heston-
like dynamics.

• Assets’ returns and volatilities are partially correlated:

Corrt
(
Noise(Y 1), Noise(V ol(S1))

)
=

Q11ρ1 +Q21ρ2√
Q2

11 +Q2
21

- Vol-Of-Vol(S1) = 2
√
Q2

11 +Q2
21

- Skew in the implied volatility is related with the correlation, cross-asset
effects appear(systematic vs specific dependence)



Calibration results in the multi-asset model

Stock error(WASC) error(Heston)
Dax 2.52E-05 1.105E-04
SP 1.39E-04 1.59E-04

• we calibrate a stochastic correlation model using only vanilla options!

• vanilla options are basket products



Dax calibration date: 21/08/08
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A closer look at σimp for short time

We can prove

σDaximp = Σ11
t + (ρ1Q11 + ρ2Q21)mf +m2

f

[
4(Q2

11 +Q2
21)− 7(ρ1Q11 + ρ2Q21)2

6Σ11
t

]
Recall for Heston we have

σ2
imp = v + σ

ρ

2
mf +

σ2

2

m2
f(4− 7ρ2)

24v

• the expansions for the smile are similar

• the same problem as for Heston: we have a concave relation! those asymptotics can
not be used to build a starting point for the calibration!

• at first order ρ and σ appear as a product→ identification problem (same for Wasc)

• this aggregation of parameters allows to understand the parameter values



A competitor

ds1(t) = s1(t)(
√
v1(t)dw1(t) +

√
v0(t)dw0(t))

ds2(t) = s2(t)(
√
v2(t)dw2(t) +

√
v0(t)dw0(t))

dv1(t) = κ1(θ1 − v1(t))dt+ σ1

√
v1(t)(ρ1dw1(t) +

√
1− ρ2

1dw̃1(t))

dv2(t) = κ2(θ2 − v2(t))dt+ σ2

√
v2(t)(ρ2dw2(t) +

√
1− ρ2

2dw̃2(t))

dv0(t) = κ0(θ0 − v0(t))dt+ σ0

√
v0(t)(ρ0dw0(t) +

√
1− ρ2

0dw̃0(t))

• this model allows stochastic correlation and is more tractable (the CF is computa-
tionally less complicated than the Wasc).

• in this model we have a factor model for the covariance matrix whereas for the Wasc
model the covariance matrix is the factor, might be of interest when dealing with
estimation



Conclusions
• we build a model which is tractable

• this model allows for stochastic volatilities and stochastic correlation

• we provide some results on calibration using single underlying options with the con-
sequence that vanilla options are basket products.

some open problems

• building estimation strategy, for the Wasc see Da Fonseca, Grasselli, Ielpo (2009).

• how to increase the dimension of the model and still be able to estimate it

• how to aggregate the risks of different models: Heston, BiHeston, Wishart, Wasc
and others...



Thanks for your attention!


