Calibrating affine stochastic volatility models with jumps An asymptotic approach

Antoine Jacquier

Imperial College London, Department of Mathematics

Joint work with A. Mijatović

6th Bachelier Congress, Toronto, Canada, June 2010

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

Figure: Market implied volatilities for different strikes and maturities.

Antoine Jacquier Calibrating affine stochastic volatility models with jumps

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

Figure: Sum of squared errors: 4.53061E-05

Antoine Jacquier Calibrat

Calibrating affine stochastic volatility models with jumps

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough. Which initial point did you take?'

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough. Which initial point did you take?'

Me: 'a1.'

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough. Which initial point did you take?'

Me: 'a1.'

Boss: 'Classic mistake!! You should take a2 instead.'

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

Figure: Sum of squared errors: 2.4856E-06

Antoine Jacquier

Calibrating affine stochastic volatility models with jumps

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: 'a1.'

Boss: 'No, you should take a2.'

Moral of the story:

Calibrating affine stochastic volatility models with jumps

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Antoine Jacquier

Me: 'a1.'

Boss: 'No, you should take a2.'

Moral of the story:

(i) I am not that bright, after all.

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: '*a*₁.'

Boss: 'No, you should take a2.'

Moral of the story:

- (i) I am not that bright, after all.
- (ii) My boss is really good.

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: 'a1.'

Boss: 'No, you should take a2.'

Moral of the story:

- (i) I am not that bright, after all.
- (ii) My boss is really good.
- (iii) Should I really trust him blindfold?

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

A short (non) fictitious story

I just finished my MSc in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: 'a1.'

Boss: 'No, you should take a2.'

Moral of the story:

- (i) I am not that bright, after all.
- (ii) My boss is really good.
- (iii) Should I really trust him blindfold?

"Start every day off with a smile and get it over with." (W.C. Fields)

Introduction and preliminary tools Volatility asymptotics Examples Conclusion

So let us start off with a smile (one maturity slice)

Antoine Jacquier Calibrating affine stochastic volatility models with jumps

duction and preliminary tools Volatility asymptotics Examples Conclusion

So let us start off with a smile (one maturity slice)

Solid blue: $x \mapsto g(x) := C_{BS}^{-1} \left(\mathcal{F}^{-1} \Re \left\{ f(x, z) \phi_{a}(z) \right\} \right)$

Antoine Jacquier Calibrating affine stochastic volatility models with jumps

So let us start off with a smile (one maturity slice)

So let us start off with a smile (one maturity slice)

Solid blue: $x \mapsto g(x) := C_{BS}^{-1} \left(\mathcal{F}^{-1} \Re \left\{ f(x, z) \phi_{\mathfrak{s}}(z) \right\} \right)$ Dashed black: $x \mapsto \hat{g}(x) = \alpha x^2 + \beta x + \gamma$

Easier to calibrate \hat{g} than g.

Antoine Jacquier Calibrating affine stochastic volatility models with jumps

Large deviations Methodology ASVM

Motivation and goals

- Obtain closed-form formulae for the implied volatility under ASVM in the short/large-maturity limits.
- Propose an accurate starting point for calibration purposes.
- Discuss conditions on jumps for a model to be usable in practice.

Definition: The implied volatility is the unique parameter $\sigma \geq 0$ such that

 $C_{\mathrm{BS}}(S_0, K, T, \sigma) = C_{\mathrm{obs}}(S_0, K, T).$

Large deviations Methodology ASVM

Large deviations theory

Lemma

 $\left(X_{\epsilon}
ight)_{\epsilon>0}$ satisfies the LDP with the continuous good rate function I if and only if

$$-\lim_{\epsilon \to 0} \epsilon \log \mathbb{P}(X_{\epsilon} \in B) = \inf_{x \in B} I(x), \quad \text{for any set } B \subset \Omega.$$

イロン イロン イヨン イヨン 三日

Large deviations Methodology ASVM

The Gärtner-Ellis theorem

Assumption A.1: For all $\lambda \in \mathbb{R}$, define the limiting cumulant generating function

$$\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \log \mathbb{E}\left(\mathrm{e}^{\lambda t X_t}\right) = \lim_{t \to \infty} t^{-1} \Lambda_t\left(\lambda t\right)$$

as an extended real number. Denote $\mathcal{D}_{\Lambda} := \{\lambda \in \mathbb{R} : \Lambda(\lambda) < \infty\}$. Assume further that the origin belongs to $\mathcal{D}_{\Lambda}^{0}$.

Large deviations Methodology ASVM

The Gärtner-Ellis theorem

Assumption A.1: For all $\lambda \in \mathbb{R}$, define the limiting cumulant generating function

$$\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \log \mathbb{E}\left(\mathrm{e}^{\lambda t X_t}\right) = \lim_{t \to \infty} t^{-1} \Lambda_t\left(\lambda t\right)$$

as an extended real number. Denote $\mathcal{D}_{\Lambda} := \{\lambda \in \mathbb{R} : \Lambda(\lambda) < \infty\}$. Assume further that the origin belongs to $\mathcal{D}_{\Lambda}^{0}$.

Theorem (Gärtner-Ellis) (special case of the general th. Dembo & Zeitouni)

Under Assumption A.1, the family of random variables $(X_t)_{t\geq 0}$ satisfies the LDP with rate function Λ^* , defined as the Fenchel-Legendre transform of Λ ,

$$\Lambda^*(x) := \sup_{\lambda \in \mathbb{R}} \{ \lambda x - \Lambda(\lambda) \}, \quad \text{for all } x \in \mathbb{R}.$$

Large deviations Methodology ASVM

Methodology overview (large-time)

• Let $(S_t)_{t\geq 0}$ be a share price process, and define $X_t := \log (S_t/S_0)$.

Large deviations Methodology ASVM

Methodology overview (large-time)

- Let $(S_t)_{t>0}$ be a share price process, and define $X_t := \log (S_t/S_0)$.
- Find $\Lambda_t(\lambda) := \log \mathbb{E}\left(e^{\lambda X_t}\right)$, and $\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda)$.

イロン イボン イヨン イヨン 一日

Large deviations Methodology ASVM

- Let $(S_t)_{t>0}$ be a share price process, and define $X_t := \log (S_t/S_0)$.
- Find $\Lambda_t(\lambda) := \log \mathbb{E}(e^{\lambda X_t})$, and $\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda)$.
- Check the smoothness conditions for Λ , in particular the set $\mathcal{D}_{\Lambda} := \{\lambda : \Lambda(\lambda) < \infty\}.$

Large deviations Methodology ASVM

- Let $(S_t)_{t>0}$ be a share price process, and define $X_t := \log (S_t/S_0)$.
- Find $\Lambda_t(\lambda) := \log \mathbb{E}(e^{\lambda X_t})$, and $\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda)$.
- Check the smoothness conditions for Λ , in particular the set $\mathcal{D}_{\Lambda} := \{\lambda : \Lambda(\lambda) < \infty\}.$
- Conclude that $(X_t/t)_{t>0}$ satisfies a LDP with (good) rate function Λ^* .

Large deviations Methodology ASVM

- Let $(S_t)_{t>0}$ be a share price process, and define $X_t := \log (S_t/S_0)$.
- Find $\Lambda_t(\lambda) := \log \mathbb{E}(e^{\lambda X_t})$, and $\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda)$.
- Check the smoothness conditions for Λ , in particular the set $\mathcal{D}_{\Lambda} := \{\lambda : \Lambda(\lambda) < \infty\}.$
- Conclude that $(X_t/t)_{t>0}$ satisfies a LDP with (good) rate function Λ^* .
- Translate the tail behaviour of X into an asymptotic behaviour of Call prices.

Large deviations Methodology ASVM

- Let $(S_t)_{t>0}$ be a share price process, and define $X_t := \log (S_t/S_0)$.
- Find $\Lambda_t(\lambda) := \log \mathbb{E}(e^{\lambda X_t})$, and $\Lambda(\lambda) := \lim_{t \to \infty} t^{-1} \Lambda_t(\lambda)$.
- Check the smoothness conditions for Λ , in particular the set $\mathcal{D}_{\Lambda} := \{\lambda : \Lambda(\lambda) < \infty\}.$
- Conclude that $(X_t/t)_{t>0}$ satisfies a LDP with (good) rate function Λ^* .
- Translate the tail behaviour of X into an asymptotic behaviour of Call prices.
- Translate these Call price asymptotics into implied volatility asymptotics.

Large deviations Methodology ASVM

Affine stochastic volatility models

Let $(S_t)_{t\geq 0}$ represent a share price process and a martingale. Define $X_t := \log S_t$ and assume that $(X_t, V_t)_{t\geq 0}$ is a stochastically continuous, time-homogeneous Markov process satisfying

$$\Phi_{t}\left(u,w\right):=\log\mathbb{E}\left(\left.\mathrm{e}^{uX_{t}+wV_{t}}\right|X_{0},V_{0}\right)=\phi\left(t,u,w\right)+V_{0}\psi\left(t,u,w\right)+uX_{0},$$

for all $t, u, w \in \mathbb{R}_+ \times \mathbb{C}^2$ such that the expectation exists. Define $F(u, w) := \partial_t \phi(t, u, w)|_{t=0^+}$, and $R(u, w) := \partial_t \psi(t, u, w)|_{t=0^+}$. Then

$$F(u,w) = \left\langle \frac{a}{2} \begin{pmatrix} u \\ w \end{pmatrix} + b, \begin{pmatrix} u \\ w \end{pmatrix} \right\rangle + \int_{D \setminus \{0\}} \left(e^{xu + yw} - 1 - \left\langle \omega_F(x,y), \begin{pmatrix} u \\ w \end{pmatrix} \right\rangle \right) \operatorname{m} \left(\mathrm{d}x, \mathrm{d}y \right),$$

$$R(u,w) = \left\langle \frac{\alpha}{2} \begin{pmatrix} u \\ w \end{pmatrix} + \beta, \begin{pmatrix} u \\ w \end{pmatrix} \right\rangle + \int_{D \setminus \{0\}} \left(e^{xu + yw} - 1 - \left\langle \omega_R(x,y), \begin{pmatrix} u \\ w \end{pmatrix} \right\rangle \right) \mu(\mathrm{d}x,\mathrm{d}y),$$

where $D := \mathbb{R} \times \mathbb{R}_+$, and ω_F and ω_R are truncation functions. See Duffie, Filipović, Schachermayer (2003) and Keller-Ressel (2009).

Large deviations Methodology ASVM

Why this class of models?

- They feature most market characteristics: jumps, stochastic volatility, ...
- Their analytic properties are known (Duffie, Filipović & Schachermayer).
- They are tractable and pricing can be performed using Carr-Madan or Lewis inverse Fourier transform method.
- Most models used in practice fall into this category: Heston, Bates, exponential Lévy models (VG, CGMY), pure jump process (Merton, Kou), Barndorff-Nielsen & Shephard, ...

Large-time Small-time

Large-time asymptotics: objectives and tools

Recall that $\Lambda_t(u, w) := \phi(t, u, w) + V_0 \psi(t, u, w)$. We are interested in the behaviour of $\lim_{t \to \infty} t^{-1} \Lambda_t(u, 0)$.

Define the function $\chi : \mathbb{R} \to \mathbb{R}$ by $\chi(u) := \partial_w R(u, w)|_{w=0}$, assume that $\chi(0) < 0$ and $\chi(1) < 0$. Then

Lemma (Keller-Ressel, 2009)

There exist an interval $\mathcal{I} \subset \mathbb{R}$ and a unique function $w \in C(\mathcal{I}) \cap C^1(\mathcal{I}^\circ)$ such that R(u, w(u)) = 0, for all $u \in \mathcal{I}$ with w(0) = w(1) = 0. Define the set $\mathcal{J} := \{u \in \mathcal{I} : F(u, w(u)) < \infty\}$ and the function h(u) := F(u, w(u)) on \mathcal{J} , then

$$\lim_{t \to \infty} t^{-1} \Lambda_t (u, 0) = \lim_{t \to \infty} t^{-1} \phi (t, u, 0) = h (u), \quad \text{for all } u \in \mathcal{J},$$
$$\lim_{t \to \infty} \psi (t, u, 0) = w (u), \quad \text{for all } u \in \mathcal{I}.$$

For convenience, we shall write $\Lambda_t(u)$ in place of $\Lambda_t(u, 0)$.

Large-time Small-time

Share measure

Let us define the share measure $\tilde{\mathbb{P}}(A) := \mathbb{E}((X_t - X_0) \mathbb{1}_A)$, and $\tilde{\mathcal{I}} := \{u : u + 1 \in \mathcal{I}\}$. Define $\tilde{h}(u) := \lim_{t \to \infty} t^{-1} \tilde{\Lambda}_t(u)$, then $\tilde{h}(u) = h(u+1)$, for all $u \in \tilde{\mathcal{J}}$ and $\tilde{h}^*(x) = h^*(x) - x$, for all $x \in \mathbb{R}$.

Lemma

 h^* and \tilde{h}^* are both good rate functions, strictly convex and admit zero as a unique minimum attained at h'(0) and h'(1) with h'(0) < 0 < h'(1).

Theorem

The process $(t^{-1}(X_t - X_0))_{t>0}$ satisfies a LDP as t tends to infinity under \mathbb{P} (resp. $\tilde{\mathbb{P}}$) with the good rate function h^* (resp. \tilde{h}^*). Furthermore (likewise under $\tilde{\mathbb{P}}$),

$$-\lim_{t\to\infty}t^{-1}\log\mathbb{P}\left(\frac{X_t-x_0}{t}\in(a,b)\right)=\inf_{x\in(a,b)}h^*(x),\quad\text{for all }a$$

Large-time Small-time

A Black-Scholes intermezzo

Let us consider the Black-Scholes model: $dS_t = \Sigma S_t dW_t$, with $S_0 > 0$ and $\Sigma > 0$. We have the following

$$h_{\mathrm{BS}}\left(u,\Sigma\right) := \lim_{t \to \infty} t^{-1} \log \mathbb{E}\left(\mathrm{e}^{u(X_t - X_0)}\right) = \frac{1}{2}u\left(u - 1\right)\Sigma^2, \qquad \text{ for all } u \in \mathbb{R},$$

$$h_{\mathrm{BS}}^{*}\left(x\right):=\sup_{u\in\mathbb{R}}\left\{ux-h_{\mathrm{BS}}\left(u,\Sigma\right)\right\}=\left(x+\Sigma^{2}/2\right)^{2}/\left(2\Sigma^{2}\right),\qquad\text{for all }x\in\mathbb{R}.$$

Lemma (Forde & Jacquier, 2009)

The process $(t^{-1}(X_t - X_0))_{t>0}$ satisfies a LDP as t tends to infinity under \mathbb{P} (resp. $\tilde{\mathbb{P}}$) with the good rate function h_{BS}^* (resp. \tilde{h}_{BS}^*). Furthermore (likewise under $\tilde{\mathbb{P}}$),

$$\begin{aligned} &-\lim_{t\to\infty}\frac{1}{t}\log\mathbb{P}\left(\frac{X_t-x_0}{t}\in(a,b)\right) = \inf_{x\in(a,b)}h_{\mathrm{BS}}^*\left(x\right) \\ &=h_{\mathrm{BS}}^*\left(b,\Sigma\right)\mathbb{1}_{\left\{2b\leq-\Sigma^2\right\}} + h_{\mathrm{BS}}^*\left(b,\Sigma\right)\mathbb{1}_{\left\{2a\leq-\Sigma^2\right\}},\end{aligned}$$

for all a < b (here we have $h'(0) = -\Sigma^2/2$).

Large-time Small-time

Final steps: from probabilities to implied volatility

Lemma

As t tends to infinity, we have the following option price asymptotics:

(i)
$$-\lim_{t\to\infty} t^{-1}\log \mathbb{E}\left(S_t - S_0 e^{xt}\right)_+ = \tilde{h}^*(x), \quad \text{ for all } x \ge h'(1),$$

$$(ii) \quad -\lim_{t\to\infty} t^{-1}\log\left(S_0-\mathbb{E}\left(S_t-S_0\mathrm{e}^{xt}\right)_+\right) = \tilde{h}^*(x), \qquad \text{for all } h'(0) \le x \le h'(1),$$

(iii)
$$-\lim_{t\to\infty}t^{-1}\log\left(\mathbb{E}\left(S_0\mathrm{e}^{xt}-S_t\right)_+\right)=\tilde{h}^*(x),\qquad\text{for all }x\leq h'(0).$$

Large-time Small-time

Final steps: from probabilities to implied volatility

Lemma

As t tends to infinity, we have the following option price asymptotics:

(i)
$$-\lim_{t\to\infty} t^{-1}\log \mathbb{E}\left(S_t - S_0 e^{xt}\right)_+ = \tilde{h}^*(x), \quad \text{ for all } x \ge h'(1),$$

$$(ii) \quad -\lim_{t\to\infty} t^{-1} \log \left(S_0 - \mathbb{E} \left(S_t - S_0 \mathrm{e}^{\mathsf{x} t}\right)_+\right) = \tilde{h}^*(\mathsf{x}), \qquad \text{for all } h'(0) \le \mathsf{x} \le h'(1),$$

(iii)
$$-\lim_{t\to\infty}t^{-1}\log\left(\mathbb{E}\left(S_0\mathrm{e}^{xt}-S_t\right)_+\right)=\tilde{h}^*(x), \quad \text{for all } x\leq h'(0).$$

Define the following function on \mathbb{R} :

$$\hat{\sigma}_{\infty}^{2}(x) := 2\left(2h^{*}(x) - x + \left(\mathbb{1}_{\{x \in (h'(0), h'(1))\}} - \mathbb{1}_{\{x \notin (h'(0), h'(1))\}}\right) 2\sqrt{h^{*}(x) \left(h^{*}(x) - x\right)}\right).$$

Large-time Small-time

Final steps: from probabilities to implied volatility

Lemma

As t tends to infinity, we have the following option price asymptotics:

(i)
$$-\lim_{t\to\infty}t^{-1}\log\mathbb{E}\left(S_t-S_0\mathrm{e}^{xt}\right)_+=\tilde{h}^*(x),\qquad\text{for all }x\geq h'(1),$$

$$(ii) \quad -\lim_{t\to\infty} t^{-1}\log\left(S_0-\mathbb{E}\left(S_t-S_0\mathrm{e}^{\times t}\right)_+\right) = \tilde{h}^*(x), \qquad \text{for all } h'(0) \le x \le h'(1),$$

(iii)
$$-\lim_{t\to\infty}t^{-1}\log\left(\mathbb{E}\left(S_0\mathrm{e}^{xt}-S_t\right)_+\right)=\tilde{h}^*(x), \quad \text{for all } x\leq h'(0).$$

Define the following function on \mathbb{R} :

$$\hat{\sigma}_{\infty}^{2}(x) := 2\left(2h^{*}(x) - x + \left(\mathbb{1}_{\{x \in (h'(0), h'(1))\}} - \mathbb{1}_{\{x \notin (h'(0), h'(1))\}}\right) 2\sqrt{h^{*}(x) \left(h^{*}(x) - x\right)}\right).$$

Theorem

The function $\hat{\sigma}_{\infty}$ is continuous and $\lim_{t \to \infty} \hat{\sigma}_t^2(x) = \hat{\sigma}_{\infty}^2(x)$, for all $x \in \mathbb{R}$.

Note that here $\hat{\sigma}_t(x)$ corresponds to a strike $K = S_0 \exp(xt)$.

Large-time Small-time

Small-time asymptotics

We are interested in determining

$$\lambda\left(u\right):=\lim_{t\to0}t\Phi_t\left(u/t,0\right)=\lim_{t\to0}\Big(t\phi\left(t,u/t,0\right)+v_0t\psi\left(t,u/t,0\right)\Big),\quad\text{for all }u\in\mathcal{D}_\lambda.$$

Let us define the Fenchel-Legendre transform $\lambda^*:\mathbb{R}\to\mathbb{R}_+\cup\{+\infty\}$ of λ by

$$\lambda^{*}(x) := \sup_{u \in \mathbb{R}} \left\{ ux - \lambda(u) \right\}, \text{ for all } x \in \mathbb{R}.$$

Theorem

The random variable $(X_t - X_0)_{t \ge 0}$ satisfies a LDP with rate λ^* as t tends to zero.

Large-time Small-time

Small-time asymptotics

We are interested in determining

$$\lambda\left(u\right):=\lim_{t\to0}t\Phi_t\left(u/t,0\right)=\lim_{t\to0}\left(t\phi\left(t,u/t,0\right)+v_0t\psi\left(t,u/t,0\right)\right),\quad\text{for all }u\in\mathcal{D}_\lambda.$$

Let us define the Fenchel-Legendre transform $\lambda^*:\mathbb{R}\to\mathbb{R}_+\cup\{+\infty\}$ of λ by

$$\lambda^{*}\left(x
ight):=\sup_{u\in\mathbb{R}}\left\{ux-\lambda\left(u
ight)
ight\},\quad ext{for all }x\in\mathbb{R}.$$

Theorem

The random variable $(X_t - X_0)_{t \ge 0}$ satisfies a LDP with rate λ^* as t tends to zero.

Proposition

The small-time implied volatility reads

$$\sigma_{0}(x) := \lim_{t \to 0} \sigma_{t}(x) = \frac{|x|}{\sqrt{2\lambda^{*}(x)}} \in [0, \infty], \text{ for all } x \in \mathbb{R}^{*}.$$

Large-time Small-time

Small-time for continuous affine SV models

Assume that the process has continuous paths, i.e. $\mu \equiv 0$ and $m \equiv 0$. Define

$$\lambda_{0}\left(u
ight):=\lim_{t
ightarrow0}t\psi\left(t,u/t,0
ight),\quad ext{for all }u\in\mathcal{D}_{\lambda_{0}}.$$

Lemma $\lambda_0(u) = \alpha_{22}^{-1} \left(-\alpha_{12}u + \zeta u \tan\left(\zeta u/2 + \arctan\left(\alpha_{12}/\zeta\right)\right) \right) \quad \text{and} \quad \mathcal{D}_{\lambda_0} = (u_-, u_+),$ where $u_{\pm} := \zeta^{-1} \left(\pm \pi - 2 \arctan\left(\alpha_{12}/\zeta\right) \right) \in \mathbb{R}_{\pm}$ and $\zeta := \det(\alpha)^{1/2} > 0$. Therefore we obtain $\lambda(u) = \lambda_0(u) + a_{11}u^2/2.$

Large-time Small-time

Small-time for continuous affine SV models

Assume that the process has continuous paths, i.e. $\mu \equiv 0$ and $m \equiv 0$. Define

$$\lambda_{0}\left(u
ight):=\lim_{t
ightarrow0}t\psi\left(t,u/t,0
ight), \quad ext{for all } u\in\mathcal{D}_{\lambda_{0}}.$$

Lemma

$$\lambda_0\left(u\right) = \alpha_{22}^{-1}\left(-\alpha_{12}u + \zeta u \tan\left(\zeta u/2 + \arctan\left(\alpha_{12}/\zeta\right)\right)\right) \quad \text{and} \quad \mathcal{D}_{\lambda_0} = \left(u_-, u_+\right),$$

where $u_{\pm} := \zeta^{-1} (\pm \pi - 2 \arctan(\alpha_{12}/\zeta)) \in \mathbb{R}_{\pm}$ and $\zeta := \det(\alpha)^{1/2} > 0$. Therefore we obtain

$$\lambda(u) = \lambda_0(u) + a_{11}u^2/2.$$

- Everything works fine when there are no jumps, and λ is known in closed-form.
- Jumps have to be chosen carefully: Nutz & Muhle-Karbe (2010), Roper (2009)

Introduction and preliminary tools Volatility asymptotics Examples

Lévy processes

One-dimensional exponential Lévy processes

Let $(X_t)_t \ge 0$ be a Lévy process with triplet (σ, η, ν) . The standard Lévy assumptions as well as the martingale condition impose $\nu(\{0\}) = 0$ and

$$\int_{\mathbb{R}} \left(x^2 \wedge 1 \right) \nu \left(\mathrm{d} x \right) < \infty, \quad \int_{|x| \ge 1} \mathrm{e}^{x} \nu \left(\mathrm{d} x \right) < \infty, \quad \frac{\sigma^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^{x} - 1 - x \mathbb{1}_{|x| \le 1} \right) \nu \left(\mathrm{d} x \right) = -\eta.$$

Now, $\Phi_t(u, 0) = \exp(t\phi(u))$. Hence

$$F(u,0) = \phi_X(u)$$
 and $R(u,0) = 0$.

The condition $\chi(1) < 0$ is not satisfied. However we can work directly with F, and

$$h \equiv \phi$$
, and $\mathcal{D} = \{ u \in \mathbb{R} : h(u) < \infty \}$.

Example: VG(a, b, c).

$$h_{\mathrm{VG}}\left(u
ight)=\left(rac{ab}{\left(a-u
ight)\left(b+u
ight)}
ight)^{c}, \quad \mathrm{and} \quad \mathcal{D}=\left(a,b
ight).$$

Calibrating affine stochastic volatility models with jumps Antoine Jacquier

Lévy processes Heston BNS

Heston with jumps I

Consider the Heston model

$$\begin{split} \mathrm{d} X_t &= \left(\delta - \frac{1}{2}V_t\right)\mathrm{d} t + \sqrt{V_t}\,\mathrm{d} W_t + \mathrm{d} J_t, \quad X_0 = x_0 \in \mathbb{R} \\ \mathrm{d} V_t &= \kappa \left(\theta - V_t\right)\mathrm{d} t + \xi \sqrt{V_t}\,\mathrm{d} Z_t, \quad V_0 = v_0 > 0, \\ \mathrm{d} \left\langle W, Z \right\rangle_t &= \rho \mathrm{d} t, \end{split}$$

where $J := (J_t)_{t \ge 0}$ is a pure-jump Lévy process independent of $(W_t)_{t \ge 0}$. Assume

$$\chi\left(1\right) = \rho\sigma - \kappa < 0$$

(see also Forde-Jacquier-Mijatović, Keller-Ressel, Andersen-Piterbarg). The logarithmic moment generating function of the Heston model with jumps reads

$$\log \mathbb{E}\left(\mathrm{e}^{u(X_t-x_0)}\right) = K_H(u,t) + \tilde{K}_J(u) t,$$

with $\tilde{K}_J(u) := K_J(u) - uK_J(1)$ to ensure the martingale property. In terms of the functions F and R, we have

$$F(u,w) = \kappa\theta w + \tilde{K}_J(u)$$
, and $R(u,w) = \frac{u}{2}(u-1) + \frac{\xi^2}{2}w^2 - \kappa w + \rho\xi uw$.

Antoine Jacquier Calibrating affine stochastic volatility models with jumps

Lévy processes Heston BNS

Heston with jumps II

We know that, for all $u \in \left[u_{-}^{h}, u_{+}^{h}\right]$

$$\mathcal{K}_{H}^{\infty}\left(u
ight):=\lim_{t\to\infty}t^{-1}\mathcal{K}_{H}\left(u,t
ight)=rac{\kappa heta}{\xi^{2}}\left(\kappa-
ho\xi u-\sqrt{\left(\kappa-
ho\xi u
ight)^{2}}-\xi^{2}u\left(u-1
ight)
ight),$$

so that

$$h\left(u\right):=\lim_{t\to\infty}t^{-1}\Lambda_{t}\left(u\right)=K_{H}^{\infty}\left(u\right)+\tilde{K}_{J}\left(u\right),\quad\text{for all }u\in\left[u_{-}^{h}\vee u_{-}^{J},u_{+}^{h}\wedge u_{+}^{J}\right].$$

and

$$h^{*}\left(x\right) = \sup_{u \in \left[u_{-}^{h} \lor u_{-}^{J}, u_{+}^{h} \land u_{+}^{J}\right]} \left\{ux - h\left(u\right)\right\}, \quad \text{for all } x \in \mathbb{R}$$

Note that Heston without jumps corresponds to Gatheral's SVI parameterisation, ensuring its no-arbitrage for large maturities (see Gatheral & Jacquier, 2010):

$$\hat{\sigma}_{\infty}\left(x
ight)=rac{\omega_{1}}{2}\left(1+\omega_{2}
ho x+\sqrt{\left(\omega_{2}x+
ho
ight)^{2}+1-
ho^{2}}
ight), \hspace{1em} ext{for all } x\in\mathbb{R}$$

Antoine Jacquier Calibrating affine stochastic volatility models with jumps

Lévy processes Heston BNS

Heston with jumps III

Consider Normal Inverse Gaussian jumps, i.e.

J is an independent Normal Inverse Gaussian process with parameters $(\alpha,\beta,\mu,\delta)$ and Lévy exponent

$$K_{NIG}(u) = \mu u + \delta \left(\sqrt{\alpha^2 - \beta^2} - \sqrt{\alpha^2 - (\beta + u)^2} \right)$$

Then $u_{\pm}^{NIG} = -b \pm a$.

Lévy processes Heston BNS

Numerical example: Heston without jumps

Heston (without jumps) calibrated on the Eurostoxx 50 on February, 15th, 2006, and then generated for T = 9 years. $\kappa = 1.7609$, $\theta = 0.0494$, $\sigma = 0.4086$, $v_0 = 0.0464$, $\rho = -0.5195$.

Antoine Jacquier Calibrating affine stochastic volatility models with jumps

Lévy processes **Heston** BNS

Numerical example: Heston with NIG jumps

We use the same parameters as before for Heston and the following for NIG: $\alpha = 7.104$, $\beta = -3.3$, $\delta = 0.193$ and $\mu = 0.092$. Heston (with jumps) calibrated on the Eurostoxx 50 on February, Note that, in the limit as $T \to \infty$, the smile Heston + NIG jumps exactly corresponds to a double Heston smile!!

Lévy processe Heston BNS

Barndorff-Nielsen & Shephard (2001) I

$$\begin{split} \mathrm{d} X_t &= -\left(\gamma k\left(\rho\right) + \frac{1}{2}V_t\right)\mathrm{d} t + \sqrt{V_t}\,\mathrm{d} W_t + \rho\,\mathrm{d} J_{\gamma t}, \quad X_0 = x_0 \in \mathbb{R}, \\ \mathrm{d} V_t &= -\gamma V_t \mathrm{d} t + \mathrm{d} J_{\gamma t}, \quad V_0 = v_0 > 0, \end{split}$$

where $\gamma > 0$, $\rho < 0$ and $(J_t)_{t \ge 0}$ is a Lévy subordinator where the cgf of J_1 is given by $k(u) = \log \mathbb{E}(e^{uJ_1})$. $\mathcal{D}_{\Lambda} = (u_-, u_+)$, where

$$u_{\pm} := rac{1}{2} -
ho\gamma \pm \sqrt{rac{1}{4} - (2k^* -
ho)\gamma +
ho^2\gamma^2}.$$

with $k^* := \sup \{ u > 0 : k(u) < \infty \}$. We deduce the two functions F and R,

$$R(u,0) = \frac{1}{2}(u^2 - u)$$
, and $F(u,0) = \gamma k(\rho u) - u\gamma k(\rho)$.

Consider the Γ -BNS model, where the subordinator is $\Gamma(a, b)$ -distributed with a, b > 0. Hence $k_{\Gamma}(u) = (b - u)^{-1} au$, and $u_{\pm}^{\Gamma} := \frac{1}{2} - \rho\gamma \pm \sqrt{\left(\frac{1}{2} - \rho\gamma\right)^2 + 2b\gamma} \in \mathbb{R}_{\pm}$.

Antoine Jacquier Calibrating affine stochastic volatility models with jumps

Lévy processe Heston BNS

Barndorff-Nielsen & Shephard II

Γ-BNS model with a = 1.4338, b = 11.6641, $v_0 = 0.0145$, $\gamma = 0.5783$, (Schoutens) Solid line: asymptotic smile. Dotted and dashed: 5, 10 and 20 years generated smile.

Conclusion

Summary:

- Closed-form formulae for affine stochastic volatility models with jumps for large maturities.
- Closed-form formulae for continuous affine stochastic volatility models for small maturities.

Future research:

- Remove the conditions $\chi(0) < 0$ and $\chi(1) < 0$.
- What happens precisely in the small-time when jumps are added?
- Determine the higher-order correction terms (in t or t^{-1}).
- Statistical and numerical tests to assess the calibration efficiency.