Calibrating affine stochastic volatility models with jumps An asymptotic approach

Antoine Jacquier

Imperial College London, Department of Mathematics

Joint work with A. Mijatović

6th Bachelier Congress, Toronto, Canada, June 2010

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-48-0)

KORK (FRAGE) ASSESSED A COMPANY

[Preamble](#page-1-0) [Introduction and preliminary tools](#page-18-0)

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

KORK (FRAGE) (E) E MAN

[Examples](#page-40-0) [Conclusion](#page-48-0)

[Volatility asymptotics](#page-30-0)

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model $H(a)$ to market data.'

[Introduction and preliminary tools](#page-18-0) [Volatility asymptotics](#page-30-0) **[Examples](#page-40-0) [Conclusion](#page-48-0)**

A short (non) fictitious story

Figure: Market implied volatilities for different strikes and maturities.

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

点

 \Box

 \equiv

STATES

 QQQ

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

KORK (FRAGE) (E) E MAN

[Introduction and preliminary tools](#page-18-0) [Volatility asymptotics](#page-30-0) **[Examples](#page-40-0)** [Conclusion](#page-48-0)

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model $H(a)$ to market data.'

Me (10 minutes later): 'Done.'

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

 \Box

 \Box

SARSAN

 \equiv

 OQ

[Introduction and preliminary tools](#page-18-0) [Volatility asymptotics](#page-30-0) **[Examples](#page-40-0) [Conclusion](#page-48-0)**

A short (non) fictitious story

Figure: Sum of squared errors: 4.53061E-05

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

KORK (FRAGE) ASSESSED A COMPANY

[Introduction and preliminary tools](#page-18-0) [Volatility asymptotics](#page-30-0) **[Examples](#page-40-0)** [Conclusion](#page-48-0)

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model $H(a)$ to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough. Which initial point did you take?'

[Introduction and preliminary tools](#page-18-0) [Volatility asymptotics](#page-30-0) **[Examples](#page-40-0)** [Conclusion](#page-48-0)

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model $H(a)$ to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough. Which initial point did you take?'

Me: a_1 .'

KORK (FRAGE) ASSESSED A COMPANY

KED KARD KED KED E VOQOV

[Introduction and preliminary tools](#page-18-0) [Volatility asymptotics](#page-30-0) **[Examples](#page-40-0)** [Conclusion](#page-48-0)

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model $H(a)$ to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough. Which initial point did you take?'

Me: a_1 .'

Boss: 'Classic mistake!! You should take a₂ instead.'

[Introduction and preliminary tools](#page-18-0) [Volatility asymptotics](#page-30-0) **[Examples](#page-40-0) [Conclusion](#page-48-0)**

A short (non) fictitious story

Figure: Sum of squared errors: 2.4856E-06

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

 \Box

Box of Box

 \equiv

 QQQ

 \Box

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model $H(a)$ to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: a_1 .'

Boss: 'No, you should take a_2 .'

Moral of the story:

KED KARD KED KED E VOQOV

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model $H(a)$ to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: a_1 .'

Boss: 'No, you should take a_2 .'

Moral of the story:

(i) I am not that bright, after all.

KED KARD KED (ED) E VOQO

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model $H(a)$ to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: $'a_1$.'

Boss: 'No, you should take a_2 .'

Moral of the story:

- (i) I am not that bright, after all.
- (ii) My boss is really good.

KED KARD KED (ED) E VOQO

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model $H(a)$ to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: $'a_1$.'

Boss: 'No, you should take a_2 .'

Moral of the story:

- (i) I am not that bright, after all.
- (ii) My boss is really good.
- (iii) Should I really trust him blindfold?

KED KARD KED (ED) E VOQO

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model $H(a)$ to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: $'a_1$.'

Boss: 'No, you should take a_2 .'

Moral of the story:

- (i) I am not that bright, after all.
- (ii) My boss is really good.
- (iii) Should I really trust him blindfold?

"Start every day off with a smile and get it over with." (W.C. Fields)

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

So let us start off with a smile (one maturity slice)

 $\mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \oplus \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P}$

 \equiv

So let us start off with a smile (one maturity slice)

Solid blue: $x \mapsto g\left(x\right) :=\mathcal{C}_{\mathrm{BS}}^{-1}\left(\mathcal{F}^{-1}\Re \Big\{ f\left(x, z\right) \phi_{\mathsf{a}} \left(z\right) \Big\} \right)$

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

 \leftarrow \Box

 \overline{m} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

 QQQ

 \equiv

So let us start off with a smile (one maturity slice)

Solid blue: $x \mapsto g\left(x\right) :=\mathcal{C}_{\mathrm{BS}}^{-1}\left(\mathcal{F}^{-1}\Re \Big\{ f\left(x, z\right) \phi_{\mathsf{a}} \left(z\right) \Big\} \right)$ Dashed black: $x \mapsto \hat{g}(x) = \alpha x^2 + \beta x + \gamma$

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

 \Box

 $AB = 12.5 + 1$

 \equiv

So let us start off with a smile (one maturity slice)

Solid blue: $x \mapsto g\left(x\right) :=\mathcal{C}_{\mathrm{BS}}^{-1}\left(\mathcal{F}^{-1}\Re \Big\{ f\left(x, z\right) \phi_{\mathsf{a}} \left(z\right) \Big\} \right)$ Dashed black: $x \mapsto \hat{g}(x) = \alpha x^2 + \beta x + \gamma$

Easier to calibrate \hat{g} than g .

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

市

[Large deviations](#page-19-0) [Methodology](#page-22-0) [ASVM](#page-28-0)

Motivation and goals

- Obtain closed-form formulae for the implied volatility under ASVM in the short/large-maturity limits.
- Propose an accurate starting point for calibration purposes.
- Discuss conditions on jumps for a model to be usable in practice.

Definition: The implied volatility is the unique parameter $\sigma > 0$ such that

 $C_{\text{BS}}(S_0, K, T, \sigma) = C_{\text{obs}}(S_0, K, T)$.

KORK (FRAGE) ASSESSED A COMPANY

[Large deviations](#page-19-0) [Methodology](#page-22-0) [ASVM](#page-28-0)

Large deviations theory

Lemma

 $\left(X_{\epsilon}\right)_{\epsilon>0}$ satisfies the LDP with the continuous good rate function I if and only if

$$
-\lim_{\epsilon\to 0}\epsilon\log\mathbb{P}(X_{\epsilon}\in B)=\inf_{x\in B}I(x),\quad\text{for any set }B\subset\Omega.
$$

 \equiv

[Large deviations](#page-19-0) [Methodology](#page-22-0) [ASVM](#page-28-0)

The Gärtner-Ellis theorem

Assumption A.1: For all $\lambda \in \mathbb{R}$, define the limiting cumulant generating function

$$
\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \log \mathbb{E}\left(e^{\lambda t X_t}\right) = \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda t)
$$

as an extended real number. Denote $\mathcal{D}_\Lambda := \{\lambda \in \mathbb{R} : \Lambda(\lambda) < \infty\}$. Assume further that the origin belongs to \mathcal{D}_{Λ}^0 .

 $\langle \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \rangle \rightarrow \langle \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \rangle \rightarrow \langle \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \rangle \rightarrow \langle \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \rangle$

 QQ

[Large deviations](#page-19-0) [Methodology](#page-22-0) [ASVM](#page-28-0)

The Gärtner-Ellis theorem

Assumption A.1: For all $\lambda \in \mathbb{R}$, define the limiting cumulant generating function

$$
\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \log \mathbb{E}\left(e^{\lambda t X_t}\right) = \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda t)
$$

as an extended real number. Denote $\mathcal{D}_\Lambda := \{\lambda \in \mathbb{R} : \Lambda(\lambda) < \infty\}$. Assume further that the origin belongs to \mathcal{D}_{Λ}^0 .

Theorem (Gärtner-Ellis) (special case of the general th. Dembo & Zeitouni)

Under Assumption A.1, the family of random variables $(X_t)_{t\geq 0}$ satisfies the LDP with rate function Λ∗, defined as the Fenchel-Legendre transform of Λ,

$$
\Lambda^*(x):=\sup_{\lambda\in\mathbb{R}}\{\lambda x-\Lambda(\lambda)\},\quad\text{for all }x\in\mathbb{R}.
$$

イロメ イタメ イミメ イミメー ヨー

[Large deviations](#page-19-0) [Methodology](#page-27-0) [ASVM](#page-28-0)

Methodology overview (large-time)

• Let $(S_t)_{t\geq 0}$ be a share price process, and define $X_t:=\log{(S_t/S_0)}.$

KEIN (FINALE) E VOLCH

[Large deviations](#page-19-0) [Methodology](#page-27-0) [ASVM](#page-28-0)

Methodology overview (large-time)

- Let $(S_t)_{t\geq 0}$ be a share price process, and define $X_t:=\log{(S_t/S_0)}.$
- Find $\Lambda_t(\lambda) := \log \mathbb{E}\left(e^{\lambda X_t}\right)$, and $\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda)$.

イロン イタン イチン イチン・ブラ

[Large deviations](#page-19-0) [Methodology](#page-27-0) [ASVM](#page-28-0)

Methodology overview (large-time)

- Let $(S_t)_{t\geq 0}$ be a share price process, and define $X_t:=\log{(S_t/S_0)}.$
- Find $\Lambda_t(\lambda) := \log \mathbb{E}\left(e^{\lambda X_t}\right)$, and $\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda)$.
- Check the smoothness conditions for Λ, in particular the set $\mathcal{D}_{\Lambda} := {\lambda : \Lambda(\lambda) < \infty}.$

イロン イタン イチン イチン・ブラ

[Large deviations](#page-19-0) [Methodology](#page-27-0) [ASVM](#page-28-0)

Methodology overview (large-time)

- Let $(S_t)_{t\geq 0}$ be a share price process, and define $X_t:=\log{(S_t/S_0)}.$
- Find $\Lambda_t(\lambda) := \log \mathbb{E}\left(e^{\lambda X_t}\right)$, and $\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda)$.
- Check the smoothness conditions for Λ, in particular the set $\mathcal{D}_{\Lambda} := {\lambda : \Lambda(\lambda) < \infty}.$
- Conclude that $(X_t/t)_{t>0}$ satisfies a LDP with (good) rate function Λ^* .

イロン イタン イチン イチン・エー

 QQ

[Large deviations](#page-19-0) [Methodology](#page-27-0) [ASVM](#page-28-0)

Methodology overview (large-time)

- Let $(S_t)_{t\geq 0}$ be a share price process, and define $X_t:=\log{(S_t/S_0)}.$
- Find $\Lambda_t(\lambda) := \log \mathbb{E}\left(e^{\lambda X_t}\right)$, and $\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda)$.
- Check the smoothness conditions for Λ, in particular the set $\mathcal{D}_{\Lambda} := {\lambda : \Lambda(\lambda) < \infty}.$
- Conclude that $(X_t/t)_{t>0}$ satisfies a LDP with (good) rate function Λ^* .
- Translate the tail behaviour of X into an asymptotic behaviour of Call prices.

イロン イタン イチン イチン・エー

[Large deviations](#page-19-0) [Methodology](#page-22-0) [ASVM](#page-28-0)

Methodology overview (large-time)

- Let $(S_t)_{t\geq 0}$ be a share price process, and define $X_t:=\log{(S_t/S_0)}.$
- Find $\Lambda_t(\lambda) := \log \mathbb{E}\left(e^{\lambda X_t}\right)$, and $\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda)$.
- Check the smoothness conditions for Λ, in particular the set $\mathcal{D}_{\Lambda} := {\lambda : \Lambda(\lambda) < \infty}.$
- Conclude that $(X_t/t)_{t>0}$ satisfies a LDP with (good) rate function Λ^* .
- Translate the tail behaviour of X into an asymptotic behaviour of Call prices.
- Translate these Call price asymptotics into implied volatility asymptotics.

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

[Large deviations](#page-19-0) [Methodology](#page-22-0) [ASVM](#page-28-0)

Affine stochastic volatility models

Let $\left(\mathsf{S}_{t}\right) _{t\geq 0}$ represent a share price process and a martingale. Define $\mathsf{X}_{t}:=$ log S_{t} and assume that $\left(X_t,V_t\right)_{t\geq 0}$ is a stochastically continuous, time-homogeneous Markov process satisfying

$$
\Phi_t(u, w) := \log \mathbb{E}\left(e^{uX_t + wV_t}\middle| X_0, V_0\right) = \phi(t, u, w) + V_0\psi(t, u, w) + uX_0,
$$

for all $t, u, w \in \mathbb{R}_+ \times \mathbb{C}^2$ such that the expectation exists. Define $F(u, w) := \partial_t \phi(t, u, w)|_{t=0^+}$, and $R(u, w) := \partial_t \psi(t, u, w)|_{t=0^+}$. Then

$$
F(u, w) = \left\langle \frac{a}{2} {u \choose w} + b, {u \choose w} \right\rangle + \int_{D \setminus \{0\}} \left(e^{xu + yw} - 1 - \left\langle \omega_F(x, y), {u \choose w} \right\rangle \right) m(dx, dy),
$$

$$
R(u, w) = \left\langle \frac{\alpha}{2} \begin{pmatrix} u \\ w \end{pmatrix} + \beta, \begin{pmatrix} u \\ w \end{pmatrix} \right\rangle + \int_{D \setminus \{0\}} \left(e^{xu + yw} - 1 - \left\langle \omega_R(x, y), \begin{pmatrix} u \\ w \end{pmatrix} \right\rangle \right) \mu(dx, dy),
$$

where $D := \mathbb{R} \times \mathbb{R}_+$, and ω_F and ω_R are truncation functions. See Duffie, Filipović, Schachermayer (2003) and Keller-Ressel (2009).

イロン イ押 トラ ミンラミング 手

[Large deviations](#page-19-0) [Methodology](#page-22-0) [ASVM](#page-28-0)

Why this class of models?

- They feature most market characteristics: jumps, stochastic volatility, ...
- Their analytic properties are known (Duffie, Filipović & Schachermayer).
- They are tractable and pricing can be performed using Carr-Madan or Lewis inverse Fourier transform method.
- Most models used in practice fall into this category: Heston, Bates, exponential Lévy models (VG, CGMY), pure jump process (Merton, Kou), Barndorff-Nielsen & Shephard, ...

イロメ イタメ イミメ イミメー ヨー

[Large-time](#page-30-0)

Large-time asymptotics: objectives and tools

Recall that $\Lambda_t(u, w) := \phi(t, u, w) + V_0 \psi(t, u, w)$. We are interested in the behaviour of $\lim_{t\to\infty} t^{-1}\Lambda_t(u,0)$.

Define the function $\chi : \mathbb{R} \to \mathbb{R}$ by $\chi(u) := \partial_w R(u, w)|_{w=0}$, assume that $\chi(0) < 0$ and $x(1) < 0$. Then

Lemma (Keller-Ressel, 2009)

There exist an interval $\mathcal{I} \, \subset \, \mathbb{R}$ and a unique function $w \, \in \, \mathcal{C}\left(\mathcal{I}\right) \cap \, \mathcal{C}^1\left(\mathcal{I}^\circ\right)$ such that $R(u, w(u)) = 0$, for all $u \in \mathcal{I}$ with $w(0) = w(1) = 0$. Define the set $\mathcal{J} := \{u \in \mathcal{I} : F(u, w(u)) < \infty\}$ and the function $h(u) := F(u, w(u))$ on \mathcal{J} , then

$$
\lim_{t \to \infty} t^{-1} \Lambda_t(u, 0) = \lim_{t \to \infty} t^{-1} \phi(t, u, 0) = h(u), \text{ for all } u \in \mathcal{J},
$$

$$
\lim_{t \to \infty} \psi(t, u, 0) = w(u), \text{ for all } u \in \mathcal{I}.
$$

For convenience, we shall write $\Lambda_t(u)$ in place of $\Lambda_t(u, 0)$.

イロメ イタメ イミメ イミメー ヨー

[Large-time](#page-30-0)

Share measure

Let us define the share measure $\tilde{\mathbb{P}}(A) := \mathbb{E}((X_t - X_0) \mathbb{1}_A)$, and $\tilde{\mathcal{I}} := \{u : u + 1 \in \mathcal{I}\}.$ Define $\tilde{h}(u) := \lim_{t \to \infty} t^{-1} \tilde{\Lambda}_t(u)$, then $\tilde{h}(u) = h(u+1)$, for all $u \in \tilde{\mathcal{J}}$ and $\tilde{h}^*(x) = h^*(x) - x$, for all $x \in \mathbb{R}$.

Lemma

 h^* and \tilde{h}^* are both good rate functions, strictly convex and admit zero as a unique minimum attained at $h'(0)$ and $h'(1)$ with $h'(0) < 0 < h'(1).$

Theorem

The process $\left(t^{-1}\left(X_t-X_0\right)\right)_{t>0}$ satisfies a LDP as t tends to infinity under $\mathbb P$ (resp. $\tilde{\mathbb P}$) with the good rate function h^* (resp. \tilde{h}^*). Furthermore (likewise under $\tilde{\mathbb{P}}$),

$$
-\lim_{t\to\infty}t^{-1}\log\mathbb{P}\left(\frac{X_t-x_0}{t}\in (a,b)\right)=\inf_{x\in (a,b)}h^*(x),\quad\text{for all }a
$$

 $\mathcal{A} \cap \mathcal{B} \cap \mathcal{B} \cap \mathcal{A} \cap \mathcal{B} \cap \mathcal{B} \cap \mathcal{B} \cap \mathcal{B} \cap \mathcal{B}$

[Large-time](#page-30-0)

A Black-Scholes intermezzo

Let us consider the Black-Scholes model: $dS_t = \sum S_t dW_t$, with $S_0 > 0$ and $\Sigma > 0$. We have the following

$$
h_{\text{BS}}(u,\Sigma) := \lim_{t \to \infty} t^{-1} \log \mathbb{E}\left(e^{u(X_t - X_0)}\right) = \frac{1}{2}u(u-1)\Sigma^2, \qquad \text{for all } u \in \mathbb{R},
$$

$$
h_{\text{BS}}^*(x) := \sup_{u \in \mathbb{R}} \left\{ux - h_{\text{BS}}(u,\Sigma)\right\} = \left(x + \Sigma^2/2\right)^2 / \left(2\Sigma^2\right), \qquad \text{for all } x \in \mathbb{R}.
$$

Lemma (Forde & Jacquier, 2009)

The process $\left(t^{-1}\left(X_t-X_0\right)\right)_{t>0}$ satisfies a LDP as t tends to infinity under $\mathbb P$ (resp. $\tilde{\mathbb P}$) with the good rate function h^*_BS (resp. \tilde{h}^*_BS). Furthermore (likewise under $\tilde{\mathbb{P}}$),

$$
-\lim_{t\to\infty}\frac{1}{t}\log\mathbb{P}\left(\frac{X_t-x_0}{t}\in (a,b)\right)=\inf_{x\in (a,b)}h^*_{\mathrm{BS}}(x)\\=\frac{h^*_{\mathrm{BS}}(b,\Sigma)\mathbb{1}_{\{2b\leq -\Sigma^2\}}+\frac{h^*_{\mathrm{BS}}(b,\Sigma)\mathbb{1}_{\{2a\leq -\Sigma^2\}}}{h^*_{\mathrm{BS}}(b,\Sigma)\mathbb{1}_{\{2a\leq -\Sigma^2\}}},
$$

for all $a < b$ (here we have $h'(0) = -\Sigma^2/2$).

 \Box

点

[Large-time](#page-30-0)

Final steps: from probabilities to implied volatility

Lemma

As t tends to infinity, we have the following option price asymptotics:

(i)
$$
-\lim_{t\to\infty}t^{-1}\log\mathbb{E}(S_t-S_0\mathrm{e}^{xt})_+=\tilde{h}^*(x), \quad \text{for all } x\geq h'(1),
$$

$$
(ii) \quad -\lim_{t\to\infty} t^{-1}\log\left(S_0 - \mathbb{E}\left(S_t - S_0 e^{xt}\right)_+\right) = \tilde{h}^*(x), \quad \text{for all } h'(0) \leq x \leq h'(1),
$$

$$
\text{(iii)} \qquad \qquad -\lim_{t\to\infty} t^{-1}\log\left(\mathbb{E}\left(S_0\mathrm{e}^{xt}-S_t\right)_+\right)=\tilde{h}^*(x), \qquad \text{for all } x\leq h'(0).
$$

 $\langle \langle \, \, \sqcup \, \rangle \rangle \otimes \langle \, \bigoplus \, \rangle \rangle \otimes \langle \, \, \, \rangle \otimes \rangle \otimes \langle \, \, \rangle \otimes \rangle \otimes \langle \, \, \rangle \otimes \rangle$

[Large-time](#page-30-0)

Final steps: from probabilities to implied volatility

Lemma

As t tends to infinity, we have the following option price asymptotics:

(i)
$$
-\lim_{t\to\infty}t^{-1}\log\mathbb{E}(S_t-S_0\mathrm{e}^{xt})_+=\tilde{h}^*(x), \quad \text{for all } x\geq h'(1),
$$

$$
(ii) \quad -\lim_{t\to\infty} t^{-1}\log\left(S_0 - \mathbb{E}\left(S_t - S_0e^{xt}\right)_+\right) = \tilde{h}^*(x), \quad \text{for all } h'(0) \leq x \leq h'(1),
$$

$$
\text{(iii)} \qquad \qquad -\lim_{t\to\infty} t^{-1}\log\left(\mathbb{E}\left(S_0\mathrm{e}^{xt}-S_t\right)_+\right)=\tilde{h}^*(x), \qquad \text{for all } x\leq h'(0).
$$

Define the following function on R:

$$
\hat{\sigma}^2_{\infty}(x) := 2\left(2h^*(x) - x + \left(\mathbb{1}_{\{x \in (h'(0), h'(1))\}} - \mathbb{1}_{\{x \notin (h'(0), h'(1))\}}\right)2\sqrt{h^*(x)\left(h^*(x) - x\right)}\right).
$$

イロン イ母ン イヨン イヨン ニヨ

[Large-time](#page-30-0)

Final steps: from probabilities to implied volatility

Lemma

As t tends to infinity, we have the following option price asymptotics:

(i)
$$
-\lim_{t\to\infty}t^{-1}\log\mathbb{E}(S_t-S_0\mathrm{e}^{xt})_+=\tilde{h}^*(x), \quad \text{for all } x\geq h'(1),
$$

$$
(ii) \quad -\lim_{t\to\infty} t^{-1}\log\left(S_0 - \mathbb{E}\left(S_t - S_0e^{xt}\right)_+\right) = \tilde{h}^*(x), \quad \text{for all } h'(0) \leq x \leq h'(1),
$$

$$
\text{(iii)} \qquad \qquad -\lim_{t\to\infty} t^{-1}\log\left(\mathbb{E}\left(S_0\mathrm{e}^{xt}-S_t\right)_+\right)=\tilde{h}^*(x), \qquad \text{for all } x\leq h'(0).
$$

Define the following function on R:

$$
\hat{\sigma}^2_{\infty}(x) := 2\left(2h^*(x) - x + \left(\mathbb{1}_{\{x \in (h'(0), h'(1))\}} - \mathbb{1}_{\{x \notin (h'(0), h'(1))\}}\right)2\sqrt{h^*(x)\left(h^*(x) - x\right)}\right).
$$

Theorem

The function $\hat{\sigma}_{\infty}$ is continuous and $\lim_{t\to\infty}\hat{\sigma}_t^2(x)=\hat{\sigma}_{\infty}^2(x)$, for all $x\in\mathbb{R}$.

Note that here $\hat{\sigma}_t(x)$ corresponds to a strike $K = S_0 \exp(xt)$.

イロン イ押ン イヨン イヨン

[Large-time](#page-30-0) [Small-time](#page-37-0)

Small-time asymptotics

We are interested in determining

$$
\lambda(u) := \lim_{t \to 0} t \Phi_t(u/t, 0) = \lim_{t \to 0} \Big(t \phi(t, u/t, 0) + v_0 t \psi(t, u/t, 0) \Big), \quad \text{for all } u \in \mathcal{D}_\lambda.
$$

Let us define the Fenchel-Legendre transform $\lambda^*: \mathbb{R} \to \mathbb{R}_+ \cup \{+\infty\}$ of λ by

$$
\lambda^*(x) := \sup_{u \in \mathbb{R}} \{ux - \lambda(u)\}, \quad \text{for all } x \in \mathbb{R}.
$$

Theorem

The random variable $\left(X_t-X_0\right)_{t\geq 0}$ satisfies a LDP with rate λ^* as t tends to zero.

 $\langle \langle \, \, \sqcup \, \rangle \rangle \otimes \langle \, \bigoplus \, \rangle \rangle \otimes \langle \, \, \, \exists \, \rangle \rangle \otimes \langle \, \, \exists \, \rangle \otimes \langle \, \, \exists \, \rangle \otimes \langle \, \, \exists \, \rangle$

 QQ

[Large-time](#page-30-0) [Small-time](#page-36-0)

Small-time asymptotics

We are interested in determining

$$
\lambda(u) := \lim_{t \to 0} t \Phi_t(u/t, 0) = \lim_{t \to 0} \Big(t \phi(t, u/t, 0) + v_0 t \psi(t, u/t, 0) \Big), \quad \text{for all } u \in \mathcal{D}_\lambda.
$$

Let us define the Fenchel-Legendre transform $\lambda^*: \mathbb{R} \to \mathbb{R}_+ \cup \{+\infty\}$ of λ by

$$
\lambda^*(x) := \sup_{u \in \mathbb{R}} \{ux - \lambda(u)\}, \quad \text{for all } x \in \mathbb{R}.
$$

Theorem

The random variable $\left(X_t-X_0\right)_{t\geq 0}$ satisfies a LDP with rate λ^* as t tends to zero.

Proposition

The small-time implied volatility reads

$$
\sigma_0(x) := \lim_{t \to 0} \sigma_t(x) = \frac{|x|}{\sqrt{2\lambda^*(x)}} \in [0, \infty], \quad \text{for all } x \in \mathbb{R}^*.
$$

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 \equiv

[Large-time](#page-30-0) [Small-time](#page-36-0)

Small-time for continuous affine SV models

Assume that the process has continuous paths, i.e. $\mu \equiv 0$ and $m \equiv 0$. Define

$$
\lambda_0(u) := \lim_{t \to 0} t \psi(t, u/t, 0), \quad \text{for all } u \in \mathcal{D}_{\lambda_0}.
$$

CONTRACTOR CONTRACTOR

[Large-time](#page-30-0) [Small-time](#page-36-0)

Small-time for continuous affine SV models

Assume that the process has continuous paths, i.e. $\mu \equiv 0$ and $m \equiv 0$. Define

$$
\lambda_0(u) := \lim_{t \to 0} t \psi(t, u/t, 0), \quad \text{for all } u \in \mathcal{D}_{\lambda_0}.
$$

Lemma $\lambda _0 \left(u \right) = \alpha _{22}^{ - 1} \left(-\alpha _{12} u + \zeta u\tan \left(\zeta u /2 + \arctan \left(\alpha _{12} / \zeta \right) \right) \right) \quad \text{and} \quad \mathcal{D}_{\lambda _0} = \left(u_ - , u_+ \right),$ where $\,\overline{u_\pm}\,:=\,\zeta^{-1}\,(\pm\pi-2\,$ arctan $(\alpha_{12}/\zeta))\,\in\,\mathbb R_\pm\,$ and $\,\zeta:=\det{(\alpha)^{1/2}}>\,0$. Therefore we obtain $\lambda (u) = \lambda_0 (u) + a_{11} u^2/2.$

- Everything works fine when there are no jumps, and λ is known in closed-form.
- Jumps have to be chosen carefully: Nutz & Muhle-Karbe (2010), Roper (2009)

CONTRACTOR CONTRACTOR

Lévy processes **[Heston](#page-41-0)** [BNS](#page-46-0)

One-dimensional exponential Lévy processes

Let $(X_t)_t \geq 0$ be a Lévy process with triplet (σ, η, ν) . The standard Lévy assumptions as well as the martingale condition impose $\nu(\{0\}) = 0$ and

$$
\int_{\mathbb{R}} \left(x^2 \wedge 1\right) \nu\left(\mathrm{d} x\right) < \infty, \quad \int_{|x| \geq 1} \mathrm{e}^x \nu\left(\mathrm{d} x\right) < \infty, \quad \frac{\sigma^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^x - 1 - x 1\!\!1_{|x| \leq 1}\right) \nu\left(\mathrm{d} x\right) = -\eta.
$$

Now, $\Phi_t(u, 0) = \exp(t\phi(u))$. Hence

$$
F(u, 0) = \phi_X(u)
$$
 and $R(u, 0) = 0$.

The condition $\chi(1)$ < 0 is not satisfied. However we can work directly with F, and

$$
h \equiv \phi, \quad \text{and} \quad \mathcal{D} = \{u \in \mathbb{R} : h(u) < \infty\}.
$$

Example: $VG(a, b, c)$.

$$
h_{\text{VG}}(u) = \left(\frac{ab}{(a-u)(b+u)}\right)^c, \text{ and } \mathcal{D} = (a, b).
$$

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

 $(1, 1)$ $(1,$

Lévy processes [Heston](#page-41-0)

Heston with jumps I

Consider the Heston model

$$
dX_t = \left(\delta - \frac{1}{2}V_t\right)dt + \sqrt{V_t}dW_t + dJ_t, \quad X_0 = x_0 \in \mathbb{R},
$$

$$
dV_t = \kappa(\theta - V_t)dt + \xi\sqrt{V_t}dZ_t, \quad V_0 = v_0 > 0,
$$

$$
d\langle W, Z \rangle_t = \rho dt,
$$

where $J:={(J_t)}_{t\geq 0}$ is a pure-jump Lévy process independent of ${(W_t)}_{t\geq 0}.$ Assume

$$
\chi(1)=\rho\sigma-\kappa<0
$$

(see also Forde-Jacquier-Mijatović, Keller-Ressel, Andersen-Piterbarg). The logarithmic moment generating function of the Heston model with jumps reads

$$
\log \mathbb{E}\left(e^{u(X_t-x_0)}\right)=K_H(u,t)+\tilde{K}_J(u)\,t,
$$

with $\tilde{K}_J\left(u\right):=K_J\left(u\right)-uK_J\left(1\right)$ to ensure the martingale property. In terms of the functions F and R , we have

$$
F(u, w) = \kappa \theta w + \tilde{K}_J(u), \text{ and } R(u, w) = \frac{u}{2}(u - 1) + \frac{\xi^2}{2}w^2 - \kappa w + \rho \xi u w.
$$

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

Lévy processes **[Heston](#page-41-0)**

Heston with jumps II

We know that, for all $u \in [u^h_-, u^h_+]$

$$
K_H^{\infty}(u) := \lim_{t \to \infty} t^{-1} K_H(u,t) = \frac{\kappa \theta}{\xi^2} \left(\kappa - \rho \xi u - \sqrt{(\kappa - \rho \xi u)^2} - \xi^2 u(u-1) \right),
$$

so that

$$
h(u) := \lim_{t \to \infty} t^{-1} \Lambda_t(u) = K_H^{\infty}(u) + \tilde{K}_J(u), \quad \text{for all } u \in \left[u^h \vee u^J_-, u^h_+ \wedge u^J_+ \right].
$$

and

$$
h^*(x) = \sup_{u \in \left[u^h_{-} \vee u^1_{-}, u^h_{+} \wedge u^1_{+}\right]} \{ux - h(u)\}, \text{ for all } x \in \mathbb{R}.
$$

Note that Heston without jumps corresponds to Gatheral's SVI parameterisation, ensuring its no-arbitrage for large maturities (see Gatheral & Jacquier, 2010):

$$
\hat{\sigma}_{\infty}\left(x\right) = \frac{\omega_1}{2}\left(1 + \omega_2\rho x + \sqrt{(\omega_2x + \rho)^2 + 1 - \rho^2}\right), \quad \text{for all } x \in \mathbb{R}.
$$

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

 $(0.015, 0.00$

 QQQ

 \equiv

Lévy processes **[Heston](#page-41-0)** [BNS](#page-46-0)

Heston with jumps III

.

 $\mathcal{L} \cap \mathcal{L} \rightarrow \mathcal{L} \oplus \mathcal{L} \rightarrow \mathcal{L} \oplus \mathcal{L} \rightarrow \mathcal{L} \oplus \mathcal{L} \rightarrow \mathcal{L} \oplus \mathcal{L}$

 QQ

Consider Normal Inverse Gaussian jumps, i.e.

J is an independent Normal Inverse Gaussian process with parameters $(\alpha, \beta, \mu, \delta)$ and Lévy exponent

$$
K_{NIG}(u) = \mu u + \delta \left(\sqrt{\alpha^2 - \beta^2} - \sqrt{\alpha^2 - (\beta + u)^2} \right)
$$

Then $u_{\pm}^{NIG} = -b \pm a$.

Lévy processes **[Heston](#page-41-0)** [BNS](#page-46-0)

Numerical example: Heston without jumps

Heston (without jumps) calibrated on the Eurostoxx 50 on February, 15th, 2006, and then generated for $T = 9$ years. $\kappa = 1.7609$, $\theta = 0.0494$, $\sigma = 0.4086$, $v_0 = 0.0464$, $\rho = -0.5195$.

 \overline{a} Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

SACRA ARE

 \Box

 \equiv

Lévy processes [Heston](#page-41-0)

Numerical example: Heston with NIG jumps

We use the same parameters as before for Heston and the following for NIG: $\alpha = 7.104$, $\beta = -3.3$, $\delta = 0.193$ and $\mu = 0.092$. Heston (with jumps) calibrated on the Eurostoxx 50 on February, Note that, in the limit as $T \rightarrow \infty$, the smile Heston + NIG jumps exactly corresponds to a double Heston smile!! \equiv

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

Lévy processes **[Heston](#page-41-0)** [BNS](#page-46-0)

Barndorff-Nielsen & Shephard (2001) I

$$
dX_t = -\left(\gamma k\left(\rho\right) + \frac{1}{2}V_t\right)dt + \sqrt{V_t}dW_t + \rho dJ_{\gamma t}, \quad X_0 = x_0 \in \mathbb{R},
$$

$$
dV_t = -\gamma V_t dt + dJ_{\gamma t}, \quad V_0 = v_0 > 0,
$$

where $\gamma >$ 0, $\rho <$ 0 and $\left(J_t\right)_{t\geq 0}$ is a Lévy subordinator where the cgf of J_1 is given by $k(u) = \log \mathbb{E}\left(e^{uJ_1}\right)$. $\mathcal{D}_{\Lambda} = (u_-, u_+),$ where

$$
u_{\pm} := \frac{1}{2} - \rho \gamma \pm \sqrt{\frac{1}{4} - (2k^* - \rho) \gamma + \rho^2 \gamma^2}.
$$

with $k^* := \sup\{u > 0 : k(u) < \infty\}$. We deduce the two functions F and R,

$$
R(u,0)=\frac{1}{2}(u^2-u)\,,\quad\text{and}\quad F(u,0)=\gamma k(\rho u)-u\gamma k(\rho)\,.
$$

Consider the Γ-BNS model, where the subordinator is $\Gamma(a, b)$ -distributed with a, $b > 0$. Hence $k_{\Gamma}(u) = (b - u)^{-1}$ au, and $u_{\pm}^{\Gamma} := \frac{1}{2} - \rho \gamma \pm \sqrt{\left(\frac{1}{2} - \rho \gamma\right)^2 + 2b\gamma} \in \mathbb{R}_{\pm}$.

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

イ風 トラミュ ミト

Lévy processes **[Heston](#page-41-0)** [BNS](#page-46-0)

Barndorff-Nielsen & Shephard II

Γ-BNS model with $a = 1.4338$, $b = 11.6641$, $ν_0 = 0.0145$, $γ = 0.5783$, (Schoutens) Solid line: asymptotic smile. Dotted and dashed: 5, 10 and 20 years generated smile.

Antoine Jacquier [Calibrating affine stochastic volatility models with jumps](#page-0-0)

 $\langle\,\,\sqcap\,\rangle$ $\langle\,\,\varcap\,\rangle$ $\langle\,\,\varcap\,\rangle$ $\langle\,\,\varsubset\,\rangle$ $\langle\,\,\varsubset\,\rangle$ $\langle\,\,\varsubset\,\varsubset\,\rangle$

Conclusion

KORK (FRAGE) ASSESSED A COMPANY

Summary:

- Closed-form formulae for affine stochastic volatility models with jumps for large maturities.
- Closed-form formulae for continuous affine stochastic volatility models for small maturities.

Future research:

- Remove the conditions $\chi(0) < 0$ and $\chi(1) < 0$.
- What happens precisely in the small-time when jumps are added?
- Determine the higher-order correction terms (in t or t^{-1}).
- Statistical and numerical tests to assess the calibration efficiency.