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Motivation

Research goal
• Find a robust method to improve Monte Carlo simulation
performance when valuating path dependent options.

• Valid for stochastic volatility models.
To achieve this goal
• Use sample path Large Deviations Principles (LDP) to identify an

asymptotically optimal importance sampling change of drift.
• Problem : standard LDP results do not apply to stochastic volatility
models.

• Volatility can degenerate, local Lipschitz condition violated.

Secondary research goal
• Prove LDP for common stochastic volatility models (e.g. Heston,
Hull & White).



Talk Outline

Focus on path dependent option pricing.
• Problem setup.
• Review of Importance Sampling.
• Overview on constructing Asymptotically Optimal changes of drift.

• Valid for general diffusions.

• Specification to Heston stochastic volatility model.
• Numerical example

• Asian put option in Heston model.



Path Dependent Option Pricing
Setup:
• S = {St ; 0 ≤ t ≤ T} : Price process
• G = G (S) : Path dependent option payoff

Closed-form solution for EP [G ] not easily calculated.

Primary example
• Heston model:

dSt

St
= rdt +

√
vtdWt

dvt = κ (θ − vt) dt + ξ
√

vtdBt

d〈W ,B〉t = ρdt

• Asian put option:

G(S) =

„
K − 1

T

Z T

0
Stdt

«+



Monte Carlo Simulation

To calculate EP [G ], run a Monte Carlo simulation.
• Robust : only have to replicate price/volatility dynamics.

Problem : simulation inefficient if G only pays off in rare events.
• G 6= 0 a “Large Deviation” from the norm.
• Asian put : K >> S0.

Estimating confidence intervals is difficult.
• Simulation variance artificially low.



Improving the Monte Carlo Simulation

Goal : Run an effective Monte Carlo simulation by using Importance
Sampling.
• Change simulation measure from P to Q and change option payoff
from G to G dP

dQ so that

EQ

»
G

dP
dQ

–
= EP [G ]

Variance under Q:

VarQ
»
G

dP
dQ

–
= EP

»
G 2 dP

dQ

–
− EP [G ]2

Optimization problem : minQ∈A EP

[
G 2 dP

dQ

]
• A an appropriate family of equivalent measures.



Example

Arithmetic average Asian put option

G(S) =

„
K − 1

T

Z T

0
Stdt

«+

in the Heston model when K >> S0.

Change of measure corresponds to two changes in drift:
• One for the volatility v .
• One for the asset price S .

Change the drift so option is more in the money.
• Compensate for change in drift by including the "scaling factor" in
the option payoff.



Optimization Considerations

General optimization problem ill-posed : zero variance achieved for

dQ
dP

=
G

EP [G ]

• Not allowable because EP [G ] unknown in the first place.
Questions:
• How to adjust notion of optimality?
• How to choose an appropriate family of measures A?
• How to provide an optimal answer for a large class of functionals G?



Previous Work

Glasserman, Heidelberger, Shahabuddin (1999): use LDP to find an
efficient change of measure.
• Work in Black-Scholes model. Partition [0,T ] to reduce to a finite
dimensional problem.

• Approximate EP

[
G 2 dP

dQ

]
by taking an asymptotic expansion as noise

parameter goes away.
• Solve an associated minimization problem.

Guasoni, R. (2008) : extend methodology to continuous time in
Black-Scholes model.
• Find an optimal continuous change of drift.
• Characterize optimal change of drift via an Euler-Lagrange equation,
possibly with an explicit solution.



Asymptotic Optimality - General Idea
For now, consider the optimization problem:

inf
Q∈A

EP

»
G(X )2 dP

dQ

–
X is a d -dimensional diffusion satisfying

dXt = b(Xt)dt + σ(Xt)dWt ; X0 = x

where b : Rd 7→ Rd , σ : Rd 7→ Rd×d

Construct A by taking Cameron-Martin-Girsanov changes of measure:

A =


Ph
˛̨̨̨

dPh

dP
= exp

„Z T

0
u(h)′tdWt −

1
2

Z T

0
‖u(h)t‖2dt

«
, h ∈ HX

T

ff
where

u(h)t = σ−1(ht)
“
ḣt − b(ht)

”
HX

T =


h
˛̨

h(0) = x ,
Z T

0
‖u(h)t‖2dt <∞

ff



Asymptotic Optimality (2)
Imbed X into the family of diffusions (for 0 < ε ≤ 1):

dX ε
t = b(X ε

t )dt +
√
εσ(X ε

t )dWt ; X ε
0 = x

For h ∈ HX
T set

Hh(X ,W ) = 2 logG(X )−
Z T

0
u(h)′tdWt +

1
2

Z T

0
‖u(h)t‖2dt

With W ε =
√
εW

EP

»
G 2(X )

dP
dPh

–
= EP

»
exp

„
1
ε
Hh(X ε,W ε)

«–
at ε = 1. The small noise approximation is

L(h) = lim sup
ε↓0

ε log EP

»
exp

„
1
ε
Hh(X ε,W ε)

«–
ĥ is asymptotically optimal if

ĥ = argmin
{h∈HX

T}
L(h)



Asymptotic Optimality and LDP
As ε ↓ 0, (X ε,W ε) “converges” to (φt , 0) where φ solves

φ̇t = b(φt), φ0 = x

Sample path LDP identify precise rate of convergence for the law of
(X ε,W ε) to δ(φ,0).

Classical result (Freidlin-Wentzell): for H : C [0,T ]2 7→ R bounded,
continuous (supremum norm topology)

lim
ε↓0

ε log E
h
e−

1
ε
H(Xε,Wε)

i
= − inf

{(φ,ψ)∈C [0,T ]2}
(H(φ, ψ) + I (φ, ψ))

• Valid for b, σ bounded, Lipschitz (some relaxation OK)
• Rate function:

I (φ, ψ) =

(
1
2

R T
0 ‖u(φ)t‖2dt φ ∈ HX

T , ψ = u(φ)

∞ else



Variational Considerations
Freidlin-Wentzell asymptotics imply

L(h) = sup
{φ∈HX

T}

„
2 logG(φ) +

1
2

Z T

0
‖u(h)t − u(φ)t‖2dt −

Z T

0
‖u(φ)t‖2dt

«

Asymptotically optimal change of measure found by solving

inf
{h∈HX

T }
sup
{φ∈HX

T}

„
2 logG(φ) +

1
2

Z T

0
‖u(h)t − u(φ)t‖2dt −

Z T

0
‖u(φ)t‖2dt

«
(1)

A lower bound:

sup
{φ∈HX

T }

„
2 logG(φ)−

Z T

0
‖u(φ)t‖2dt

«
(2)

Practical plan:
• Solve (2) and find maximizer φ̂.

• With ĥ = φ̂, see if L(ĥ) equals value in (2).



Interpretation
For any family Qε of equivalent measures

lim inf
ε↓0

ε log EP

»
G(X ε)2/ε dP

dQε

–
≥ 2 lim inf

ε↓0
ε log EP

h
G(X ε)1/ε

i
= sup
{φ∈HX

T}

„
2 logG(φ)−

Z T

0
‖u(φ)t‖2dt

«

• If practical plan works, ĥ is robust.
Consider when X = W . Euler-Lagrange equation for (2):

Dη
„
2 logG(φ)−

Z T

0
‖φ̇t‖2dt

«
= 0 Dη : Gâteaux derivative towards η

If G is Fréchet differentiable, using a Taylor expansion

E
Pĥ

»
G(W )

dP
dP ĥ

–
= G(φ) exp

„
−1
2

Z T

0
‖φ̇t‖2dt

«
E

Pĥ [exp (R(W ))]

where R(W ) contains no linear terms.
• Variance due to linear part of log(G ) eliminated.



Application to Heston Model

In the Heston model, X = (S , v), W = (B,Z ) and

b(s, v) =

„
rs

κ(θ − v)

«
σ(s, v) =

„
ρs
√

v ρ̄s
√

v
ξ
√

v 0

«
where ρ̄ =

p
1− ρ2.

BIG PROBLEM : σ is neither elliptic nor locally Lipschitz.
• Freidlin Wentzell LDP must be extended.

Fortunately:
• If v satisfies a LDP by itself, then so does (S , v). (R. (2010))
• v satisfies LDP (Donati-Martin, Rouault, Yor, Zani (2004))



Application (2) - Questions

Does the Freidlin-Wentzell result apply to the unbounded and
discontinuous function

Hh(X ,W ) = 2 logG(X )−
Z T

0
u(h)′tdWt +

1
2

Z T

0
‖u(h)t‖2dt ?

• Yes, if G bounded from above and h smooth enough.Z T

0
u(h)′tdWt = u(h)TWT −

Z T

0
u̇(h)′tWtdt

Do the variational problems in (1) and (2) admit maximizers?
• Yes, if G is continuous and bounded from above. (R. (2010))

• Transfer problem to L2[0,T ] via u : H(S,v)
T 7→ L2[0,T ].

• u−1,G weakly continuous, functionals in (1), (2) coercive.



Numerical Example
For the Asian put option, the following parameter values are considered
(Heston (1993))

κ = 2, θ = 0.09, ξ = 0.2, v0 = 0.04,
r = 0.05,T = 1, S0 = 50,K = 30, ρ = −0.5.

Asymptotic Optimality holds for ĥ solving (2) with these values.

Optimal price drift



Numerical Example (2)

Optimal volatility drift

Interpretation:
• Under P the option is out of the money.
• To bring the option into the money either

• The “average” price path must come down.
• The “average” volatility must go up.



Future Work

Run numerical simulations to see actual variance reduction.
• Black-Scholes model : 5X − 10X variance reduction typical. Does
this carry over?

Apply methodology to options which depend more directly on volatility.
• Out of the money call or put : variance reduction obtained primarily
by changing price drift.

• What about for a straddle option? No obvious direction to move the
price.

Derive LDP for other stochastic volatility models.
• SABR, CEV
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