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A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a
bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’
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A short (non) fictitious story

Figure: Market implied volatilities for different strikes and maturities.
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A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a
bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’
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A short (non) fictitious story

Figure: Sum of squared errors: 4.53061E-05
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A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a
bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough. Which initial point did you take?’
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A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a
bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough. Which initial point did you take?’

Me: ‘a1.’
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A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a
bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough. Which initial point did you take?’

Me: ‘a1.’

Boss: ‘Classic mistake!! You should take a2 instead.’
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A short (non) fictitious story

Figure: Sum of squared errors: 2.4856E-06
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A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a
bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough Which initial point did you take?’

Me: ‘a1.’

Boss: ‘No, you should take a2.’

Moral of the story:
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A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a
bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough Which initial point did you take?’

Me: ‘a1.’

Boss: ‘No, you should take a2.’

Moral of the story:

(i) I am not that bright, after all.
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A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a
bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough Which initial point did you take?’

Me: ‘a1.’

Boss: ‘No, you should take a2.’

Moral of the story:

(i) I am not that bright, after all.

(ii) My boss is really good.
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A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a
bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough Which initial point did you take?’

Me: ‘a1.’

Boss: ‘No, you should take a2.’

Moral of the story:

(i) I am not that bright, after all.

(ii) My boss is really good.

(iii) Should I really trust him blindfold?
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A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a
bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough Which initial point did you take?’

Me: ‘a1.’

Boss: ‘No, you should take a2.’

Moral of the story:

(i) I am not that bright, after all.

(ii) My boss is really good.

(iii) Should I really trust him blindfold?

”Start every day off with a smile and get it over with.” (W.C. Fields)
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So let us start off with a smile (one maturity slice)
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So let us start off with a smile (one maturity slice)

Solid blue: x 7→ g (x) :=C−1
BS

(

F−1ℜ
{

f (x , z)φa (z)
})
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So let us start off with a smile (one maturity slice)

Solid blue: x 7→ g (x) :=C−1
BS

(

F−1ℜ
{

f (x , z)φa (z)
})

Dashed black: x 7→ ĝ (x) =αx2 + βx + γ
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So let us start off with a smile (one maturity slice)

Solid blue: x 7→ g (x) :=C−1
BS

(

F−1ℜ
{

f (x , z)φa (z)
})

Dashed black: x 7→ ĝ (x) =αx2 + βx + γ

Easier to calibrate ĝ than g .
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Motivation and goals

• Obtain closed-form formulae for the implied volatility under ASVM in the
short/large-maturity limits.

• Propose an accurate starting point for calibration purposes.

• Discuss conditions on jumps for a model to be usable in practice.

Definition: The implied volatility is the unique parameter σ ≥ 0 such that

CBS (S0,K ,T , σ) = Cobs (S0,K ,T ) .
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Large deviations theory

Lemma

(Xǫ)ǫ>0 satisfies the LDP with the continuous good rate function I if and only if

− lim
ǫ→0

ǫ log P(Xǫ ∈ B) = inf
x∈B

I (x), for any set B ⊂ Ω.
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The Gärtner-Ellis theorem

Assumption A.1: For all λ ∈ R, define the limiting cumulant generating function

Λ(λ) := lim
t→∞

t−1 log E

(

e
λtXt

)

= lim
t→∞

t−1Λt (λt)

as an extended real number. Denote DΛ := {λ ∈ R : Λ(λ) <∞}. Assume further that
the origin belongs to D0

Λ.
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The Gärtner-Ellis theorem

Assumption A.1: For all λ ∈ R, define the limiting cumulant generating function

Λ(λ) := lim
t→∞

t−1 log E

(

e
λtXt

)

= lim
t→∞

t−1Λt (λt)

as an extended real number. Denote DΛ := {λ ∈ R : Λ(λ) <∞}. Assume further that
the origin belongs to D0

Λ.

Theorem (Gärtner-Ellis) (special case of the general th. Dembo & Zeitouni)

Under Assumption A.1, the family of random variables (Xt)t≥0 satisfies the LDP with
rate function Λ∗, defined as the Fenchel-Legendre transform of Λ,

Λ∗(x) := sup
λ∈R

{λx − Λ(λ)}, for all x ∈ R.
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Methodology overview (large-time)

• Let (St)t≥0 be a share price process, and define Xt := log (St/S0).
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Methodology overview (large-time)

• Let (St)t≥0 be a share price process, and define Xt := log (St/S0).

• Find Λt (λ) := log E
(

e
λXt

)

, and Λ (λ) := lim
t→∞

t−1Λt (λ).
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Methodology overview (large-time)

• Let (St)t≥0 be a share price process, and define Xt := log (St/S0).

• Find Λt (λ) := log E
(

e
λXt

)

, and Λ (λ) := lim
t→∞

t−1Λt (λ).

• Check the smoothness conditions for Λ, in particular the set
DΛ := {λ : Λ (λ) <∞}.
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Methodology overview (large-time)

• Let (St)t≥0 be a share price process, and define Xt := log (St/S0).

• Find Λt (λ) := log E
(

e
λXt

)

, and Λ (λ) := lim
t→∞

t−1Λt (λ).

• Check the smoothness conditions for Λ, in particular the set
DΛ := {λ : Λ (λ) <∞}.

• Conclude that (Xt/t)t>0 satisfies a LDP with (good) rate function Λ∗.
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Methodology overview (large-time)

• Let (St)t≥0 be a share price process, and define Xt := log (St/S0).

• Find Λt (λ) := log E
(

e
λXt

)

, and Λ (λ) := lim
t→∞

t−1Λt (λ).

• Check the smoothness conditions for Λ, in particular the set
DΛ := {λ : Λ (λ) <∞}.

• Conclude that (Xt/t)t>0 satisfies a LDP with (good) rate function Λ∗.

• Translate the tail behaviour of X into an asymptotic behaviour of Call prices.
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Methodology overview (large-time)

• Let (St)t≥0 be a share price process, and define Xt := log (St/S0).

• Find Λt (λ) := log E
(

e
λXt

)

, and Λ (λ) := lim
t→∞

t−1Λt (λ).

• Check the smoothness conditions for Λ, in particular the set
DΛ := {λ : Λ (λ) <∞}.

• Conclude that (Xt/t)t>0 satisfies a LDP with (good) rate function Λ∗.

• Translate the tail behaviour of X into an asymptotic behaviour of Call prices.

• Translate these Call price asymptotics into implied volatility asymptotics.
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Affine stochastic volatility models

Let (St)t≥0 represent a share price process and a martingale. Define Xt := log St and

assume that (Xt ,Vt)t≥0 is a stochastically continuous, time-homogeneous Markov
process satisfying

Φt (u,w) := log E

(

e
uXt+wVt

∣

∣

∣
X0,V0

)

= φ (t, u,w) + V0ψ (t, u,w) + uX0,

for all t, u,w ∈ R+ × C2 such that the expectation exists.
Define F (u,w) := ∂tφ (t, u,w)|t=0+ , and R (u,w) := ∂tψ (t, u,w)|t=0+ . Then

F (u,w) =

〈

a

2

(

u

w

)

+ b,

(

u

w

)〉

+

∫

D\{0}

(

e
xu+yw − 1 −

〈

ωF (x , y),

(

u

w

)〉)

m (dx ,dy) ,

R(u,w) =

〈

α

2

(

u

w

)

+ β,

(

u

w

)〉

+

∫

D\{0}

(

e
xu+yw − 1 −

〈

ωR(x , y),

(

u

w

)〉)

µ (dx ,dy) ,

where D := R × R+, and ωF and ωR are truncation functions.
See Duffie, Filipović, Schachermayer (2003) and Keller-Ressel (2009).
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Why this class of models?

• They feature most market characteristics: jumps, stochastic volatility, . . .

• Their analytic properties are known (Duffie, Filipović & Schachermayer).

• They are tractable and pricing can be performed using Carr-Madan or Lewis
inverse Fourier transform method.

• Most models used in practice fall into this category: Heston, Bates, exponential
Lévy models (VG, CGMY), pure jump process (Merton, Kou), Barndorff-Nielsen
& Shephard, . . .
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Small-time

Large-time asymptotics: objectives and tools

Recall that Λt (u,w) := φ (t, u,w) + V0ψ (t, u,w). We are interested in the behaviour
of lim

t→∞
t−1Λt (u, 0).

Define the function χ : R → R by χ(u) := ∂wR(u,w)|w=0, assume that χ (0) < 0 and
χ (1) < 0. Then

Lemma (Keller-Ressel, 2009)

There exist an interval I ⊂ R and a unique function w ∈ C (I) ∩ C1 (I◦) such
that R (u,w (u)) = 0, for all u ∈ I with w (0) = w (1) = 0. Define the set
J := {u ∈ I : F (u,w (u)) <∞} and the function h (u) := F (u,w (u)) on J , then

lim
t→∞

t−1Λt (u, 0) = lim
t→∞

t−1φ (t, u, 0) = h (u) , for all u ∈ J ,

lim
t→∞

ψ (t, u, 0) = w (u) , for all u ∈ I.

For convenience, we shall write Λt (u) in place of Λt (u, 0).

Antoine Jacquier Calibrating affine stochastic volatility models with jumps
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Share measure

Let us define the share measure P̃ (A) := E ((Xt − X0) 11A), and Ĩ := {u : u + 1 ∈ I}.
Define h̃ (u) := lim

t→∞
t−1Λ̃t (u), then h̃ (u) = h (u + 1), for all u ∈ J̃ and

h̃∗ (x) = h∗ (x) − x , for all x ∈ R.

Lemma

h∗ and h̃∗ are both good rate functions, strictly convex and admit zero as a unique
minimum attained at h′(0) and h′(1) with h′(0) < 0 < h′(1).

Theorem

The process
(

t−1 (Xt − X0)
)

t>0
satisfies a LDP as t tends to infinity under P (resp. P̃)

with the good rate function h∗ (resp. h̃∗). Furthermore (likewise under P̃),

− lim
t→∞

t−1 log P

(

Xt − x0

t
∈ (a, b)

)

= inf
x∈(a,b)

h∗(x), for all a < b.
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A Black-Scholes intermezzo

Let us consider the Black-Scholes model: dSt = ΣSt dWt , with S0 > 0 and Σ > 0.
We have the following

hBS (u,Σ) := lim
t→∞

t−1 log E

(

e
u(Xt−X0)

)

=
1

2
u (u − 1) Σ2, for all u ∈ R,

h∗
BS

(x) := sup
u∈R

{ux − hBS (u,Σ)} =
(

x + Σ2/2
)2
/

(

2Σ2
)

, for all x ∈ R.

Lemma (Forde & Jacquier, 2009)

The process
(

t−1 (Xt − X0)
)

t>0
satisfies a LDP as t tends to infinity under P (resp. P̃)

with the good rate function h∗
BS

(resp. h̃∗
BS

). Furthermore (likewise under P̃),

− lim
t→∞

1

t
log P

(

Xt − x0

t
∈ (a, b)

)

= inf
x∈(a,b)

h∗
BS

(x)

= h∗
BS

(b,Σ) 11{2b≤−Σ2} + h∗
BS

(b,Σ) 11{2a≤−Σ2},

for all a < b (here we have h′(0) = −Σ2/2).
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Final steps: from probabilities to implied volatility

Lemma

As t tends to infinity, we have the following option price asymptotics:

(i) − lim
t→∞

t−1 log E
(

St − S0e
xt

)

+
= h̃∗(x), for all x ≥ h′(1),

(ii) − lim
t→∞

t−1 log
(

S0 − E
(

St − S0e
xt

)

+

)

= h̃∗(x), for all h′(0) ≤ x ≤ h′(1),

(iii) − lim
t→∞

t−1 log
(

E
(

S0e
xt − St

)

+

)

= h̃∗(x), for all x ≤ h′(0).
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Large-time
Small-time

Final steps: from probabilities to implied volatility

Lemma

As t tends to infinity, we have the following option price asymptotics:

(i) − lim
t→∞

t−1 log E
(

St − S0e
xt

)

+
= h̃∗(x), for all x ≥ h′(1),

(ii) − lim
t→∞

t−1 log
(

S0 − E
(

St − S0e
xt

)

+

)

= h̃∗(x), for all h′(0) ≤ x ≤ h′(1),

(iii) − lim
t→∞

t−1 log
(

E
(

S0e
xt − St

)

+

)

= h̃∗(x), for all x ≤ h′(0).

Define the following function on R:

σ̂2
∞ (x) := 2

(

2h∗(x) − x +
(

11{x∈(h′(0),h′(1))} − 11{x /∈(h′(0),h′(1))}

)

2
√

h∗(x) (h∗(x) − x)
)

.
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Final steps: from probabilities to implied volatility

Lemma

As t tends to infinity, we have the following option price asymptotics:

(i) − lim
t→∞

t−1 log E
(

St − S0e
xt

)

+
= h̃∗(x), for all x ≥ h′(1),

(ii) − lim
t→∞

t−1 log
(

S0 − E
(

St − S0e
xt

)

+

)

= h̃∗(x), for all h′(0) ≤ x ≤ h′(1),

(iii) − lim
t→∞

t−1 log
(

E
(

S0e
xt − St

)

+

)

= h̃∗(x), for all x ≤ h′(0).

Define the following function on R:

σ̂2
∞ (x) := 2

(

2h∗(x) − x +
(

11{x∈(h′(0),h′(1))} − 11{x /∈(h′(0),h′(1))}

)

2
√

h∗(x) (h∗(x) − x)
)

.

Theorem

The function σ̂∞ is continuous and lim
t→∞

σ̂2
t (x) = σ̂2

∞(x), for all x ∈ R.

Note that here σ̂t (x) corresponds to a strike K = S0 exp (xt).
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Small-time asymptotics

We are interested in determining

λ (u) := lim
t→0

tΦt (u/t, 0) = lim
t→0

(

tφ (t, u/t, 0) + v0tψ (t, u/t, 0)
)

, for all u ∈ Dλ.

Let us define the Fenchel-Legendre transform λ∗ : R → R+ ∪ {+∞} of λ by

λ∗ (x) := sup
u∈R

{ux − λ (u)} , for all x ∈ R.

Theorem

The random variable (Xt − X0)t≥0 satisfies a LDP with rate λ∗ as t tends to zero.
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Small-time asymptotics

We are interested in determining

λ (u) := lim
t→0

tΦt (u/t, 0) = lim
t→0

(

tφ (t, u/t, 0) + v0tψ (t, u/t, 0)
)

, for all u ∈ Dλ.

Let us define the Fenchel-Legendre transform λ∗ : R → R+ ∪ {+∞} of λ by

λ∗ (x) := sup
u∈R

{ux − λ (u)} , for all x ∈ R.

Theorem

The random variable (Xt − X0)t≥0 satisfies a LDP with rate λ∗ as t tends to zero.

Proposition

The small-time implied volatility reads

σ0 (x) := lim
t→0

σt (x) =
|x |

√

2λ∗ (x)
∈ [0,∞] , for all x ∈ R

∗.
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Small-time for continuous affine SV models

Assume that the process has continuous paths, i.e. µ ≡ 0 and m ≡ 0. Define

λ0 (u) := lim
t→0

tψ (t, u/t, 0) , for all u ∈ Dλ0
.

Lemma

λ0 (u) = α−1
22

(

−α12u + ζu tan
(

ζu/2 + arctan (α12/ζ)
))

and Dλ0
= (u−, u+) ,

where u± := ζ−1 (±π − 2 arctan (α12/ζ)) ∈ R± and ζ := det (α)1/2 > 0. Therefore
we obtain

λ (u) = λ0 (u) + a11u
2/2.
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Large-time
Small-time

Small-time for continuous affine SV models

Assume that the process has continuous paths, i.e. µ ≡ 0 and m ≡ 0. Define

λ0 (u) := lim
t→0

tψ (t, u/t, 0) , for all u ∈ Dλ0
.

Lemma

λ0 (u) = α−1
22

(

−α12u + ζu tan
(

ζu/2 + arctan (α12/ζ)
))

and Dλ0
= (u−, u+) ,

where u± := ζ−1 (±π − 2 arctan (α12/ζ)) ∈ R± and ζ := det (α)1/2 > 0. Therefore
we obtain

λ (u) = λ0 (u) + a11u
2/2.

• Everything works fine when there are no jumps, and λ is known in closed-form.

• Jumps have to be chosen carefully: Nutz & Muhle-Karbe (2010), Roper (2009)

Antoine Jacquier Calibrating affine stochastic volatility models with jumps



Preamble
Introduction and preliminary tools

Volatility asymptotics
Examples

Conclusion
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One-dimensional exponential Lévy processes

Let (Xt)t ≥ 0 be a Lévy process with triplet (σ, η, ν). The standard Lévy assumptions
as well as the martingale condition impose ν ({0}) = 0 and

∫

R

(

x2 ∧ 1
)

ν (dx) <∞,

∫

|x|≥1
e
xν (dx) <∞,

σ2

2
+

∫

R

(

e
x − 1 − x11|x|≤1

)

ν (dx) = −η.

Now, Φt (u, 0) = exp (tφ (u)). Hence

F (u, 0) = φX (u) and R (u, 0) = 0.

The condition χ (1) < 0 is not satisfied. However we can work directly with F , and

h ≡ φ, and D = {u ∈ R : h (u) <∞} .

Example: VG(a, b, c).

hVG (u) =

(

ab

(a − u) (b + u)

)c

, and D = (a, b) .
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Heston with jumps I
Consider the Heston model

dXt =

(

δ −
1

2
Vt

)

dt +
√

Vt dWt + dJt , X0 = x0 ∈ R,

dVt = κ (θ − Vt) dt + ξ
√

Vt dZt , V0 = v0 > 0,

d 〈W ,Z〉t = ρdt,

where J := (Jt)t≥0 is a pure-jump Lévy process independent of (Wt)t≥0. Assume

χ (1) = ρσ − κ < 0

(see also Forde-Jacquier-Mijatović, Keller-Ressel, Andersen-Piterbarg). The
logarithmic moment generating function of the Heston model with jumps reads

log E

(

e
u(Xt−x0)

)

= KH (u, t) + K̃J (u) t,

with K̃J (u) := KJ (u) − uKJ (1) to ensure the martingale property. In terms of the
functions F and R, we have

F (u,w) = κθw + K̃J (u) , and R (u,w) =
u

2
(u − 1) +

ξ2

2
w2 − κw + ρξuw .
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Heston with jumps II

We know that, for all u ∈
[

uh
−, u

h
+

]

K∞
H (u) := lim

t→∞
t−1KH (u, t) =

κθ

ξ2

(

κ− ρξu −

√

(κ− ρξu)2 − ξ2u (u − 1)

)

,

so that

h (u) := lim
t→∞

t−1Λt (u) = K∞
H (u) + K̃J (u) , for all u ∈

[

uh
− ∨ uJ

−, u
h
+ ∧ uJ

+

]

.

and
h∗ (x) = sup

u∈
[

uh
−
∨uJ

−
,uh

+∧uJ
+

]

{ux − h (u)} , for all x ∈ R.

Note that Heston without jumps corresponds to Gatheral’s SVI parameterisation,
ensuring its no-arbitrage for large maturities (see Gatheral & Jacquier, 2010):

σ̂∞ (x) =
ω1

2

(

1 + ω2ρx +

√

(ω2x + ρ)2 + 1 − ρ2

)

, for all x ∈ R.
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Heston with jumps III

Consider Normal Inverse Gaussian jumps, i.e.
J is an independent Normal Inverse Gaussian process with parameters (α, β, µ, δ) and
Lévy exponent

KNIG (u) = µu + δ

(

√

α2 − β2 −

√

α2 − (β + u)2
)

.

Then uNIG
± = −b ± a.
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Numerical example: Heston without jumps

Strike
2,000 3,000 4,000 5,000 6,000

Im
pl

ie
d 

vo
la

til
ity

0.21

0.22

0.23

0.24

0.25

Implied volatility smiles, maturity 9 years

Heston (without jumps) calibrated on the Eurostoxx 50 on February, 15th, 2006, and then

generated for T = 9 years. κ = 1.7609, θ = 0.0494, σ = 0.4086, v0 = 0.0464, ρ = −0.5195.
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Numerical example: Heston with NIG jumps

We use the same parameters as before for Heston and the following for NIG: α = 7.104,

β = −3.3, δ = 0.193 and µ = 0.092. Heston (with jumps) calibrated on the Eurostoxx 50 on

February, Note that, in the limit as T → ∞, the smile Heston + NIG jumps exactly corresponds

to a double Heston smile!!
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Barndorff-Nielsen & Shephard (2001) I

dXt = −

(

γk (ρ) +
1

2
Vt

)

dt +
√

Vt dWt + ρ dJγt , X0 = x0 ∈ R,

dVt = −γVtdt + dJγt , V0 = v0 > 0,

where γ > 0, ρ < 0 and (Jt)t≥0 is a Lévy subordinator where the cgf of J1 is given by

k (u) = log E
(

e
uJ1

)

. DΛ = (u−, u+), where

u± :=
1

2
− ργ ±

√

1

4
− (2k∗ − ρ) γ + ρ2γ2.

with k∗ := sup {u > 0 : k (u) <∞}. We deduce the two functions F and R,

R (u, 0) =
1

2

(

u2 − u
)

, and F (u, 0) = γk (ρu) − uγk (ρ) .

Consider the Γ-BNS model, where the subordinator is Γ(a, b)-distributed with a,

b > 0. Hence kΓ (u) = (b − u)−1 au, and uΓ
± := 1

2
− ργ ±

√

(

1
2
− ργ

)2
+ 2bγ ∈ R±.
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Barndorff-Nielsen & Shephard II

Γ-BNS model with a = 1.4338, b = 11.6641, v0 = 0.0145, γ = 0.5783, (Schoutens)
Solid line: asymptotic smile. Dotted and dashed: 5, 10 and 20 years generated smile.
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Conclusion

Summary:

• Closed-form formulae for affine stochastic volatility models with jumps for large
maturities.

• Closed-form formulae for continuous affine stochastic volatility models for small
maturities.

Future research:

• Remove the conditions χ(0) < 0 and χ(1) < 0.

• What happens precisely in the small-time when jumps are added?

• Determine the higher-order correction terms (in t or t−1).

• Statistical and numerical tests to assess the calibration efficiency.
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